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Background: Neuroblastoma (NB) is the most common extracranial solid tumor

in children, with high-risk NB (HR-NB) exhibiting dismal survival rates due to

aggressive biology and therapy resistance. E2F transcription factors (E2Fs) are

pivotal regulators of cell cycle progression and immune modulation, yet their

prognostic and therapeutic implications in NB remain underexplored.

Methods: Using transcriptomic data from the GEO, TARGET, and E-MTAB-8248

cohorts, we identified E2F-associated molecular subtypes via consensus

clustering. A prognostic signature was constructed via LASSO regression and

validated for risk stratification. Immune infiltration, tumormutation burden (TMB),

and drug sensitivity were analyzed via the CIBERSORT, ESTIMATE, and

GDSC databases.

Results: Four E2F-related genes (MAD2L1, CDC25A, CKS2, and NME1) were used

to construct a prognostic nomogram that stratified patients into high- and low-

risk groups, with low-risk patients exhibiting superior overall survival (P < 0.05).

Multivariate Cox regression confirmed that the model was an independent

prognostic factor (P < 0.001). High-risk patients presented lower immune and

stromal scores, reduced immune checkpoint expression, distinct immune cell

infiltration patterns, and significant differences in mutation spectrum and drug

sensitivity (P < 0.001).

Conclusions: The E2F-related prognostic signature effectively stratifies NB

patients by risk and provides potential biomarkers for prognosis and targeted

therapy in HR-NB patients. The identified signature enhances patient

stratification and provides insights into NB tumor biology, the immune

landscape, and potential treatment strategies.
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Introduction

Neuroblastoma (NB) is a highly aggressive pediatric malignancy

and the most common extracranial solid tumor in children,

accounting for a significant proportion of pediatric cancer-related

mortality (1). Among NB cases, high-risk neuroblastoma (HR-NB)

is particularly challenging and is characterized by an unfavorable

prognosis and high recurrence rates. The key prognostic factors

include age ≥18 months, MYCN oncogene amplification, advanced

International Neuroblastoma Staging System (INSS) stage (III/IV),

and unfavorable histology (2). Despite continuous advancements in

multimodal therapies, including surgery, chemotherapy,

radiotherapy, and immunotherapy, the 5-year overall survival

(OS) rate for HR-NB remains dismally low at approximately

30%-40% (1, 3). The urgent need for novel prognostic biomarkers

and therapeutic strategies underscores the importance of refining

risk stratification and guiding precision medicine.

E2F transcription factors (E2Fs) are essential regulators of cell

cycle progression, apoptosis, and DNA replication and play a

central role in oncogenesis and cancer progression. In NB,

aberrant E2F activity has been linked to uncontrolled tumor cell

proliferation, enhanced tumor aggressiveness, and adverse clinical

outcomes. Dysregulated E2F expression disrupts the delicate

balance between proliferation and apoptosis, driving tumor

progression (4, 5). Furthermore, E2Fs are closely associated with

the modulation of the tumor immune microenvironment (TIME),

influencing immune infiltration patterns and facilitating immune

evasion. HR-NB is often characterized by an immunosuppressive

TIME, with low CD8+ T-cell infiltration and increased regulatory

T-cell (Treg) activity, which fosters tumor progression and confers

resistance to therapy (6–8).

Emerging research suggests that E2Fs play a pivotal role in

immune regulation by interacting with immune checkpoint

pathways and inflammatory signaling networks (9). Given the

intricate interplay among E2Fs, immune modulation, and tumor

proliferation, understanding their prognostic significance in NB

remains a critical yet underexplored study area. Investigating the

role of E2Fs in shaping the TIME could provide novel insights into

potential therapeutic targets.

Recognizing the profound impact of E2Fs on both tumor

proliferation and immune landscape dynamics, this study aimed to

characterize E2F-associated prognostic signatures systematically. By

constructing and validating an E2F-related prognostic model, we

aimed to refine risk stratification and identify promising therapeutic

avenues for HR-NB patients. Integrating these prognostic markers
Abbreviations: NB, Neuroblastoma; HR-NB, high-risk NB; TMB, tumor

mutation burden; TIME, tumor immune microenvironment; DEGs, differential

expression genes; KM, Kaplan–Meier; GSEA, gene set enrichment analysis; SNV,

simple nucleotide variation; GDSC, Genomics of Drug Sensitivity in Cancer;

IC50, half maximal inhibitory concentration; OS, overall survival; LASSO, least

absolute shrinkage and selection operator; INSS, international neuroblastoma

staging system; TGF-b, transforming growth factor-b; MSI, microsatellite

instability; HR, hazard ratio; PDGs, proliferation driver genes; PSGs,

proliferation suppression genes.
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into existing clinical staging frameworks may increase the predictive

accuracy and ultimately improve treatment outcomes for NB patients.
Methods

Data collection and mining of mRNA
profiles

The mRNA expression matrix and related clinical information

were obtained from the GSE49711 and GSE73511 cohorts sourced

from the GPL platform. These datasets and the corresponding

clinical information related to neuroblastoma (NB) were utilized

as the training dataset. Data from the TARGET-NBL and E-MTAB-

8248 cohorts were employed as the validation dataset, with

corresponding clinical information sourced from the UCSC Xena

platform (10). The TARGET-NBL cohort data played a crucial role

in tumor mutation burden (TMB) analysis. The GSE49711 cohort,

the TARGET-NBL cohort, and the E-MTAB-8248 cohort included

498, 143, and 223 NB patient samples, respectively. E2F-related

genes were retrieved from the Molecular Signatures Database

(MSigDB) and relevant literature.
Unsupervised clustering of E2F-associated
differentially expressed genes

The “ConsensusClusterPlus” R package, which is based on the

k-means machine learning algorithm, was used to perform

unsupervised consensus clustering. This method allows for

dividing cases into multiple clusters based on the provided

hallmarks or signatures. The set of E2F hallmark genes was

acquired from the Molecular Signatures Database (MSigDB).

Specifically, we used the consensus clustering algorithm with

1,000 iterations by sampling 80% of the data in each iteration.

The optimal cluster number was confirmed by the item–consensus

plot, the proportion of ambiguous clustering (PAC) algorithm, and

the relative change in the area under the cumulative distribution

function (CDF) curves. Two clusters were selected for assessing E2F

status. Kaplan–Meier plots were generated for the two clusters to

compare their overall survival (OS) rates.
Determination and annotation of E2F-
associated differentially expressed genes

By comparing the gene transcription profiles of patients from

the training dataset with the R package “limma”, overall DEGs were

identified (|fold change| > 1, p < 0.05). Pearson correlation was

performed to select E2F-associated DEGs based on data from

overall DEGs and E2F hallmark genes with the standards of Cor

> 0.8 and P < 0.05. The potential functions of these E2F-associated

DEGs were then ascertained through Gene Ontology (GO)

annotation and Kyoto Encyclopedia of Genes and Genomes

(KEGG) enrichment pathway analysis via the “clusterProfiler”

package in R; FDR < 0.05 was considered statistically significant.
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Construction and validation of the E2F-
associated prognostic signature

The intersection between E2F-associated DEGs and other

relevant gene sets was determined, and the overlapping genes

were selected for univariate Cox regression analysis. These genes

were then processed with the least absolute shrinkage and selection

operator (LASSO) to avoid overfitting and to delete tightly

correlated genes. Tenfold cross-validation was employed to select

the minimal penalty term (l). An E2F-associated prognostic

signature involving a set of E2F-associated DEGs was established.

The formula of the risk score was constructed as follows:

Risk score =o
n

i=1
Coef i�xi

where Coef i represents the coefficients and where xi represents

the normalized count of each gene. Patients were stratified into

high- and low-risk groups based on the median risk score. K–M

analysis and survival-dependent receiver operating characteristic

(ROC) curve analysis at 1, 2, and 5 years were performed in the

training set and validated in the TARGET-NBL and E-MTAB-

8248 cohorts.
Independent prognostic value of the
signature genes and their relationships
with E2F clusters

The independent prognostic value of the signature genes was

analyzed via univariate Cox regression analysis. The relationship

between the risk score model and previously constructed E2F

clusters was analyzed via the R package “pheatmap.” Kaplan–

Meier plots of OS for these signature genes were also generated.
Correlations between the E2F-associated
gene signature and clinical parameters

Subgroup analysis of individual signature genes in the E2F-

associated prognostic signature was conducted based on

patients’clinical characteristics. Uni- and multivariate Cox

regressions were used to verify the prognostic role of the E2F-

associated gene signature and select clinical factors. A nomogram

was established via the R package”rms”based on risk scores and

clinical factors with prognostic value. The predictive effect of the

nomogram was validated by assessing the discrimination and

calibration plots.
Gene set enrichment analysis of the
prognostic risk score model

Gene set enrichment analysis (GSEA) was performed to

determine the statistical significance of the identified molecular

pathways and the heterogeneity between the high- and low-risk
Frontiers in Immunology 03
groups. The GSEA software was downloaded from the official

websi te . The gene sets “h.a l l .v7 .4 . symbols .gmt” and

“c5.go.v7.4.symbols.gmt” were selected as reference gene sets. A

pathway with FDR Q < 0.25 and P < 0.05 was defined as

statistically significant.
Relationships of the prognostic gene
signature with immune cell infiltration

Based on the RNA-seq expression matrix of NB, the

CIBERSORT algorithm was applied to analyze differences in

immune cell infiltration status between the high- and low-risk

groups in terms of 22 immune cell subtypes. The ESTIMATE

algorithm was used to measure the stromal level (stromal score),

degree of immune cell infiltration (immune score), and tumor

purity in the respective NB samples. Additionally, the expression

status of common immune checkpoints was analyzed between the

high- and low-risk groups via boxplots.
Mutation analysis of the risk score model

Somatic mutation data were acquired from the TARGET-NBL

cohort. The R package “maftools” was used to generate a waterfall

plot to depict the mutation landscape in patients in the high- and

low-risk groups.
Statistical methods

Independent Student’s t tests were used to compare continuous

data with a normal distribution, and the c2 test was used for

categorical data. The Kruskal–Wallis test was performed to

determine statistically significant differences between multiple

groups. The Mann–Whitney U test was used to compare

differences between two independent groups when the dependent

variable was either ordinal or continuous but not normally

distributed. Kaplan–Meier analysis with a log-rank test was used

to compare overall survival between different subgroups. All the

statistical analyses were performed via the R programming language

(version 4.4.0). A difference of P < 0.05 was considered statistically

significant unless otherwise specified.
Results

Exploration of E2F-associated genes

Significant differences in E2Fs were suggested based on the

results of GSVA in NB patients with different risk stratifications

(Figure 1A). Therefore, this study first performed an unsupervised

cluster analysis on the GSE49711 dataset via the E2F gene set to

identify different E2F patterns; we observed a range of consensus

values from 0 to 1 (Supplementary Figure S1A) and a relative
frontiersin.org
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change in the area under the cumulative distribution function

(CDF) curve when the number of clusters was varied from k to k

+1 (Supplementary Figure S1B). k was varied in the range of 2–9,

with the optimal value of k being 2 (Supplementary Figure S1B).

Thus, patients were classified into two different risk stages for E2Fs

(Figures 1B, C). A significant difference was detected between these

two stages in terms of overall survival (OS) (Figure 1D), where

patients with high E2F expression had a poorer prognosis than

those with low E2F expression. This finding prompted us to

continue exploring the relationship between the level of E2Fs and

the prognosis of patients with NB, which was further analyzed by

studying the expression of E2F-related genes.

A total of 43 genes were screened by taking the intersection of

highly expressed genes in HR-WT, highly expressed genes in E2F

clustering analysis, and E2F-related genes (Figure 1E). The Cox

results for these genes are presented in Table 1.
Construction and validation of the E2F-
associated risk model

Four genes were subsequently selected via XGBoost and least

absolute shrinkage and selection operator (LASSO) regression to

construct a prognostic signature aimed at classifying NB patients

into two groups with different overall survival (OS) rates: the high-

risk group and the low-risk group (Figures 2A, B, Supplementary

Figures S1C, D). All patients were categorized into either the high-

risk group or the low-risk group based on the median risk score.

According to Kaplan–Meier analysis (Figures 2C–K), the OS of

high-risk patients was significantly lower than that of low-

risk patients.

In addition, the 1-, 2-, and 5-year OS rates based on area under

the curve (AUC) values in the GSE49711 cohort, the TARGET-NBL

cohort, and the E-MTAB-8248 cohort are shown in Figures 2D, G,

J. To gain insight into the independent prognostic value of these 4

signature genes in the risk model, we performed univariate Cox

regression analyses and found that 4 of them were detrimental to

NB patients (Figure 2B). We plotted Kaplan–Meier survival curves

to assess the prognostic value of each of the characterized genes, and

the results were consistent with those of the univariate Cox

regression analysis (Supplementary Figure S2).
Prognostic validation of the four signature
genes and construction of a nomogram
with clinical characteristics

To investigate whether our risk model was associated with the

clinical characteristics of NB, we performed a Wilcoxon rank sum

test and found that the high-risk group had more advanced INSS

staging and higher risk stratification (Supplementary Figure S3).

Considering the different prognosis-related clinical characteristics

between the two risk groups, we further investigated whether the

risk model had similar or better predictive validity than other NB-

independent prognostic factors did (Supplementary Figure S3).
Frontiers in Immunology 04
Stratified survival analysis revealed that the prognostic value of

the E2F signature remained significant within the non-amplified

subgroups (Supplementary Figure S3E), suggesting that the E2F

signature provides independent and complementary prognostic

information. Further mechanistic studies elucidated the interplay

between MYCN genesets (ARMC6, DCTPP1, EIF4G1, ELOVL6,

FBL, HSPE1 and PRMT1) and E2F-related pathways

(Supplementary Figure S3F). These findings suggest that MYCN

may enhance E2F pathway activation, which could contribute to

tumor aggressiveness and therapy resistance. In addition, this study

included age, risk stratification, the INSS, the risk score and MYCN

status in the Cox single multifactorial analysis (Figures 3A, B), and

the ROC curves were evaluated for the predictive efficacy of MYCN

status and risk stratification. The results suggested that risk

stratification had better predictive efficacy (Supplementary Figure

S4A). Therefore, this study constructed a column–line diagram to

predict OS in patients, including three independent prognostic

factors, namely, age, risk stratification, the INSS and the risk

score (Figure 3C). The calibration plots indicated that the

column-line plot may accurately estimate mortality (Figures 3D,

E). The AUCs of the column-line plots were 0.867, 0.887, and 0.919

for 1-, 2-, and 5-year OS, respectively. Survival analyses suggested

that the group with high model scores had a worse prognosis

(Supplementary Figure S4B). The model was also further validated

with the TARGET-NBL cohort and the E-MTAB-8248 cohort

(Supplementary Figures S4C–F). The above results suggest that

the risk model can be used either as an independent prognostic

factor or in combination with existing clinical indicators.
Enrichment analysis of proliferation gene
sets in the risk score model

To further validate the function of the risk model in

proliferation, we performed GSEA pathway enrichment analysis

and found that several proliferation-associated gene sets were

enriched in the high-E2F group. Specifically, the gene sets related

to the cell cycle (Figure 4A), base excision repair (Figure 4B), the

P53 signaling pathway (Figure 4C), and nucleotide excision repair

(Figure 4D) were significantly enriched. The normalized

enrichment scores (NESs) for these pathways were 2.8928, 2.349,

1.853, and 2.2367 (P<0.05), indicating a strong association with

high E2F expression. In addition, we found that the expression

levels of the four E2F genes (MAD2L1, CDC25A, CKS2, NME1)

were positively correlated with canonical proliferation-driving

genes (PDGs), while showing a negative correlation with

proliferation-suppressing genes (PSGs). These relationships

suggest that elevated E2F activity contributes to enhanced

proliferative capacity in neuroblastoma cells by simultaneously

activating cell cycle progression and repressing cell cycle

inhibitors. Together, these findings provide strong support for the

role of the E2F signature in driving proliferation at the

molecular level.

Furthermore, we analyzed the correlation between E2Fs and

immune suppression (Figure 5E) and between E2Fs and immune
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FIGURE 1

Exploration of E2Fs genes in distinct risk stage of NB. (A) The GSVA in distinct risk stage of NB (P<0.05); (B) The Item-Consensus Plot represented
the chosen optimal cluster number (k = 2) for E2F genes. (C) The consensus matrix (k = 8) for E2Fs genes. (D) Survival curves of patients in E2Fs high
and low. (E) Upset diagram showing overlapping DEGs among E2F_related gene, up-regulated DEGs in E2Fs-high group and up-regulated DEGs in
HR-NB.
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checkpoint (IC) genes in NB (Figure 5F). The heatmaps revealed

significant correlations between several E2Fs and immune

checkpoint genes, as well as between E2Fs and immune

suppression, indicating potential interactions between these

genesets. The enrichment analysis of immune genesets in the risk

score model revealed significant associations with high E2F

expression, providing further evidence for the functional role of

the risk model in immunochemotherapy.
Immune features of the high- and low-E2F
groups

To investigate the tumor immune microenvironment (TIME) in

different E2F risk groups, the infiltration levels of 22 immune cell

types were compared (Figure 6A). Significant differences were

observed in seven immune cell types. The low-E2F group exhibited

increased infiltration of M0 macrophages, naïve B cells, resting NK

cells, and activated dendritic cells. Conversely, the high-E2F group

presented significantly elevated levels of memory B cells, neutrophils,

follicular helper T cells, regulatory T cells (Tregs) and activated NK

cells (Figures 6A, B). To further explore the association between E2F-

related genes and immune modulation, we performed immune

infiltration analysis with a focus on natural killer (NK) cells.

Notably, high E2Fs riskscore showed a significant positive

correlation with increased infiltration of NK cells. Mechanistically,

pathway enrichment analysis suggested that this relationship may be

partially mediated by the suppression of Transforming Growth

Factor-b (TGF-b) signaling, a known inhibitor of NK cell

activation. Specifically, samples with high E2F expression exhibited

reduced TGF-b pathway activity scores and elevated NK cell

cytotoxic signatures (Figure 6D), suggesting that these genes may

play a role in influencing NK cell activity within the TME.

Furthermore, GSEA of the E2F groups revealed immune

suppression mechanisms, including the downregulation of immune

checkpoints, T/B-cell receptor signaling, and antigen presentation

pathways (Figures 5A–D). The correlation heatmap demonstrated a

negative association between E2F expression and immune checkpoint-

related genes (Figure 5E), further supporting the hypothesis of

immune response suppression. These trends were also observed in

the pancancer analysis (Supplementary Figure S6). Given these

findings, it can be speculated that the improved overall survival

(OS) of patients in the low-E2F group may be partially attributed to

the increased infiltration of immune cells with antitumor activity.
TABLE 1 Unicox of E2Fs.

Gene HR Cl (5%-95%) p value

NME l 2.58 2.15-3.l '
l .80E-24

CENPM 2.44 1.96-3.02 6.23E-16

BIRC5 2.16 1.83-2.55 8.55E-20

TOP2A 1.92 1.6-2.31 1.61E-12

PAICS 3.77 3.03-4.69 l .03E-32

KIF18B 1.98 1.65-2.38 3.82E-13

CHEKl 2.63 2.17-3.18 3.25E-23

CDKN3 2.71 2.26-3.25 6.04E-27

MKI67 2.19 1.81-2.66 6.88E-l 6

DLGAP5 2.7 1 2.22-3.31 9.98E-23

PLK4 3 2.4-3.74 2.37E-22

BUBl B 2.78 2.21-3.48 8.82E-19

CDC20 2.09 1.73-2.53 3.37E-14

E2F8 2.26 1.88-2.71 4.63E-18

MELK 2.81 2.24-3.52 2.28E-19

AURKB 2.19 1.81-2.66 1.60E- 15

CDC25A 2.44 1.98-3.01 5.5 l E-17

CENPE 2.5 1 2.12-2.98 3.47E-26

CKS2 2.9 2.44-3.44 2.38E-33

MAD2Ll 2.53 2.14-3 4.16E-27

MYBL2 2.27 1.87-2.77 3.80E-16

POLA2 3.29 2.59-4.17 l.47E-22

TK l 2 .08 1.75-2.48 2.28E-16

AURKA 3.12 2.54-3.84 6.57E-27

PTTGl 2 .74 2.23-3.36 1.2 l E-21

MCM2 3.11 2.48-3.89 4.34E-23

CCNB2 2.51 2.07-3.03 2.60E-2 1

PLKl 3.7 2.86-4.77 1.14E-23

TACC3 3.62 2.77-4.73 4.34E-21

RNASEH21 3.11 2.5-3.86 l .67E-24

BRCA l 2.38 1.95-2.9 1 1.09E-l 7

ESPLl 2.16 1.76-2.67 4.21E-13

KIF4A 3.19 2.55-3.98 1.69E-24

UBE2T 3.66 2.91-4.6 1.15E-28

ORC6 3.1 2.52-3.83 3.5 l E-26

UBE2S 2.71 2.28-3.21 2.25E-30

HELLS 3.43 2.72-4.34 7.10E-25

ASFl B 2.41 1.96-2.97 9.79E-17

(Continued)
TABLE 1 Continued

Gene HR Cl (5%-95%) p value

SPC25 2.67 2.17-3.28 l.73E-20

GINSl 4.17 3.16-5.5 4.71E-24

DSCC l 3.24 2.6-4.05 3.84E-25

DCTPP l 3.48 2.8-4.33 4.28E-29

SPC24 2.43 2-2.95 2.58E-19
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FIGURE 2

The screening of E2Fs gene in NB, and construction and validation of risk score model. (A) XGboost for E2Fs gene (MAD2L1, CDC25A, CKS2, NME1)
scoring in NB (P < 0.05). (B) The cox analysis of E2Fs; (C–E) The Construction of GSE49711 training set. (C) Distribution of risk score and OS of
GSE49711 training set; (D) Survival-dependent ROC curves validation at 1, 2, and 5 years of prognostic value of the prognostic index in GSE49711; (E)
OS of GSE49711 cohort. (F–H) The Construction of TARGET-NBL validation set. (F) Distribution of risk score and OS of TARGET-NBL validation set;
(G) Survival-dependent ROC curves validation at 1, 2, and 5 years of prognostic value of the prognostic index in TARGET-NBL; (H) OS of TARGET-
NBLcohort. (I–K) The Construction of E-MTAB-8248 validation set. (I) Distribution of risk score and OS of E-MTAB-8248 validation set; (J) Survival-
dependent ROC curves validation at 1, 2, and 5 years of prognostic value of the prognostic index in E-MTAB-8248; (K) OS of E-MTAB-8248 cohort.
Frontiers in Immunology frontiersin.org07

https://doi.org/10.3389/fimmu.2025.1612667
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Cai et al. 10.3389/fimmu.2025.1612667
Tumor mutation burden between E2F
groups in NB

NB in the high-E2F group presented increased activity in the

spliceosome, ATP-dependent chromatin remodeling, and other

pathways related to genome regulation (Figures 7A, B). To analyze
Frontiers in Immunology 08
the tumor mutation burden (TMB) during NB progression, simple

nucleotide variations (SNVs) were compared between the E2F groups

(Figures 7C, D). No significant differences in overall TMBwere observed

(Figure 7E). However, the high E2F group presented increased

frequencies of ABCA13, LRP1B, and ATP10B missense/nonsense

mutations, suggesting a potential link between E2Fs and tumor-
FIGURE 3

The construction of nomogram based on GSE49711. (A, B) The uni- and multi- cox analysis of nomogram factors were presented in forest plots (P <
0.05); (C) The nomogram plot; (D) The timeROC curve and calibration of nomogram, predicting 1-, 2-, and 5-year overall survival (OS) probabilities.
(E) The calibration plot for the 5-year overall survival prediction using the constructed nomogram.
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suppressor gene alterations. These findings were further validated via

microsatellite instability (MSI) and TMB pancancer analyses, indicating

that E2Fs may influence TMB through mechanisms related to cell

proliferation and epigenetic modification (Figure 7F).

We observed that both ABCA13 and LRP1B are expressed at

higher levels in MYCN non-amplified neuroblastoma, a subgroup

typically associated with less heterogeneous outcomes. Notably,

lower expression of either gene correlates with significantly worse

prognosis (Supplementary Figure S6). Using ssGSEA, we found that

E2F family gene expression is positively correlated with WNT

signaling activity, whereas LRP1B expression shows a negative

correlation with WNT signaling (Figures 7G, H). These findings
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suggest that LRP1B may act as a suppressor of WNT-driven

oncogenic processes, potentially linking its loss-of-function

mutations to pathway dysregulation and tumor progression.
Sensitivity prediction analysis of common
drugs

The Wilcoxon test was conducted to assess differences in drug

sensitivity (IC50 values) between the two scoring groups. Significant

variations were observed for 197 drugs, including afatinib,

AZD7762, camptothecin, and cisplatin. Notably, the high-scoring
FIGURE 4

The enhanced proliferation in high E2Fs group of NB. The GSEA results revealled the activation of (A) cell cycle; (B) base excision; (C) p53 signaling
pathway; (D) Nucleotide excision repair; (E, F) The heatmap of correlation between E2Fs genes and PDGs/PSGs in NB (P < 0.05). *P < 0.05, **P < 0.01.
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group exhibited greater sensitivity to axitinib, KU-55933, NU7441,

PLX-4720, and SB216763 than the low-scoring group did (P < 0.05,

Figures 8A–I). These findings underscore the potential of risk

stratification in guiding personalized therapeutic strategies to

enhance treatment efficacy and patient outcomes.
Frontiers in Immunology 10
Discussion

High E2F activity is strongly associated with high-risk

neuroblastoma (NB), as evidenced by its correlation with

aggressive tumor phenotypes, immune suppression, and altered
FIGURE 5

The immune suppression in high E2Fs-group NB. The GSEA results revealed the functional enrichment of (A) ECM-receptor interaction; (B) Antigen
processing and presentation; (C) Neutrophil extracellular trap formation (D) T cell receptor signaling pathway; (E) The heatmap of correlations
between immune suppression genes and E2Fs genes; (F) The heatmap of correlation between E2Fs and immune checkpoint (IC) in NB (P < 0.05).
*P < 0.05, **P < 0.01.
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tumor mutation burden (TMB). The E2F transcription factor family

plays a critical role in cell cycle regulation and tumor progression,

and its dysregulation contributes to NB malignancy and poor

prognosis. This study highlight the potential of the E2F signature
Frontiers in Immunology 11
as a clinically actionable prognostic tool in neuroblastoma, which is

consistent with previous studies linking E2F-mediated cell cycle

dysregulation to high-risk NB (11, 12). Beyond its robust

association with poor outcomes, the E2F signature could be
FIGURE 6

E2Fs are associated immune regulation in NB. (A) The proportion of 22 immune cells between high and low E2Fs group of NB (P < 0.001); (B) The
heatmap of correlation between E2Fs and 22 immune cells in NB; (C) The enhanced correlations between E2Fs and NK cells activated; (D) The
positive correlations between E2Fs genes and TGF-b signaling pathway (P < 0.05).
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FIGURE 7

The tumor mutation burden (TMB) analysis between E2Fs-group NB (A) The activation of spliceosome in GSEA analysis; (B) The activation of ATP-
dependent chromatin remodeling in GSEA analysis; (C&D) The TMB in high E2Fs NB and low E2Fs NB; (E) The comparison of TMB between low E2Fs
and high E2Fs NB; (F) The correlations of E2Fs with microsatellite instability (MSI) and TMB in pan-cancer; (G) The correlations of LRP1B with WNT
signaling pathway; (H) The correlations of E2Fs genes with WNT signaling pathway (P < 0.05).
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implemented as a complementary biomarker to refine existing risk

stratification systems, such as MYCN amplification and INSS

staging. Notably, E2F1, a key regulator of the G1/S transition, is

significantly upregulated in high-risk NB, particularly in patients

with MYCN amplification, a well-established hallmark of aggressive

NB (13). Additionally, E2F3 and E2F7, which are both involved in

promoting tumor proliferation and inhibiting apoptosis, exhibited

increased expression in high-risk NB, further emphasizing their role

in tumor progression (14).

GSEA revealed that high-E2F neuroblastomas are significantly

enriched in proliferative pathways, including cell cycle regulation

(NES=2.89, p<0.001), DNA repair mechanisms (base/nucleotide

excision repair: NES=2.35/2.24), and p53 signaling (NES=1.85)

(Figures 4A–D), which is consistent with the established roles of

E2Fs in driving cell cycle progression through direct transcriptional
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activation of cyclins and CDKs (15). The concomitant activation of

DNA repair pathways likely represents a compensatory response to

replication stress induced by E2F-mediated hyperproliferation, as

demonstrated in other E2F-dysregulated cancers (16). Importantly,

this proliferative phenotype was associated with broad

immunosuppressive features, including (1) significant

downregulation of PD-L1/CTLA-4 (Figure 6E) and impaired

antigen presentation (Figures 6A–D), mirroring the immune-

evasion mechanisms observed in MYC-driven tumors where cell

cycle regulators directly suppress interferon signaling (17); (2)

reduced T/B-cell receptor signaling consistent with E2F1-

mediated suppression of T-cell activation genes (18); and (3)

paradoxical NK cell activation without effector function

(Figure 5C), resembling the dysfunctional NK populations in

E2F3-overexpressing pediatric tumors (19). These findings
FIGURE 8

Drug sensitivity assessment for E2Fs-associated nomogram evaluation of GSE49711 cohort. The box plot shows the (A) Afatinib. (B) Axitinib. (C)
AZD7762. (D) Camptothecin. (E) Cisplatin. (F) KU-55933. (G) NU7441. (H) PLX-4720. (I) SB216763 (P < 0.05).
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collectively position E2F hyperactivity as a dual driver of

proliferative advantage and immune evasion in high-risk

neuroblastoma, suggesting that therapeutic strategies combining

CDK4/6 inhibitors (to target E2F activation) with NK cell engagers

or TIM-3 blockade (to overcome immune suppression) may be

particularly effective, as recently demonstrated in preclinical models

of E2F3-amplified neuroblastoma (20).

Immune cell infi l tration analysis revealed distinct

immunophenotypes between the E2F expression groups,

underscoring their role in shaping the tumor microenvironment

(TME). The low-E2F group exhibited greater infiltration of M0

macrophages, naïve B cells, resting NK cells, and activated dendritic

cells (Figures 5A, B), suggesting a more immunogenic TME, as

dendritic cell activation is critical for antigen presentation and T-

cell priming (21), whereas naïve B cells may contribute to tertiary

lymphoid structure formation, which is associated with favorable

outcomes (22). In contrast, the high-E2F group displayed elevated

populations of immunosuppressive cells, including memory B cells,

neutrophils, follicular helper T cells (Tfhs), regulatory T cells

(Tregs), and activated NK cells. The enrichment of Tregs and

neutrophils aligns with established immune evasion mechanisms

in neuroblastoma (NB), where Tregs suppress antitumor immunity

(23) and neutrophils promote protumorigenic inflammation (24).

Notably, E2F-associated genes (CKS2, CDC25A, NME1, and

MAD2L1) were positively correlated with activated NK cell

infiltration (Figure 5C), suggesting cell cycle-related immune

modulation, which is consistent with reports linking proliferative

signaling to NK cell synapse regulation (25). However, the high-E2F

group also exhibited downregulation of immune checkpoints

(Figure 6E) and impaired T/B-cell receptor pathways

(Figures 6A–D), indicative of systemic immunosuppression, akin

to MYC-driven immune escape (17). These findings collectively

implicate E2Fs in fostering an immune-suppressive TME, where the

survival advantage of low-E2F syndrome patients may reflect

preserved immune surveillance, whereas high-E2F syndrome

activity facilitates immune evasion, suggesting therapeutic

p o t e n t i a l f o r c omb i n i n g E2F p a t hway i nh i b i t i o n

with immunotherapy.

Correlation analysis revealed significantly reduced immune

checkpoint expression in high-E2F tumors (Figure 5E), which

may explain the limited efficacy of immune checkpoint inhibitors

(ICIs) in neuroblastoma, as observed in other cancers where low

checkpoint expression correlates with poor immunotherapy

response (26). Interestingly, while not statistically significant, we

noted a trend toward higher stromal scores in low-E2F tumors,

potentially reflecting cancer-associated fibroblast (CAF)-mediated

immune checkpoint induction of T cells (27), a mechanism that

could sustain immunogenicity in these tumors. This dichotomy

suggests that low-E2F patients, with preserved checkpoint

expression and immune infiltration, may derive greater benefit

from ICIs, whereas high-E2F patients likely require combinatorial

strategies targeting both the cell cycle and alternative immune

pathways. Preclinical evidence supports this approach,
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demonstrating synergy between E2F inhibition and PD-1

blockade in MYC-driven tumors (17), suggesting that our E2F-

immune classifier could guide personalized immunotherapeutic

strategies in NB beyond conventional risk stratification.

Moreover, our findings highlight a potential mechanism by

which E2F-related genes enhance NK cell infiltration in the tumor

microenvironment. Previous studies have shown that TGF-b
signaling suppresses NK cell function by inhibiting cytotoxicity

and proliferation (28). In this study, we observed that high-E2F

groups displayed both decreased TGF-b pathway activity and

increased NK cell infiltration, suggesting that E2Fs may indirectly

promote NK cell activation by repressing TGF-b signaling. This

aligns with emerging evidence linking E2F transcription factors to

immune regulation beyond cell cycle control. These insights suggest

a dual role for E2Fs in tumor progression and immune modulation,

potentially offering novel therapeutic opportunities for enhancing

anti-tumor immunity in neuroblastoma.

Tumor mutation burden (TMB) analysis revealed no significant

differences in overall mutation rates between the E2F expression

groups, suggesting that E2F dysregulation does not globally increase

genomic instability in neuroblastoma. However, the high-E2F

group presented an increased frequency of ABCA13, LRP1B, and

ATP10B mutat ions , which may reflect E2F-mediated

transcriptional regulation of DNA repair pathways and increased

replication stress in proliferating cells. Specifically, E2F

transcription factors directly regulate DNA repair genes and

chromatin remodelers, potentially creating a permissive

environment for specific mutation accumulation (29). The

observed LRP1B mutations, which are located in a genomic

region vulnerable to replication stress (30), may confer

therapeutic vulnerability to PARP inhibitors (31). Similarly,

ABCA13 and ATP10B mutations can alter membrane lipid

composition, potentially increasing susceptibility to lipid-based

chemotherapeutics (32). These findings align with those of

pancancer analyses showing that E2F-high tumors present

characteristic mutation signatures associated with replication

stress (33) and specific mutation patterns in chromatin regulators

(34). While E2F expression does not directly influence overall TMB,

it may contribute to neuroblastoma malignancy through these focal

mutations and epigenetic modifications, supporting the link

between E2F activity and high-risk disease.

Notably, our findings suggest a potential mechanistic link

between LRP1B mutation and WNT signaling activation in

neuroblastoma. Specifically, LRP1B expression was negatively

correlated with WNT pathway activity based on ssGSEA analysis,

indicating that loss or mutation of LRP1B may release inhibitory

control over the WNT/b-catenin signaling cascade. This is

consistent with previous studies in other cancer types, where

LRP1B mutations have been associated with WNT pathway

activation and subsequent tumor progression. Aberrant WNT

signaling can enhance tumor cell proliferation, migration, and

stemness, and may also promote immune evasion by remodeling

the tumor microenvironment (35).
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Drug sensitivity analysis revealed distinct therapeutic

vulnerabilities between the E2F expression groups. The low-E2F

group exhibited greater sensitivity to immune checkpoint

inhibitors, aligning with their enriched immune activation

signature, as previously reported in tumors with lower

proliferative activity (33, 36). Further sensitivity prediction

analysis, assessed by the Wilcoxon rank-sum test, revealed

significant differences in drug response between the two groups.

Notably, the high-E2F cohort displayed increased sensitivity to

targeted agents, including axitinib (a VEGFR inhibitor), KU-

55933 (an ATM kinase inhibitor), NU7441 (a DNA-PK

inhibitor), PLX-4720 (a BRAF inhibitor), and SB216763 (a GSK-

3b inhibitor) (P < 0.05). These findings are supported by prior

studies linking E2F hyperactivity to dependency on DNA repair

pathways (37) and growth factor signaling (38).

Collectively, these results underscore the potential of E2F-based

stratification to guide personalized therapeutic strategies,

optimizing drug selection for high-versus low-E2F tumors.

Although clinical implementation would require further

prospective validation and technical standardization, the

signature ’s reproducibil ity across independent cohorts

underscored its feasibility for future use. Moreover, future studies

would aim to validate the signature in larger, prospective,

multicenter clinical cohorts to further assess its clinical utility and

applicability across diverse patient populations.

While the E2F-based risk model integrates proliferative and

immune characteristics to improve neuroblastoma stratification,

several limitations should be noted. The retrospective nature of

public database-derived data may not fully capture disease

heterogeneity across populations, and the moderate sample size

limits the statistical power for subtle associations. Additionally, bulk

transcriptomics cannot resolve spatial heterogeneity in E2F activity

and immune infiltration, a critical consideration given known

regional microenvironment variations in neuroblastoma (26).

Future studies should employ spatial transcriptomics and single-

cell RNA sequencing to map E2F-immune interactions at subregion

resolution, validate the model in multicenter prospective cohorts,

investigate the regulatory roles of noncoding RNAs (39), and

evaluate E2F-targeting combination therapies in preclinical

models to advance clinical translation.
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SUPPLEMENTARY FIGURE 1

Screening for E2Fs-related genes in high-risk neuroblastoma. (A) Consensus
values range from 0 to 1; (B) The corresponding relative change in area under
the cumulative distribution function (CDF) curves when cluster number

changes from k to k+1. The range of k changed from 2 to 9, and the
optimal k = 2; (C) LASSO coefficient profiles; (D) Selection of the tuning

parameter (lambda) in the LASSOmodel by 10-fold cross-validation based on
minimum criteria for OS.

SUPPLEMENTARY FIGURE 2

(A–D) The K-M curve of the E2Fs-related genes (MAD2L1、CDC25A、

CKS2、NME1) revealled the association between overexpression and poor
prognosis (P < 0.05).
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SUPPLEMENTARY FIGURE 3

The E2Fs expression in distinct (A) INSS stages; (B)MYCN-status; (C) risk stages;
(D) Age; (E) The K-M curve of the E2Fs riskscore in NB patients of non-amplifed

MYCN; (F) The heatmap of correlation between E2Fs genes andMYCN geneset
(ARMC6, DCTPP1, EIF4G1, ELOVL6, FBL, HSPE1 and PRMT1) in NB (P < 0.05).

SUPPLEMENTARY FIGURE 4

(A) The ROC comparison of risk stage andMYCN-status; (B) The K-M curve of
nomogram; (C) The timeROC and (D) calibration curves in TARGET-NBL; (E)
The timeROC and (F) calibration curves in E-MTAB-8248.
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SUPPLEMENTARY FIGURE 5

(A) The heatmap of correlation between TRGs and immune checkpoint in

pan-cancer; (B) The heatmap of correlation between TRGs and immune

suppression in pan-cancer.

SUPPLEMENTARY FIGURE 6

(A) The LRP1B expression in distinct MYCN status; (B) The K-M curve of the

LRP1B expression in NB patients; (C) The ABCA13 expression in distinct
MYCN status; (D) The K-M curve of the ABCA13 expression in NB patients

(P < 0.05).
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