
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Kang Wang,
Shanghai General Hospital, China

REVIEWED BY

Rama Rao Damerla,
Manipal Academy of Higher Education, India
Akhileshwar Namani,
Sri Shankara Cancer Hospital and Research
Centre, India
Minghao Dang,
The University of Texas MD Anderson Cancer
Center, United States

*CORRESPONDENCE

Qian Zhang

zhangqian@hrbmu.edu.cn

Shanshan Yang

yangshanshan@hrbmu.edu.cn

†These authors have contributed equally to
this work

RECEIVED 25 April 2025

ACCEPTED 11 August 2025
PUBLISHED 16 September 2025

CITATION

Su Q, Tian X, Li F, Yu X, Gong W, Chen Y,
Wang J, Yang S, Zhang S, Zhang Q and
Yang S (2025) Integrated multi-omics analysis
of single-cell and spatial transcriptomics
reveals distinct hpv-associated immune
microenvironment features and prognostic
signatures in cervical cancer.
Front. Immunol. 16:1612623.
doi: 10.3389/fimmu.2025.1612623

COPYRIGHT

© 2025 Su, Tian, Li, Yu, Gong, Chen, Wang,
Yang, Zhang, Zhang and Yang. This is an open-
access article distributed under the terms of
the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 16 September 2025

DOI 10.3389/fimmu.2025.1612623
Integrated multi-omics analysis
of single-cell and spatial
transcriptomics reveals distinct
hpv-associated immune
microenvironment features
and prognostic signatures
in cervical cancer
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Harbin, China, 2Department of Endoscopy, Tianjin Medical University Cancer Institute & Hospital,
National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin
Key Laboratory of Digestive Cancer, Tianjin, China, 3Department of Breast Surgery, Harbin Medical
University Cancer Hospital, Harbin, China, 4Medical Research Institute, Guangdong Provincial People’s
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Background: Cervical cancer (CC) is a highly heterogeneous malignancy

primarily driven by persistent infection with high-risk human papillomavirus

(HPV). However, comprehensive analyses of heterogeneity in the immune

microenvironment, particularly its spatial heterogeneity, between HPV-positive

and HPV-negative CC remain limited, despite their critical clinical significance.

Methods: We performed single-cell RNA sequencing (scRNA-seq) and spatial

transcriptomics (ST) sequencing on collected cervical cancer samples,

integrating scRNA-seq, ST, and bulk RNA-seq to analyze distinct cell subtypes

and characterize their spatial distribution. Multiplex immunofluorescence

analysis was further utilized to validate HPV status-specific expression patterns.

Cox regression and LASSO regression analyses were used to identify the

prognostic signature on the TCGA dataset.

Results: Through integrative analysis, we found that HPV-positive samples

demonstrated elevated proportions of CD4+ T cells and cDC2s, whereas HPV-

negative samples exhibited increased CD8+ T cell infiltration. In HPV-positive CC,

epithelial cells acted as primary regulators of cDC2s via the ANXA1-FPR1/3

pathway, with cDC2s subsequently modulating CD4+ T cells and interferon-

related CD8+ T cell subtypes. In contrast, HPV-negative CC featured epithelial

cells predominantly influencing monocytes and macrophages, which then

interacted with CD8+ T cells. Notably, the MDK-LRP1 ligand-receptor

interaction emerged as a potential key mechanism for recruiting

immunosuppressive cells into CC tumors, fostering an immunosuppressive

microenvironment. Further, we constructed a risk score model based on an

epithelial cell-related signature (ERS), which was significantly associated with
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patient survival. Noteworthy variations were observed in immune cell infiltration

and immune microenvironment among distinct risk groups.

Conclusion: Based on integrated multi-omics data, we precisely delineated the

spatial transcriptional features of the tumor microenvironment in CC with

different HPV statuses, including identifying distinct CD8+ T cell states and

cell-cell communication. In addition, we developed an ERS closely associated

with the immune environment and prognosis of CC. These results increase our

understanding of the molecular mechanisms of cervical cancer under different

HPV statuses and provide assistance for the precise treatment of cervical cancer.
KEYWORDS

cervical cancer, HPV, single-cell sequencing, spatial transcriptomics, tumor
microenvironment, prognostic factor
Introduction

Cervical cancer (CC) remains one of the most lethal

malignancies affecting women worldwide (1), with persistent

infection of high-risk human papillomavirus (HPV) being the

primary etiological factor. Epidemiological evidence indicates that

high-risk HPV infection accounts for over 90% of CC cases (2, 3).

Compared to HPV-positive patients, HPV-negative patients exhibit

higher rates of metastasis and increased mortality in advanced

stages (3, 4). However, the underlying mechanisms responsible

for these differences remain poorly understood, and metastatic

CC patients (especially HPV-negative patients) have difficulty

receiving effective clinical treatment.

The critical influence of the tumor microenvironment (TME)

on carcinogenesis and therapeutic effectiveness has been widely

recognized. Cancer cells can adapt to and thrive in novel

microenvironments by modulating their interactions with stromal

cells, altering their mechanical properties (5), and regulating key

signaling pathways, all of which contribute to their survival and

migration potential (6). These findings suggest that the

heterogeneity of the TME, especially in tumor epithelial cells, is

crucial for determining the malignant phenotype of cancer cells.

However, the molecular mechanisms by which different TME

components affect immunotherapy efficacy remain unclear in CC,
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as does the link between the poor prognosis in HPV-negative

patients and the TME.

Single-cell sequencing technology plays a crucial role in

studying the TME in CC, enabling a detailed understanding of

the cellular composition and interactions that drive tumor

progression and response to therapies (7). Currently, several

studies based on single-cell transcriptomic sequencing data have

explored the components of the TME and the cell-cell interactions

within TME. However, the interactions between cells are inherently

dependent on their spatial proximity, and single-cell sequencing

lacks spatial information, which limits the understanding of how

these interactions occur in their native tissue context. The

emergence of spatial transcriptomics (ST) has addressed this

limitation by combining the high precision of RNA sequencing

with spatial resolution, constructing detailed transcriptional and

spatial maps to probe transcriptional activity at the spatial level (8).

Integrating ST and single-cell transcriptomics allows for a more

detailed evaluation of the TME in HPV-negative and HPV-positive

samples, which is crucial for elucidating the genomic and molecular

differences based on HPV infection status and may provide

important insights for developing more targeted and effective

treatment strategies.This study presents scRNA-seq or ST analysis

of 7 biopsy samples each from untreated donors, categorized as

either HPV-negative or HPV-positive CC. This comprehensive

approach aims to elucidate the features of distinct cell

subpopulations and identify dynamic changes occurring in

both the tumor and microenvironment, with a specific focus

on HPV infection status. We revealed heterogeneity within CC

tumors by mapping super-resolution spatial maps of CC, identified

key cell interactions that lead to the immunosuppressive

microenvironment, and verified these findings through ST and

multiplex immunofluorescence (mIF). Based on epithelial cells,

the source of differences in cell communication, we constructed a

prognostic signature through the epithelial cell-related signature

(ERS), which has good potential in predicting the prognosis of CC

patients and assessing immunotherapy response. Overall, these
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findings underscore the molecular heterogeneity within the TME

based on the HPV infection status and highlight different potential

targets for future cancer therapy.
Materials and methods

Patient sample collection

Four fresh samples of pathologically diagnosed squamous cell

carcinoma of the cervix were collected from Harbin Medical

University Cancer Hospital, with written informed consent

obtained from all patients and approval from the Institute

Research Medical Ethics Committee of Harbin Medical University

(Ethics Approval No. KY2019-16). Conducted in accordance with

the Declaration of Helsinki, the study included two HPV-positive

and two HPV-negative CC individuals for scRNA-seq analysis.

HPV infection status was determined using a commercial HPV

Genotyping Diagnosis Kit (Genetel Pharmaceuticals, Shenzhen, China)

with parallel analysis via HPV genotype DNA microarray reader

system (HPV-GenoCam-9600, Genetel Pharmaceuticals), in addition,

P16 expression was evaluated through immunohistochemistry.

Detailed clinical and pathological information is presented in

Supplementary Table S1. Fresh tumor samples acquired prior

concurrent chemoradiotherapy, and no patient received

chemotherapy, radiotherapy, or immunotherapy before. After

washing with phosphate-buffered saline (PBS), the specimens were

finely minced into pieces smaller than 1 mm3 using a scalpel on ice and

placed in 1 mL of Cryopreservation Protection Fluid (SINOTECH™

Tissue Sample Cryopreservation Kit, JZ-SC-58202, Sinomics

Genomics, China). Initially frozen at -80 °C overnight in a gradient

freezer, the samples were then transferred to liquid nitrogen for long-

term storage, facilitating subsequent scRNA-seq and analysis.
Single‐cell sequencing analysis

All procedures adhered to the manufacturer’s protocol (BD

Biosciences). Single-cell suspensions from each sample were

initially stained with two fluorescent dyes, Calcein AM (Thermo

Fisher Scientific, Cat. No. C1430) and Draq7 (Cat. No. 564904), to

accurately determine cell concentration and viability using the BD

Rhapsody™ Scanner before proceeding with single-cell

multiplexing labeling. Cell viability ranged from 70% to 80%.

Each sample’s single-cell suspension was sequentially labeled with

the BD Human Single-Cell Multiplexing Kit (Cat. No. 633781)

before pooling. The BD Rhapsody Express system, using a micro-

well cartridge, captured the single-cell transcriptome.

Approximately 18–000 cells were captured across more than

200–000 micro-wells in each batch. Excess oligonucleotide

barcode beads were loaded onto the cartridge to ensure nearly

every micro-well contained one bead paired with a micro-well. Cells

were lysed with cell lysis buffer, releasing polyadenylated RNA
Frontiers in Immunology 03
molecules that hybridized with the beads. The beads were then

harvested into a single tube for reverse transcription. During cDNA

synthesis, each cDNA molecule was labeled with a molecular index

and a cell label indicating its source cell at the 3’ end of the mRNA

transcript. The entire transcriptome library was prepared through

double-strand cDNA synthesis, ligation, and general amplification

involving 13 PCR cycles. To enrich the 3’ end of transcriptional

products associated with cell labels and molecular indices, the

sequencing library of the whole transcriptome amplification

products was prepared using random start-up PCR. These

libraries were sequenced on the HiSeq2500 (Illumina) using the

PE150 model. The BD Whole Transcriptome Analysis (WTA)

Rhapsody analysis pipeline was used to process sequencing data,

including alignment and generation of gene/barcode matrix.
10x Genomics Visium ST

The tumor and background tissue sections from another 3

patients were processed for ST using the 10x Genomics Visium

platform. Visium spatial gene expression data for formalin-fixed

paraffin-embedded (FFPE) tissues were acquired in strict

accordance with the meticulously detailed protocols furnished by

10× Genomics for tissue preparation and library construction. The

FFPE tissues underwent a sequential series of processing steps. First,

they underwent deparaffinization, a process essential for removing

paraffin wax. This was followed by staining, which facilitated the

visualization and identification of tissue components. Subsequently,

the version 1 human whole-transcriptome probe panels were

applied to the deparaffinized, stained, and decrosslinked tissues.

Upon completion of the hybridization process, where

complementary nucleic acid sequences anneal to each other,

ligation of the probes was carried out. The ligation products were

liberated from the tissue through RNase treatment and

permeabilization techniques. Spatially barcoded oligonucleotides

were then utilized to capture the ligated probe products, and an

extension reaction of the probes was subsequently initiated.

Libraries were generated from the extended probes through

standard molecular biology techniques such as polymerase chain

reaction-based amplification and purification steps. To assess the

integrity and quantity of each resultant library, a Qubit fluorometer

and an Agilent TapeStation were employed, leveraging their

respective capabilities for accurate nucleic acid quantification and

quality assessment. The final libraries were subjected to high-

throughput sequencing on an Illumina NovaSeq 6000 platform.

This sequencing process yielded 28-base-pair (bp) reads, which

encompassed spatial barcodes and unique molecular identifier

(UMI) sequences. The spatial barcodes were crucial for mapping

the origin of each sequenced fragment within the tissue, while the

UMIs enabled the quantification of unique transcripts, reducing the

impact of PCR amplification biases. In addition, 50-bp probe reads

were generated, which were essential for transcriptomic profiling

and gene expression analysis.
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ST analysis

The gene-spot matrices generated after processing the ST data

of ST and Visium samples were analyzed using the Seurat package

(version 4.3.0). Spots were filtered based on a minimum detected

gene count of 200 genes, and genes with fewer than 10 read counts

or expressed in fewer than 3 spots were removed. Inter-spot

normalization was performed using the LogVMR function.

Dimensionality reduction and clustering were carried out on the

first 30 principal components using principal component analysis.

To better visualize the spatial expression of features, the spots were

enhanced using the “spatialEnhance” function of the BayesSpace

package (version 1.6.0) (9). The “enhanceFeatures” was utilized to

enhance and calculate the horizontal expression of all genes of

interest. We performed an integrated analysis of scRNA-seq data

and ST data using the CellTrek R package (10) to calculate the

spatial k-distances between different cell subsets and specific

cell subsets.
Inferring super-resolution tissue
architecture

The cell type composition of each point was determined using

the iStar algorithm. The iStar is a weakly supervised model (11). It

trains the model on multiple two-dimensional ST section data and

annotates the super-resolution tissue structure of the sections

through machine learning. Firstly, iStar adopts self-supervised

learning to pre-train a hierarchical vision transformer on the

available tissue staining datasets, achieving the effect of

hierarchical layer feature extraction. Subsequently, iStar uses

weakly supervised learning to train a feed-forward network

model, which predicts the ultra-high-pixel-level gene expression

map using the previously obtained features. Finally, this model

divides the gene expression measurement at each point in ST

sequencing into multiple values and assigns them to each super-

pixel. By integrating the feature information in the histological

images, it predicts the gene expression at the super-pixel level.
Raw sequencing data processing and
identification of major cell populations

Quality control and downstream analysis of the scRNA-seq-

derived gene expression matrix were performed using the Seurat

pipeline (v4.3.0) in R (v4.2.3) (12). Cells with fewer than 800 genes

with nonzero counts were excluded. Additionally, cells where over

25% of the counts originated from the mitochondrial genome were

filtered out as low quality. After rigorous quality control, a total of

8843 single cells were retained. The filtered expression matrix was

normalized using Seurat’s standard workflow to generate

normalized count data.

Highly variable genes were selected for unsupervised clustering

analysis through the Seurat pipeline. Dimensionality reduction was

achieved using the first 20 principal components derived from 2000
Frontiers in Immunology 04
highly variable genes. Cell clustering was performed with the

FindClusters function at a resolution of 0.8, followed by two-

d imens iona l v i sua l i za t ion us ing Uni form Mani fo ld

Approximation and Projection (UMAP) (13). Differentially

expressed genes (DEGs) within the same cell clusters across

different groups and marker genes for each cluster were

calculated using the ‘FindAllMarkers’ function with default

thresholds. A manual review process was then conducted to

identify major cell types based on the enrichment of specific

markers within each cell cluster.
Calculation of the gene set activity level

Gene set activity analysis was performed on TCGA-CESC

(Cervical Squamous Cell Carcinoma and Endocervical

Adenocarcinoma) samples using the AUCell R package (version

1.20.2) (14). The analytical workflow comprised three key steps

(1): Computing gene expression rankings for each sample using the

AUCell_buildRankings function with default parameters

(2); Scoring predefined cellular gene sets (identified via Seurat’s

FindAllMarkers function with default thresholds) against these

rankings; and (3) Quantifying gene set enrichment through Area-

under-the-curve (AUC) values using the AUCell_calcAUC

function, which reflects the fraction of top-expressed genes

belonging to each gene set. The TCGA cohort was stratified by

HPV status (positive vs. negative), followed by comparative analysis

of AUC values between subgroups.
Pseudotime trajectory analysis

Developmental trajectories of heterogeneous cell clusters were

reconstructed using Monocle2 (version 2.26.0) (15), with cluster-

specific marker genes identified by Seurat’s FindAllMarkers

function (default parameters) serving as input features. Focusing

on T cell immunobiology, we specifically analyzed differentiation

trajectories of CD8+ and CD4+ T cell subsets by (1): Projecting

cellular states into a reduced-dimensional space using DDRTree

(2); Ordering cells along pseudotemporal axes to infer

differentiation pathways; and (3) Applying BEAM analysis to

identify branch point-associated DEGs. This computational

framework enabled systematic characterization of potential

lineage commitment events within T cell populations across

experimental groups.
Cell-cell communication analysis

Intercellular communication networks were systematically

analyzed using CellChat (version 1.6.1) to delineate HPV status-

dependent signaling patterns (16). Differential ligand-receptor

(L-R) interactions were quantified through the netVisual_bubble

function ‘s comparison parameter, with dominant sender-receiver

cell pairs visualized via 2D scatter plots. Key signaling hubs were
frontiersin.org
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identified by (1): Specifying source/target cell populations; and

(2) Generating strength-ranked bar charts of top interactions. The

netVisual_diffInteraction function quantified epithelial cells-

specific communication disparities with monocytes and cDC2s

between groups. Complementary analysis was performed using

CellPhoneDB Python (version 4.0.0) (17), a Python-based

repository of curated L-R interactions, retaining significant pairs

(p<0.05) . The iTALK platform further character ized

communication networks, with functional annotation of L-R pairs

through its integrated database and Circos plot visualization

emphasizing immunosuppressive checkpoint interactions.
MHC II and DC maturation scores

Gene signature scores were computed at single-cell resolution

using Seurat ’s AddModuleScore function. Two specific

immunological signatures were quantified (1): MHC class II

score, derived from the expression profile of MHC class II-related

genes; and (2) Dendritic cell (DC) maturation score, calculated

based on established DCmaturation markers (Supplementary Table

S2). These scores represent the average expression levels of

respective gene sets normalized against control gene features.
Differential gene expression analysis

Differential gene expression analysis was performed to

compare: (i) HPV-infected versus non-infected epithelial cells,

and (ii) HPV-infected versus non-infected cDC2s, using Seurat’s

FindMarkers function with Wilcoxon rank sum test. Significant

DEGs were selected based on the following criteria (1): log fold

change (lnFC) > 0.25 (2), p < 0.05, and (3) minimum percentage

(min.pct) > 0.1. Pathway enrichment analysis of epithelial cell-

specific DEGs was subsequently conducted using the ReactomePA

package (version 1.42.0) through its enrichPathway function, with

false discovery rate (FDR) correction for multiple testing.
Establishment and verification of
prognostic model

Utilizing epithelial cell differential genes with prognostic value,

an ERS was established to predict the prognosis of CC. Firstly,

univariate Cox regression analysis was employed to evaluate the

impact of these genes on the survival status of CC patients.

Subsequently, the least absolute shrinkage and selection operator

(LASSO) regression method was utilized to further reduce the

number of candidate genes, ultimately constructing the ERS.

With the ERS, patients were classified into a high-risk group or a

low-risk group according to the median risk score. Receiver

operating characteristic (ROC) curves, calibration curves, and

decision curve analysis (DCA) were applied to assess the accuracy

and clinical utility of the ERS.
Frontiers in Immunology 05
Differences in the immune TME

The “CIBERSORT” R package (18) was used to strictly assess

the differences in the immune TME within different risk groups and

clarify the complex differences in immune cell infiltration among

different risk groups. The Ro/e (Ratio of observed to expected)

analysis was used to assess the distribution preferences of cell

subsets in different tissues (19). The “estimate” R package (20)

was used to quantify Stromal Score, Immune Score and

EATIMATE Score in patients with CC.
Multiplex immunofluorescence

mIF was carried out using a multiple fluorescent staining kit

(abs50014; Absin, Shanghai , China) according to the

manufacturer’s instructions. Briefly, the sections were dewaxed in

xylene, rehydrated through an alcohol gradient, and incubated with

serum. Following heat repair, the sections were incubated with

primary antibodies (CD8, CD4, PD1, Zhongshan Chemical Co.,

Beijing, China; ANXA1,MDK, BIoss; Beijing, China) and then with

secondary antibodies conjugated to 520, 570, 690, 650 or 620. DAPI

was subsequently used to stain the nuclei. The sections were then

examined under a laser scanning confocal microscope (Zeiss,

Pleasanton, CA, USA).
Results

Super-resolution tissue architecture in
HPV-positive and HPV-negative CC

To explore TME heterogeneity between HPV-positive and

HPV-negative CC, we performed ST with tumor sections from

three patients with CC (Figure 1A). The currently widely used 10X

Visium platform covers more than 25 cells per spot and thus cannot

obtain information at single-cell resolution on the tissue. Based on

previous studies, gene expression patterns were correlated with

histological image features, suggesting the possibility of predicting

gene expression from histology. Therefore, using algorithms to

mine information from hematoxylin and eosin images and ST

data to reconstruct super-resolution tissue images becomes a

possibility (21, 22). Utilizing iStar (11), we constructed near-

single-cell resolution spatial architecture maps of CC tissue on the

histological images for HPV - positive(left) and HPV-negative

(right) patients (Figure 1B). By employing distinct gene markers,

we visualized the spatial distribution of epithelial cells (EPCAM),

T cells (CD3E), plasma cells (JCHAIN), and myeloid cells (LYZ),

revealing their organization within the TME (Figure 1C). The

spatial distribution of gene markers of major cell types precisely

coincides with the locations where these cells exist, which has been

confirmed by two pathologists with reference to the original

histological sections.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1612623
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Su et al. 10.3389/fimmu.2025.1612623
FIGURE 1

Super-resolution tissue architecture resolved by iStar in HPV-positive and HPV-negative CC. (A) Flow chart. (B) High-resolution spatial clustering and
representative gene expression enhanced with iStar in HPV- positive CC (left) and HPV- negative CC (right)(Dark brown represents fibroblast1, deep
red represents fibroblast2, orange represents fibroblast3, light brown represents fibroblast4, purple represents epithelial cell, azure represents
memory B cell, dark blue represents naive B cell, light green represents plasma cell, dark green represents neutrophil, purplish red represents mast
cell, yellow represents macrophage, white represents DC, pink represents CD4+ T cell, and light blue represents CD8+ T cell). (C) ST analysis
depicting the expression profiles of various marker genes, the left panel illustrates the distribution of epithelial cells (EPCAM), T cells (CD3E), plasma
cells (JCHAIN), and myeloid cells (LYZ) in an HPV-positive sample; the right panel shows the expression of these markers in an HPV-negative sample.
The color gradient represents the level of expression, ranging from low (blue) to high (red). (D) Visualizing the distribution of cell clusters in HPV-
positive and HPV-negative samples by UMAP plot. (E) Spatial distribution of various cell clusters in HPV-positive and HPV-negative samples.
(F) CellTrek calculated the average k-distance from different cell types to naive B cells. (G) CellTrek calculated the average k-distance from different
cell types to CD4+ T cells.
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Based on cellular activities and molecular characteristics, we

identified four different fibroblast subtypes. Of note, one of which

was present only in HPV-negative patients (fibroblast 4). This

discrepancy may be due to a series of cellular and molecular

changes caused by HPV infection, which in turn affect the

differentiation and existence status of fibroblasts. Meanwhile, we

identified the spatial locations of nine immune cell subtypes,

including three B cell subtypes (memory B cell, naive B cell and

plasma), four myeloid cell subtypes (neutrophil, mast, macrophage

and DC), and two T cell subtypes (CD4+ T cell and CD8+ T cell).

These immune cells are present in both tumor and stromal regions,

which is consistent with the findings of previous scRNA-seq

studies (23).

We performed UMAP visualization of cell clusters using Seurat

and analyzed the marker gene expression in each cluster

(Figures 1D, E; Supplementary Figures S1A, B). It was important

to note that Seurat clustering reflects similarities in the overall gene

expression patterns within spots (55 mm) rather than the clustering

of individual cell types. Thus, the cell clusters in UMAP indirectly

corresponded to regions with similar cell type compositions

(Figure 1E).

Our findings indicated that the distribution of cell clusters

identified by Seurat clustering was similar to the distribution of

cell types determined by the iStar method. For example, spots

dominated by epithelial cells in Seurat clusters (clusters 2, 3, 4, 6,

and 9) exhibited a similar distribution in tissue sections to the

epithelial cell subsets identified by the iStar method; spots

dominated by immune cells in the Seurat cluster (cluster 0)

showed a similar distribution to the T cell subsets identified by

the iStar method. These results further validated the authenticity

and superiority of the iStar method, as it can identify different cell

types within each spot as accurately as possible by integrating

histological images.

In addition, we found that the spatial locations of memory B

cells and naive B cells are adjacent, and the spatial locations of CD4+

T cells and DCs are also adjacent, whether in HPV-positive and

HPV-negative patients. We validated the results of iStar by

calculating the average k-distance from various cell types to

specific cells (naive B cells and CD4+ T cells) in each tissue

section using the CellTrek spatial analysis method. The results

showed that in both HPV-positive and HPV-negative patients,

memory B cells were spatially closest to naive B cells, while DCs

were relatively close to CD4+ T cells (Figures 1F, G), which was

consistent with the results of iStar. This spatial proximity

phenomenon may be related to the development and

differentiation of B cells (24), antigen presentation and

immunological activation (25), and the coordinated interaction

among immune cells (26, 27). In summary, we showed the

distribution of various cell types and the expression patterns of

classic markers in HPV-positive and HPV-negative patient tissues

at high resolution spatial images, providing detailed cellular and

molecular information in TME of CC.
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Single-cell landscape in HPV-positive and
HPV-negative CC

We conducted single-cell RNA sequencing (scRNA-seq) on

samples derived from untreated CC patients, stratified into HPV-

negative and HPV-positive cohorts (Figure 1A). After quality

control, a total of 8,843 high-quality cells were retained for

downstream analysis. Using cell type-specific markers, we

identified seven major cell subpopulations: epithelial cells (3,889

cells, 44%; marked by EPCAM, KRT19, CD24, CDH1), T cells (4,011

cells, 45.3%; marked by CD3D, CD3E), B cells (315 cells, 3.6%;

marked by CD19), plasmablasts (78 cells, 0.9%; marked byMS4A1),

fibroblasts (41 cells, 0.5%; marked by COL1A1, DCN, C1R),

plasmacytoid dendritic cells (pDCs, 116 cells, 1.3%; marked by

LILRA4, XCR3, IRF7), and myeloid cells (393 cells, 4.4%; marked by

CD68, LYZ, TYROBP) (Figure 2A; Supplementary Figure S2A, B).

No cell type was observed to exclusively exist in a specific HPV

status, although some cell types were more abundant in either HPV-

positive or negative samples (Figure 2B). Specifically, compared to

HPV-positive samples, HPV-negative samples exhibited a relatively

lower proportion of epithelial cells, while the proportions of T cells

were relatively higher (Figure 2C; Supplementary Table S3). Given

the limited size of our sample cohort, tissue preference of each

cluster was validated by Ro/e analysis to adjust cell-sampling biases

for each patient. (Supplementary Figure S2C). This suggests that in

HPV-negative patients, immune cells are more extensively recruited

to the tumor tissue, potentially participating in anti-tumor immune

responses (Figure 2C).

T and myeloid cells critically regulate tumor progression in the

TME, where T cells particularly mediate antiviral and antitumor

immunity (28–31). To understand the role of T and myeloid cells in

HPV infection and tumor development, we further divided T and

myeloid into different subtypes based on cell marker expression

(Figures 2D, E; Supplementary Figures S2D, H; Supplementary

Table S4). T cells were classified into nine subtypes, comprising

three CD4+ T cell subtypes (naïve CD4+ T, regulatory T cells (Treg),

and exhausted CD4+ T), four CD8+ T cell subtypes (exhausted

CD8+ T, memory CD8+ T, proliferating CD8+ T, and interferon-

related CD8+ T), and two NK cell subtypes (NKT and NK)

(Supplementary Figure S2D),. Myeloid cells were divided into five

subtypes: macrophages, monocytes, LAMP3+ DCs, cDC1s, and

cDC2s (Supplementary Figure S2H).

Our analysis of T cell subtypes revealed distinct patterns between

HPV- and HPV+ samples. Among CD4+ T cells, all three subtypes

showed lower proportions in HPV- samples. Conversely, in CD8+ T

cell subtypes, except for CD8+ IFIT, other CD8+ T cell subtypes were

present at higher proportions in HPV- samples (Figure 2F, left;

Supplementary Figures S2E, F, G). These findings suggest differential

immune dynamics between HPV- and HPV+ samples. Consistent

results were observed in our analysis of the TCGA cohort, where

HPV- patients exhibited lower infiltration of both CD4+ T cells and

CD8+ IFIT compared to HPV+ patients (Figures 2F, right).
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In parallel, we analyzed the myeloid compartment to explore

potential differences in immune cell composition. In HPV- patients,

we observed higher proportions of macrophages, monocytes, and

LAMP3+ DCs, while cDC2s were significantly reduced compared to

HPV+ patients (Figure 2G, left). Analysis of the TCGA cohort

corroborated these results, revealing significantly higher infiltration of

cDC2s in HPV+ patients compared to HPV- patients (p = 5.1 × 10−4;

Figure 2G, right; Supplementary Figure S2I). Together, these findings

suggest that HPV+ patients may exhibit a stronger immune response

mediated by cDC2s and CD4+ T cells, whereas HPV- patients may rely

more on CD8+ T cell-mediated immunity.
Distinct CD8+ T cell trajectories in HPV-
positive versus HPV-negative

T cells play a central role in the TME and constitute the

predominant immune cell population (32). The analysis of

cellular composition in HPV-negative and HPV-positive patients

demonstrated differences in the distribution of T cell subtypes.

However, comparative trajectory analysis revealed no significant

differences in CD4+ T cell differentiation between the two groups

(Supplementary Figures S3A, B). CD8+ T cells, known for their

cytotoxic properties, play critical roles in tumor suppression and

viral infection control (33). Monocle 2 analysis of all CD8+ T cells

constructed a pseudotemporal trajectory that identified five distinct

cellular states, which segregated into two divergent branches

(Figures 3A, B). Notably, we observed a progressive increase in

HPV+ cells in fate 1, whereas fate 2 was predominantly enriched for

HPV− cells (Figure 3C). Combining pseudotime trajectory with
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CD8+ T cell subtypes, we defined memory CD8+ T cells as the root

state. Along Fate 1, CD8+ Tm cells progressively transitioned

toward interferon-responsive CD8+ T cells (CD8+IFIT). In

contrast, Fate 2 bifurcated into two terminal states: exhausted

CD8+ T cells and proliferative CD8+ T cells (Figure 3D). This

divergence suggests distinct functional reprogramming paths driven

by HPV infection status.

We further analyzed transcription factors (TFs) dynamically

regulated along the pseudotime trajectory (Figure 3E). In Fate 2, the

expression of BHLHE40 and RBPJ progressively increased

(Figure 3F), with higher levels observed in HPV− compared to

HPV+ cells (Figure 3G). BHLHE40 is increasingly recognized as a

key regulator of immunity in infection, autoimmunity, and

inflammation, acting as a critical checkpoint between progenitor

and effector T cell subsets (34, 35). RBPJ, a mediator of Notch

signaling, plays a pivotal role in immune cell development and

differentiation and is negatively correlated with CD8+ T cell

cytotoxic function (36, 37). Their upregulation in Fate 2 suggests

a Notch-dependent differentiation bias toward exhaustion and

impaired effector potential in HPV− patients.

Conversely, Fate 1 exhibited increasing expression of STAB1 and

TRIM22 (Figure 3F). Stabilin-1 (STAB1), a scavenger receptor linked

to cellular trafficking, inflammation, and cancer, exerts protective

anti-infective effects by modulating cytokine/chemokine production

and immune cell recruitment (38). TRIM22, an interferon-stimulated

gene, mediates antiviral responses and immune regulation (39). Their

enrichment in Fate 1 implies that HPV infection may trigger

interferon-driven autoimmunity, accompanied by STAB1/TRIM22

upregulation (Figure 3G). Together, these results demonstrate that

HPV infection status drives divergent CD8+ T cell differentiation
FIGURE 2

Single-cell landscape of HPV-positive and HPV-negative CC. (A, B) UMAP map of 8,843 cells profiled, with each cell color coded for: seven
indicated cell types and tissue types. (C) Proportion of each cell type between HPV-positive and HPV-negative samples. (D) UMAP plots of T and NK
cell subsets, colored by cell types. (E) UMAP plots of myeloid cells, colored by cell types. (F) Proportion of each cell type in T and NK cells between
HPV-positive and HPV-negative samples (left); the comparison of AUCell scores for CD4, CD8_IFIT in HPV-positive and HPV-negative samples
(right, Wilcoxon test). (G) Proportion of each cell type in Myeloid cells between HPV-positive and HPV-negative samples (left); the comparison of
AUCell scores for cDC2s in HPV-positive and HPV-negative samples (right, Wilcoxon test). UMAP: Uniform Manifold Approximation and Projection.
pDC, plasmacytoid dendritic cell.
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programs - an interferon-dominated antiviral response (STAB1/

TRIM22) in HPV+ patients versus Notch-mediated exhaustion

(BHLHE40/RBPJ) in HPV- patients.
HPV+ and HPV- cervical cancers diverge in
TME cell-cell communication

To delineate HPV-specific crosstalk patterns, we performed

CellphoneDB and Cellchat analyses comparing CD4+/CD8+ T cell

interactions. In HPV+ tumors, CD4+/CD8+ T cells preferentially

communicated with cDC2 cells, whereas HPV- tumors exhibited

enhanced T cell-macrophages/monocytes interactions (Figure 4A).
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Epithelial cells emerged as the dominant signal senders in both

HPV- and HPV+ tumors, with the highest ligand-receptor outgoing

strength, while CD8+ T cells functioned as central signal integrators

through robust incoming interactions (Figure 4B). Quantitative

interaction weight scores further validated these patterns

(Figures 4C, D), revealing an HPV-dependent rewiring of the CC

immunoregulatory network with therapeutic implications.

Analysis of DC/T-cells transitions revealed activated VEGF and

complement signaling pathways in HPV-positive CC, whereas the

APP signaling pathway was more prominent in HPV-negative CC

(Figure 4E). Previous studies have shown that VEGF signaling

upregulation occurs upon T-reg cells depletion in lung

adenocarcinomas. Virus-derived factors like VEGF can recruit
FIGURE 3

Distinct developmental trajectory inference between HPV-positive and HPV-negative CC. (A) Monocle analysis for trajectory inference of CD8+ T-
cell subpopulations during the transition, colored by pseudotime. (B) Monocle analysis for trajectory inference of CD8+ T-cell subpopulations during
the transition, colored by states. (C) Cell density distribution reflecting the relative number of CD8+ T cells along the CD8+ trajectories between
HPV-positive and HPV-negative samples. (D) Distribution of CD8+ T-cell subpopulations of HPV-positive (left) and HPV-negative (right) during the
transition along the cell types. (E) Heatmap showing the dynamic differences in DEGs of distinct branches (The blue font indicate genes highly
expressed along the fate 2 trajectory, while the red font indicate genes highly expressed within the fate 1 trajectory). (F) Cell types and expression of
representative genes along the pseudotime for CD8+ T cells. (G) Expression proportion of the BHLHE40, RBPJ, SATB1, and TRIM22 genes between
HPV-positive and HPV-negative CD8+ T cells (chi-square test, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1612623
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Su et al. 10.3389/fimmu.2025.1612623
FIGURE 4

Characteristics of cell-cell communication between HPV-positive and HPV-negative CC in TME. (A) Bar plots depicting interaction intensities
between major cell types and CD4+ (left)/CD8+ (right) T cells. Upward bars represent stronger interactions in HPV-positive CC, while downward bars
indicate stronger interactions in HPV-negative CC, colored by cell types. (B) Cell clusters located based on the count of their significant incoming
(Y-axis) or outgoing (X-axis) signaling pattern in HPV-positive samples (left) and HPV-negative samples (right). (C) Left: Differential signaling patterns
originating from HPV+ vs. HPV− epithelial cells (Y-axis: HPV+

− HPV−; X-axis: HPV+ signaling count). Right: Bar plot illustrating the count values of
signaling transmission among primary cell types in HPV-positive samples. (D) Left: Differential signaling patterns originating from HPV− vs. HPV+

epithelial cells (Y-axis: HPV−
− HPV+; X-axis: HPV− signaling count). Right: Bar plot illustrating the count values of signaling transmission among

primary cell types in HPV-negative samples (HPV+, HPV-positive; HPV−, HPV-negative). (E) Bar plot depict relative (left) and absolute (right)
information flow of ligand-receptor pathways from cDC2s to CD4+ T cells, with HPV-positive (red) and HPV-negative (blue) signaling patterns
compared along the X-axis. (F–H) Bubble plot comparing significant ligand-receptor pairs in HPV-positive and HPV-negative samples, illustrating
signaling interactions from cDC2s to CD4 cells (F), from cDC2s to CD8_IFIT cells (G), and from macrophage/monocyte cells to CD8_Tex/CD8_Pro
cells (H). The color of the points reflects the communication probability, while the size of the points represents the computed p-value. Blank areas
indicate zero communication probability. (P, HPV-positive; N, HPV-negative) (I) Enhanced spatial feature plots showing the expression of FCER1A,
CD1C, CD4, CD68, APOC1, and CD8A in HPV-positive and HPV-negative CC tumor tissues.
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immunosuppressive cells to establish a pro-viral microenvironment

(40). Notably, cDC2-CD4+ cell communication showed enriched

MHC II and CD4 signaling in HPV+ tumors (Figure 4F). DEG

analysis identified elevated DC maturation genes (SERPINB9,

NR4A3, PRDM1, etc.) in HPV-positive cDC2s, versus upregulated

suppression markers (LILRB2, TNFAIP3) in HPV-negative tumors

(Supplementary Figure S3D). HPV-positive tumors also exhibited

higher MHC II and DC maturation scores (Supplementary Figure

S3E). As cDC2s excel in the cell polarization and antigen

presentation (41), their predominant interaction with interferon-

responsive CD8+ T cells (LGALS9-CD45) (Figure 4G) may enhance

anti-tumor immunity. HPV-positive cDC2s were specifically

enriched in key TFs (STAT1, NR3C1, CREM) (Supplementary

Figures S3F, G), with the FKBP4/NR3C1/NRF2 axis known to

promote DC maturation (42). Meanwhile, both macrophages and

monocytes demonstrated significant communication with

CD8_Tex cells (Figure 4H).

To spatially characterize the cellular communication

networks identified in our single-cell analyses, we performed

spatial transcriptomic profiling using canonical markers for

cDC2s (FCER1G, CD1C), macrophages (CD68, APOC1), and

T cell subsets. Our analysis revealed fundamentally distinct

organizational patterns between HPV-positive and HPV-negative

tumors. In HPV-positive carcinomas, we observed significant

spatial co-localization between cDC2-enriched regions and CD4+

T cell zones. In HPV-negative patients, the regions with high

expression of myeloid cell markers closely overlap with those of

CD8+ T-cell markers (Figure 4I). These findings suggest distinct

cell-cell communication patterns between HPV-positive and HPV-

negative tumors. Antigen presentation was predominantly carried

out by cDC2s through MHC II, and markedly stronger antitumor

immune responses were triggered in a CD4+ T cell-dependent

manner in HPV-positive tumors.
HPV infection-Dependent Epithelial cell
crosstalk and immune pathways analysis

To explore the potential mechanisms underlying immune cell

recruitment, we analyzed the ligand-receptor interactions of

chemokines between different cell clusters in HPV-positive and

HPV-negative tumors. CellPhoneDB analysis revealed that in HPV-

positive tumors, epithelial cells exhibited a stronger interaction with

cDC2s (Figure 5A), primarily via ANXA1-FPR1 and ANXA1-FPR3

(Figure 5B). In contrast, epithelial cells in HPV-negative tumors

preferentially interacted with macrophages and monocytes, mainly

through MDK-SOLR1 and MDK-LRP1 (Figure 5C). We conducted

a bootstrapped verification of ligand-receptor interactions, and

found significant differences in ligand-receptor pairs in 500

bootstrapped samples (Figure 5D). Previous studies have

demonstrated that the MDK-LRP1 interaction enhances

immunosuppression in gallbladder carcinoma (43), prompting us

to investigate whether a similar mechanism exists in CC.

To investigate this possibility, we assessed the impact of MDK

and LRP1 expression levels on the TME of CC. Using the
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ESTIMATE tool (20), we quantified the tumor immune

infiltration score. The results showed that higher expression of

MDK and LRP1 was associated with reduced immune infiltration.

Moreover, the Stromal Score, Immune Score, and ESTIMATE Score

were all higher in the low MDK/LRP1 expression group compared

to the high-expression group (Figures 5E, F). These findings suggest

that during CC progression, the overexpression of MDK in tumor

cells and LRP1 in macrophages contributes to the establishment of

an immunosuppressive environment.

To uncover the transcriptional signatures of tumor cells, we

performed differential gene expression analysis on epithelial cells

from both HPV-positive and HPV-negative tumors. ANXA1 was

upregulated in HPV-positive tumors, while MDK was upregulated

in HPV-negative tumors (Figure 5G). Functional enrichment

analysis showed that HPV-positive tumors were enriched in

interferon-related pathways, which are crucial for DC maturation

and CD4+ T cell development (44), whereas HPV-negative tumors

were enriched in amino acid metabolism pathways (Supplementary

Figure S4A). In HPV-positive tumors, epithelial cells regulated

cDC2s through ANXA1-FPR1/3, which in turn influenced CD4+

T cells and CD8+ IFIT cells via MHC II and LGALS9-CD45,

enhancing immune activation. In contrast, HPV-negative tumors

relied on MDK-LRP1/SORL1 signaling to regulate monocytes and

macrophages, which interacted with CD8+ T cells through MHC I,

shaping a distinct immune landscape (Figure 5C).

Immune checkpoint analysis revealed that HPV-positive

tumors exhibited high expression of LGALS9, CD274, and

TNFRSF14, whereas HPV-negative tumors featured CD80/86-

CTLA4 interactions, associated with CD8+ T cell exhaustion

(Figures 5H, I). Additionally, experimental validation confirmed

that HPV-positive tumors exhibited a higher infiltration of CD4+ T

cells, along with increased expression of ANXA1 and programmed

cell death protein 1, whereas HPV-negative tumors were enriched

in CD8+ T cells and displayed elevatedMDK expression (Figure 5J).

In summary, these findings suggest that checkpoint blockade

therapies may be more effective in HPV-positive tumors but less

beneficial for HPV-negative cases. HPV infection profoundly

shapes the TME, driving immune regulatory differences and

influencing therapeutic responses.
Construction of an epithelial−related
prognostic signature

The molecular and immune landscape of CC varies significantly

based on HPV status, leading to distinct prognostic outcomes.

However, the impact of epithelial-related transcriptional

alterations in this context remains unclear. To address this, we

constructed an epithelial-related risk score (ERS) based on DEGs

upregulated in epidermal cells in HPV-positive samples. This model

was constructed using 269 HPV-positive patients in the TCGA CC

cohort as a training set, with 92 prognostic genes identified through

univariate COX analysis (P<0.05). Further, LASSO analyses and

multivariate Cox regression analyses were applied to refine the

model, ultimately incorporating 12 key genes (Figures 6A, B). We
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performed permutation-based validation on the 12 ERS genes,

confirming the statistical reliability of the ERS gene selection

(Supplementary Figure S4B). The risk score was calculated based

on the regression coefficients derived from univariate Cox analysis.

Patients were then divided into high- and low-risk groups based

on the median risk score to evaluate the prognostic value of the ERS.

Kaplan-Meier survival analysis showed significant differences in
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patient overall survival (OS) between the high- and low-risk groups

(Figure 6C). In addition, ROC curve analysis assessed the predictive

accuracy of the ERS, with 1-, 3-, and 5-year AUC values

demonstrating strong predictive power of the TCGA training set

(Figure 6D). The calibration curve validated the consistency between

the model’s predicted results and the actual outcomes (Figure 6E),

while DCA assessed the net benefit of the model in the process of
FIGURE 5 (Continued)
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Analysis of epithelial cell-cell crosstalk in HPV-positive and HPV-negative samples. (A) Difference in interaction strength between epithelial cells and
cDC2s, as well as monocytes and macrophages in HPV-positive and HPV-negative samples, where red and blue indicate high expression in HPV-
positive and HPV-negative samples, respectively. (B) Potential ligand-receptor pairs between epithelial cells and cDC2s in HPV-positive and HPV-
negative CC (P, HPV-positive; N, HPV-negative). (C) Potential ligand-receptor pairs between epithelial cells and monocytes and macrophages in
HPV-positive and HPV-negative CC. (D) Bar graph showing significant differences in ligand-receptor pairs among the 500 bootstrap samples.
(E, F) High expression of MDK and LRP1 was significantly associated with poor immune infiltration. (G) Volcano plot showing the changes in gene
expression in epithelial cells of HPV-positive group and HPV-negative group, where red represents genes with higher expression in HPV-positive
CC and blue represents genes with higher expression in HPV-negative CC. If -log10 (p-value) equals Inf, the maximum value of -log10 (p-value) is
set to 350 (Wilcoxon test, p = 0.0000001, logFC.threshold = 0.5). (H) Potential cell-cell communication networks in HPV-positive and HPV-
negative samples. The thickness of the lines represents the relative expression of ligands, where red and blue indicate high expression in HPV-
positive and HPV-negative samples, respectively. The size of the arrows represents the relative expression of receptors. (I) Expression proportion of
LGALS9, CD274, TNFRSF14 gene between HPV-positive and HPV-negative epithelial cells, and the expression proportion of CTLA4 gene between
HPV-positive and HPV-negative CD8_Tex cells (chi-square test, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001). (J) Representative
immunostaining for CD8, CD4, ANXA1, MDK and PDCD1 showing distinct expression levels in HPV-positive and HPV-negative CC patients. Scale
bars, 200 ×.
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clinical decision-making (Figure 6F). We further evaluated the

performance of ERS in the HPV-negative subgroup, and the results

showed that the ERS risk score did not exhibit prognostic predictive

value in patients with HPV-negative CC (P = 0.86) (Figure 6G). This

finding indicates that the prognostic utility of the ERS model is

specific to the HPV-positive subgroup. We validated the ERS risk

model in an independent dataset GSE52903, which included survival

prognosis data from 55 HPV-positive patients. The results of survival

analysis were well validated in the GSE52903 cohort. Meanwhile, the

ROC curve assessment of the model demonstrated that it had a

favorable predictive performance for the prognosis of patients in

GSE52903 (Figures 6H, I). Additionally, we observed that in patients

with metastatic gastric cancer receiving pembrolizumab treatment

(45), the ERS risk scores were significantly enriched in non-

responders (Figure 6J), indicating that the ERS risk model can

predict the efficacy of immunotherapy.

Further analysis of the relationship between risk scores, survival

time, and survival status highlighted that patients in the high-risk

group had a poorer prognosis. The heatmap illustrated the

relationship between 12 genes and risk levels, with a negative

correlation between the high-risk group and genes such as

YWHAG, SH3GLB2, ANKRD22, SCML1, and P4HA1 (Figure 6K).

The correlation between risk scores and immune cell infiltration in

CC was examined. Immune cell infiltration was significantly lower

in the high-risk group compared to the low-risk group, with higher

levels of resting CD4+ T cells and CD8+ T cells in the low-risk

group. In contrast, Tregs and M0 macrophages were notably more

abundant in the high-risk group (Figures 6L, M). The Stromal

Score, Immune Score and ESTIMATE Score were compared

between the high and low ERS score groups, revealing no

significant difference in the Stromal Score and ESTIMATE Score.

However, the Immune Score was higher in the low ERS score group

than in the high ERS score group (Figure 6N). This comprehensive

analysis emphasizes the potential of ERS in predicting the clinical

prognosis and immunotherapy response of CC patients, providing

new insights for future research on CC treatment.
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Discussion

HPV-negative CC accounts for approximately 3-8% of all CC

cases and demonstrates significantly poorer clinical outcomes.

Compared to HPV-positive CC, along with distinct molecular

profiles. Despite these differences, current clinical guidelines

maintain similar treatment recommendations for both subtypes (3,

4), highlighting an urgent need for dedicated research into novel

targeted therapies for HPV-negative CC. While bulk RNA-

sequencing studies have identified HPV status-dependent

alterations in gene expression patterns and immune cell

composition (46–48), these single-omics approaches lack the

cellular resolution necessary to fully characterize tumor

heterogeneity. Recent therapeutic advances in CC have emphasized

the importance of considering TME dynamics and immune

infiltration patterns (1, 49). Since TME-mediated immune

suppression contributes to metastatic progression and treatment

resistance (50), understanding HPV-specific TME modifications is

critical. Our study comprehensively characterized the variants of

epithelial and immune cell clusters at the single-cell and ST level,

providing novel insights into the remodeling of the tumor ecosystem

in CC based on HPV infection status. These findings establish a

foundation for developing more effective treatment strategies to

achieve improved long-term disease control.

The ST technology empowers the in-depth characterization of the

spatial patterns of gene expression within tissues. It not only serves as a

crucial tool for exploring the intricate mechanisms of intercellular

communication but also paves the way for mapping the spatiotemporal

sequence of cell development. However, current ST platforms face

technical constraints, being limited by either suboptimal single-cell

resolution or incomplete transcriptome coverage. The innovative iStar

technology overcomes these limitations by integrating machine

learning with ST, providing rapid and precise cellular deconvolution

of tissue microenvironments. This breakthrough facilitates near single-

cell resolution ST data generation with full transcriptome coverage. In

our research, we harnessed the iStar technology to conduct a
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FIGURE 6

A newly-identified ERS exhibits robust predictive power regarding the prognosis of CC. (A, B) LASSO regression was performed on the 92 OS-related
genes. Cross-validation was carried out within the LASSO regression model to select the tuning parameter. The abscissa represents the log (l) value,
and the ordinate represents the partial likelihood deviance. The red dots in the figure denote the partial likelihood deviations ± standard error for
various tuning parameters. (C) Kaplan–Meier curves of OS based on the ERS risk score in the HPV-positive CC patients. (D) Time-dependent ROC
curve demonstrating the survival accuracy of the model. (E) Calibration curves for the risk score. (F) Decision curve for the risk score. (G) Kaplan–
Meier curves of OS based on the ERS risk score in the HPV-negative CC patients. (H) Kaplan–Meier curves of the OS of patients in the GSE52903
cohort. (I) Time-dependent ROC curves for predicting 1-, 3-, and 5-year OS in the GSE52903 cohort. (J) Association between ERS risk scores and
immunotherapy response in the PRJEB25780 cohort. (K) Distribution of risk score, survival status (red dots indicate dead, blue dots indicate alive)
and the gene expression of 12 model genes. (L) Stacked bar graph of immune infiltration showed differential expression of immune infiltration in
high and low ERS group. (M) Box-and-line plot showed the differential immune infiltration of 10 immune cells which had significant differences in
high and low ERS groups. (N) Box line plot showed the difference between high and low ERS groups in Stromal Score, Immune Score, and
ESTIMATE Score. (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).
Frontiers in Immunology frontiersin.org14

https://doi.org/10.3389/fimmu.2025.1612623
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Su et al. 10.3389/fimmu.2025.1612623
meticulous analysis of untreated CC tumors. As a result, we were able

to furnish a spatially resolved and exquisitely detailed map of the

heterogeneity landscape within CC tumors. Spatial mapping revealed

that memory B cells and naive B cells, along with CD4+ T cells and

DCs, exhibited adjacent distributions within the CC. Naive B cells mark

an early stage in the developmental trajectory of B cells. In contrast,

memory B cells are a distinct cell type endowed with memory function,

which are generated subsequent to B-cell engagement in an immune

response. The close-proximity arrangement of these cell populations in

the TME confers a distinct advantage, facilitating the acquisition of

differentiation signals by naive B cells. This, in turn, promotes their

transition into memory B cells (24). This coordinated cellular network

participates in tumor immune surveillance, forming a critical

component of anti-tumor immunity (27). DCs stand as the most

potent antigen-presenting cells (APCs) in the human body. Notably,

once DCs internalize tumor antigens, they can efficiently relay

antigenic information to neighboring CD4+ T cells, thereby

instigating the activation process of CD4+ T cells (51). Specifically,

DCs initiate a maturation cascade. This maturation event is

characterized by an upregulation in the expression of co-stimulatory

molecules, such as CD80 and CD86, on their cell surface. These co-

stimulatory molecules then engage in molecular interactions with

counterparts like CD28 on the surface of CD4+ T cells, furnishing

the essential second signal requisite for the complete activation of T

cells (25). Our integrated spatial atlas elaborately delineates the cell

composition and gene expression in the anatomical regions of CC

tissue. This, in turn, equips us with the means to investigate the

complex TME dynamics of human CC under diverse HPV statuses.

Our study revealed substantial disparities in both cellular

composition and transcriptomic profiles between HPV-negative

and HPV-positive CC specimens. A particularly striking

observation was the significantly elevated frequency of CD4+ T

cells, cDC2s cells, and interferon-related CD8+ T cells subsets in

HPV-positive tumors, whereas HPV-negative specimens exhibited

predominance of distinct CD8+ T cell subpopulations. This

distribution suggests different immune response dynamics

between HPV-positive and HPV-negative CC, despite the critical

role of CD8+ T cells in controlling viral infections. Analysis of the

TCGA data (including 21 HPV-negative cases among 290 CC

patients) provided partial validation of these findings. For the first

time, our study indicates that HPV-positive CC may exhibit

stronger immune responses mediated by CD4+ T cells, with

cDC2s playing a crucial role in antigen presentation. Conversely,

HPV-negative CC tends to evoke robust immune responses

mediated by CD8+ T cells, significantly supported by monocytes

in antigen presentation (52). DCs, as key a APCs, bridge the innate

and adaptive immune systems (51). The interaction between T-cell

receptors and peptide epitopes from tumor-associated and tumor-

specific antigens bound to MHC on the surface of APCs, including

DCs and macrophages, initiates and modulates the immune

response against HPV-infected cells, ultimately influencing tumor

progression (53). HPV serves as a necessary, albeit insufficient,
Frontiers in Immunology 15
etiological factor in CC development (2). Previous research on

HPV-positive head and neck squamous cell carcinomas has

demonstrated a more favorable prognosis and higher

radiosensitivity compared to their HPV-negative, radioresistant

counterparts (54).

The dynamic crosstalk between epithelial and immune cells plays a

pivotal role in malignant tumor pathogenesis (55). Our analysis

revealed fundamentally distinct epithelial-immune interaction

networks in HPV-positive versus HPV-negative CC. In HPV-

positive tumors, epithelial cells functioned as master regulators of

cDC2s through ANXA1-FPR1/3 signaling. These activated cDC2

then orchestrated immune responses by modulating CD4+ T cells

and via MHC class II molecules and interferon-responsive CD8+ T cell

subsets through LGALS9-CD45 interactions. Several studies have

emphasized the relationship between FPR1 and DC maturation and

activation (56). Specifically, the interaction between ANXA1 and FPR1

in DCs enhances anti-tumor immunity by promoting the phagocytic

uptake of dead cell antigens by DCs (57, 58). These findings highlight

the potential of targeting the ANXA1-FPR1 axis as an

immunotherapeutic approach. In contrast, HPV-negative tumors

exhibited predominant epithelial-monocyte/macrophage

communication via MDK-LRP1/SORL1 signaling, with subsequent

MHC class I-mediated regulation of CD8+ T cells. Studies have

demonstrated that MDK secreted by tumor cells binds to the LRP1

receptor on the surface of macrophages, polarizing macrophages

toward the M2 phenotype (59, 60) and promoting the secretion of

the cytokine CXCL1 . In turn, CXCL1 further recruits

immunosuppressive cells and tumor-associated macrophages to

support tumor cell growth (60). Zhang et al. reported that in

gallbladder cancer, MDK interacts with the receptor LRP1,

promoting the differentiation of immunosuppressive macrophages.

This ultimately reduces anti-cancer immunity and contributes to

cancer development (43). Consistently, we observed significant

overexpression of tumor-associated ligand-receptor pair MDK-LRP1

in CC, correlating with diminished immune cell infiltration. Through

high-resolution spatial mapping using the BayesSpace algorithm (9),

we found that in HPV-positive CC, cDC2s are in closer proximity to

CD4+ T cells. Conversely, in HPV-negative CC, macrophages are in

closer proximity to CD8+ T cells. Therefore, HPV appears to influence

the TME of CC, potentially regulating the composition of immune

cells, cell-cell interactions, and diverse immune pathways. This

regulation can, to some extent, enhance the anti-tumor response.

Notably, due to the relatively small sample size of the scRNA-seq

and ST dataset, the subtype-specific immune interaction patterns

identified in this study should be interpreted with caution. Although

previous studies support the robustness of these observations in our

cohort, their generalizability to larger and more diverse patient

populations may be limited. Future studies with larger sample sizes

are warranted to further validate and refine these interaction signatures.

Immunotherapy has become a promising strategy in the fight

against cancer, leveraging host immune system modulation to

achieve precise tumor targeting (61). This approach offers the
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potential for improved treatment outcomes and extended survival

for patients with CC (1, 62). Pembrolizumab currently represents

the sole FDA-approved immune checkpoint inhibitor for CC, with

its application being especially warranted in HPV-driven cases

exhibiting programmed cell death 1 ligand 1 (PD-L1) or cytotoxic

t-lymphocyte associated protein 4 (CTLA-4) expression (1). PD1/

PD-L1 blockade primarily functions by preventing CD8+ cell

exhaustion, while CTLA-4 inhibitors work by activating new

T cells and suppressing Tregs (49, 62). However, HPV-negative

CC—characterized by an immunologically quiescent (“cold”)

TME mdash;typically does not respond to traditional

immunotherapy. Consequently, ongoing research is exploring

innovative immunotherapeutic approaches to expand treatment

options and enhance patient outcomes. HPV-associated CCs

often exhibit upregulated PD-L1 expression, and PD-L1/PD1

inhibitors have shown promising response rates in CC (63).

While blocking the PD1/PD-L1 axis has proven effective in

disrupting tumor immune tolerance across various cancers, high

PD-L1 expression has also been linked to increased tumor-

infiltrating lymphocyte levels and poorer survival in HPV-

independent CC (64–66). By elucidating the unique molecular

mechanisms underlying tumorigenesis in these patients, new or

combined immunotherapeutic strategies may be developed, offering

significant clinical benefits.

Our study revealed distinct immune checkpoint profiles between

HPV-associated and HPV-independent cervical carcinomas. HPV-

positive CC tumors exhibited epithelial cells with significant

enrichment of immune checkpoint ligands (LGALS9, CD274, and

TNFRSF14), whereas HPV-negative carcinomas predominantly

activated the CD80/86-CTLA4 pathway. CTLA-4 and CD28 share

the ligands CD80 and CD86, but CTLA-4 binds with significantly

higher affinity, leading to immune response deactivation (67, 68).

CTLA-4 blockade exerts dual antitumor effects by (1) Enhancing T-

cell cytotoxicity through immune checkpoint disruption and (2)

Directly inhibiting FOXP3+ Tregs function (69). Mechanistically,

while the PD1/PD-L1 primarily regulates effector-phase immunity,

the CTLA-4/CD86 pathway governs early T-cells priming and

activation of naïve/memory T cell populations (70). Targeting

CTLA-4 thus holds significant promise for improving

immunotherapy efficacy in HPV-negative CC. Exploring novel or

combined immunotherapeutic options could provide valuable insights

and opportunities for enhancing treatment outcomes in HPV-positive

CC. In conclusion, these findings provide groundbreaking insights

into the unique immunological landscapes of different CC subtypes

based on HPV status. This study identifies potential avenues for

personalized therapeutic strategies by leveraging distinct immune

checkpoint profiles, particularly for HPV-negative CC.

In view of the pivotal role that epithelial cells play in the

occurrence and development of CC, we selected the DEGs of

epithelial cells in HPV-positive and HPV-negative CC to construct

a prognostic model. From the perspective of cell communication,

epithelial cells are located upstream in the cell communication

network. They can regulate the functions of downstream immune

cells such as DCs and macrophages by expressing a variety of

receptors. In HPV-positive CC patients, the abnormal state of
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epithelial cells may lead to a disorder in their regulatory function

on downstream immune cells, thereby affecting the patients’ immune

response and prognosis. Therefore, investigating the DEGs of

epithelial cells contributes to revealing the potential mechanisms by

which they regulate the tumor immune microenvironment,

providing important clues for predicting the prognosis of HPV-

positive patients. Moreover, epithelial cells are one of the major cell

types in the TME of CC. This characteristic endows them with a

central position in tumor development and the formation of

intratumoral heterogeneity. By analyzing the DEGs of epithelial

cells, we can gain a deeper understanding of the nature of

intratumoral heterogeneity and uncover molecular markers closely

related to the prognosis of HPV-positive patients. The ERS

performed well in the TCGA cohorts. The AUC values at 1-year,

3-year, and 5-year time points all exceeded 0.79. Furthermore, the

infiltration of immune cells in the low-risk group was significantly

higher than that in the high-risk group, indicating that ERS may be

helpful in evaluating the response to immunotherapy. Our study in

the PRJEB25780 cohort confirmed the correlation between ERS and

the efficacy of immunotherapy. ERS can assist us in better

understanding the pathogenesis and biological behavior of CC, thus

holding potential clinical application value.

This study is constrained by three primary limitations. Firstly,

the small sample size in scRNA and ST analysis limits the statistical

power and generalizability of our findings. A key reason for this is

the low clinical incidence of HPV-negative CC, which makes

sample accumulation challenging. The exclusion of certain cell

types, such as B cells and fibroblasts, due to insufficient sample

quantity, results in a relatively small representation of these clusters

in our analysis. Further investigation is needed to elucidate their

roles in the TME and their interactions with other cells. Larger

sample sizes in future studies are crucial to validate our conclusions

and allow for a more in-depth exploration of cell subclusters

associated with treatment response. Secondly, although ST has

provided valuable insights, the relatively low spatial resolution of

the Visium platform may not fully capture the intricate cellular

interactions and heterogeneity within cervical tumors. In the future,

an integrated multi-omics approach that combines sub-cellular

resolution ST with proteomics and metabolomics could offer a

more comprehensive understanding of the HPV-related immune

microenvironment and prognostic features in CC. Thirdly,

variability in tumor volume in CC can significantly impact cell

proportions and heterogeneity. Biopsy examination alone may not

capture the entire tumor, and additional multipoint inspections or

resections could help mitigate this limitation.
Conclusions

Collectively, our study underscored the molecular heterogeneity

within the TME based on the HPV infection status and

comprehensively characterized the variants of epithelial and

immune cell clusters at the single-cell and ST levels, providing

novel insights into the remodeling of the tumor ecosystem in CC

based on HPV infection status. Lastly, the differential genes of
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epithelial cells were utilized to construct the ERS, a prognostic

prediction model for CC. These findings may provide insights for

the development of new treatment strategies for CC.
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SUPPLEMENTARY FIGURE 1

Seurat-based UMAP visualization of cell clusters. (A) Feature plots of

canonical markers across five cell types. (B) Violin diagram showing
expression of eight major cell phenotypic marker genes.

SUPPLEMENTARY FIGURE 2

Single-cell landscape of HPV-positive and HPV-negative CC. (A) Feature plots

of canonical markers across seven cell types. (B) Heatmap showing expression
of marker genes for the seven major cell phenotypes. (C) Tissue preference of

each cluster measured by Ro/e. (D) Heatmap showing expression of marker
genes for the nine T/NK cell phenotypes. (E) UMAP visualization of T/NK cells,

colored by HPV infection status. (F) UMAP plots of T and NK cells, colored by

cell types (left). T and NK cell cluster frequency comparing HPV-positive and
HPV-negative samples (middle). Fraction of T and NK cells for HPV-positive and

HPV-negative samples (right, chi-square test, *p < 0.05). (G) Proportion of T and
NK cells in naïve CD4+ T, Treg CD4+ T, exhausted CD8+ T, memory CD8+ T,

interferon-related CD8+ T, proliferating CD8+ T and NK cells between HPV-
positive and HPV-negative CC (chi-square test, *p < 0.05). (H) Heatmap

showing expression of marker genes for the five Myeloid cell phenotypes. (I)
UMAP visualization of Myeloid cells, colored by HPV infection status (left);
Fraction of Myeloid cells in monocytes and cDC2s cells for HPV-positive and

HPV-negative samples (right, chi-square test, *p < 0.05).

SUPPLEMENTARY FIGURE 3

Distinct developmental trajectory inference between HPV-positive and HPV-

negative CC. (A) Distribution of CD4 T subpopulations during the transition

along the pseudotime. (B) Distribution of HPV-positive (left) and HPV-negative
(right) CD4 T cell subpopulations during the transition along the cell type. (C)
Differential expression of BHLHE40, RBPJ, SATB1, and TRIM22 in HPV-positive
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and HPV-negative CD8+ T cells, as well as between the fate1 and fate2
trajectories. Solid lines represent the fate1 trajectory, and dashed lines

represent the fate2 trajectory, with red indicating HPV-positive samples and
blue indicating HPV-negative CC. (D) Volcano plot depicting gene expression

changes in cDC2s cells between HPV-positive and HPV-negative groups. Red

dots represent genes with higher expression in the HPV-positive group, while
blue dots indicate higher expression in the HPV-negative group (Wilcoxon test,

p = 0.0000001, logFC threshold = 0.5). (E) Violin plot illustrating the expression
of MHC II molecules and dendritic cell maturity scores in cDC2s cells between

HPV-positive and HPV-negative samples, with colors representing the mean
values (Wilcoxon test). (F) Scatter plot displaying the specificity scores of

regulons in cDC2s cells, highlighting the top 5 regulons. (G) Violin plot
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showing the expression of the transcription factor NR3C1 in cDC2s cells in
HPV-positive and HPV-negative CC, with colors representing the mean

expression level (Wilcoxon test).

SUPPLEMENTARY FIGURE 4

Pathway enrichment analysis of HPV-positive/negative CC and permutation-
based validation of ERS genes. (A) DEG pathway enrichment plots for

epithelial cells in HPV-positive and HPV-negative groups using
ReactomePA. Pathways are sorted by count, with the left plot showing

pathways enriched in HPV-positive CC and the right plot showing pathways
enriched in HPV-negative CC. DEG, differentially expressed gene. (B)
Histogram showing permutation-based verification of 12 ERS genes.
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