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C-reactive protein (CRP), an acute-phase protein primarily produced by

hepatocytes in response to pro-inflammatory cytokines, is a widely used

clinical marker for inflammation and tissue damage. In its native state, CRP

exists in a stable pentameric form called pCRP. Upon interaction with activated

cell membranes, pCRP undergoes a transitional conformation change into

activated pCRP (pCRP*) and subsequently fully dissociates into its monomeric

subunits (mCRP). pCRP* and mCRP interact with C1q and thereby activate the

classical complement system pathway and both exert pro-inflammatory effects

on platelets and endothelial cells. Although classically recognized as a marker of

acute inflammation, CRP is increasingly implicated in the pathogenesis of

protein-misfolding pathologies, notably neurodegenerative diseases and

amyloidosis. This review explores the complex interplay between CRP,

encompassing its isoforms pCRP, pCRP*, and mCRP, and misfolded proteins,

examining the specific contributions to inflammation and neurodegenerative

disease pathogenesis. We analyze the clinical significance of variations in CRP

levels in patients with protein-misfolding diseases, discuss underlying

mechanisms, and highlight potential implications of these findings for drug

discovery and therapeutic targeting of CRP.
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1 Introduction

Inflammation is increasingly recognized as a key driver of

numerous diseases, including chronic conditions such as

neurodegenerative disorders (1). C-reactive protein (CRP) is the

prototypical acute-phase reactant in humans (2) and a widely used

clinical biomarker of inflammation that has traditionally been

associated with acute infections and tissue damage (3, 4). It is

characterized by its pentameric structure and calcium-dependent

ligand binding (5). Despite its early discovery in 1930 (6), its precise

biological role remained elusive. Today, CRP is a major focus of

research and fast becoming one of the most extensively studied

plasma proteins in humans (7). Emerging evidence suggests that

CRP is not only an indicator/marker of inflammation, but also a

mediator of inflammation playing a complex role in chronic

inflammatory states and their associated pathologies (8, 9). This is

particularly relevant in the context of neurodegenerative diseases,

which are characterized by progressive neuronal dysfunction and

often accompanied by chronic inflammation. Neurodegenerative

proteinopathies are characterized by the accumulation of misfolded

protein aggregates, causing cellular toxicity and contributing to

progressive cellular proteostatic collapse (10). Misfolded proteins

can be deposited in tissues in the form of amyloid fibrils and cause

progressive organ dysfunction.

Interestingly, elevated CRP levels have been observed in

patients with various neurodegenerative diseases (11), including

Alzheimer’s disease (AD) and Parkinson’s disease (PD) (12). In

particular, the onset of AD is strongly associated with higher CRP

levels (13). Furthermore, studies have also linked increased CRP

levels to an elevated risk of dementia and depression, highlighting

the potential impact of inflammation on cognitive decline and

mental health (14, 15). In addition to the strong association of

elevated CRP levels with neurodegenerative diseases, a recent meta-

analysis showed the link between cognitive decline and CRP levels

(16). While the exact mechanisms underlying CRP’s involvement in

neurodegeneration remain to be fully elucidated, its diverse

functions in immune modulation and its interaction with

misfolded proteins suggest a multifaceted role in disease

pathogenesis. This review aims to provide a comprehensive

overview of the current understanding of CRP’s involvement in

neurodegenerative diseases and other protein misfolding disorders.

We will explore the diverse isoforms of CRP, their respective

functions, and their potential contributions to disease

progression. Additionally, we will discuss the clinical implications

of CRP as a biomarker and its potential as a therapeutic target in

these conditions.
2 CRP structure and function

The native and relatively inert form of CRP is composed of five

identical subunits, each ~23 kDa in size, and the resulting pentamer

has an overall donut-like or disc-like shape (Figures 1a–d). Non-

covalent interactions (electrostatic and hydrophobic interactions) at

the subunit-subunit interfaces hold the pentamer together. pCRP is
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primarily synthesized in hepatocytes under the regulation of

interleukin-6 (IL-6), and initially each of the five subunits folds

into an approximately native monomeric core (20, 21). Next, an

intrachain disulfide bond is formed between Cys36 and Cys97 and

the binding of two calcium ions completes the monomeric subunit

structure. Each monomeric subunit is comprised of one a-helix
(residues 168-176) and two approximately parallel b-sheets, each
containing seven b-strands. Subsequently, five subunits assemble

into the native pCRP. The calcium ions are held into place largely by

acidic residues (Asp60, Glu138, Asp140 and Glu147), and also

Asn61 and Gln150, located at one end of a b-sheet (Figure 1b). The
calcium ions are crucial for subunit folding and the subsequent

pentamerization (19, 22, 23). Indeed, mutations in the pCRP

calcium binding site prevents proper assembly and release of CRP

from transfected cells (24).

The donut-shaped native pCRP has two exposed faces, these are

called the effector face (also known as the “A-face” or activating

face) and the binding face (or “B-face”), respectively (Figure 1). The

effector face is responsible for triggering the innate immune

pathway by binding ligands such as Fcg receptors and the

complement C1 complex. The binding face adheres to damaged

or apoptotic cell membranes, bacterial cell walls and has also been

reported to bind to b-sheets. On the binding face of pCRP, each

monomeric subunit contains a shallow groove where the

phosphocholine (PCh) and phosphoethanolamine headgroups of

bioactive lipids bind in a calcium-dependent manner. These lipid

headgroups are exposed on damaged or inflamed cell membranes

(17) (Figure 1). Site-directed mutagenesis and co-crystallization

studies targeting the PCh binding sites of pCRP have indicated that

Phe66 and Glu81 are important for the interaction with the lipid

headgroups (25, 26). In each subunit, Phe66 is located on the edge

of the shallow groove approximately halfway between Glu81 and

the two calcium ions, and it interacts with the amine methyl groups

of PCh (Figure 1b). The PCh (and similarly phosphoethanolamine)

headgroup is anchored to the binding site (i.e., shallow groove,

Figure 1b) by two critical interactions: (1) the coordination of the

negatively charged PCh phosphate moiety with the positively

charged calcium ions and (2) the interaction of the positively

charged PCh amine nitrogen with the negatively charged acidic

side-chain of Glu81. Residues Phe66 and Glu81 are highly

conserved across all species, underscoring their importance in

pCRP binding to bioactive lipid headgroups such as PCh and

phosphoethanolamine (27).

The pentameric structural state of CRP is dependent upon its

environment (19). Under normal physiological conditions it adopts

the native non-inflammatory pentameric state (pCRP, Figures 1a–

d), whereas in localized inflammatory environments it adopts a

non-native activated pentameric state (pCRP*, Figures 1e, g, h) (19,

28, 29). The trigger for adopting the pro-inflammatory activated

pCRP* s ta t e occurs when pCRP binds to PCh (or

phosphoethanolamine) headgroups exposed on the surface of

damaged cells (19). The exposed lipid headgroups can access the

PCh binding site on each subunit in the binding face (B-face,

Figures 1c, d) of pCRP, in addition the headgroups can interact with

residues at the subunit-subunit interface thereby weakening the
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FIGURE 1

Model demonstrating the conformational change of pCRP to pCRP* and subsequent C1q binding. The native structure of CRP (pCRP) harbors five
PCh binding sites located on the binding face (B-face) of the pentamer (a), allowing the PCh headgroups exposed on activated membranes to
independently interact with each of the five binding sites (b–d). In (a), the PCh headgroups are shown as cream colored spheres, while in
(b) lysophosphatidylcholine (LPC) is depicted as white/blue/red/orange colored sticks. The detection of neoepitopes (e), (residues 199-206, yellow),
using anti-mCRP/pCRP* antibodies 9C9 and 3H12, indicates that the native pentamer has begun to dissociate to pCRP*. Further dissociation of the
CRP pentamer enables binding of the globular head from a single chain in the C1q hexamer (f–h). Each chain in the C1q hexamer is comprised of a
collagen-like stem (gray spring), (h) connecting the C-terminal globular head (orange) to the N-terminal stalk (not shown). When at least three
chains in a C1q molecule interact with pCRP* in a 1:1 ratio, activation of the complement C1 complex occurs. The initial conversion of pCRP to
pCRP* appears to be a reversible process. The crystal structures of the PCh-pCRP complex (PDB ID: 1B09 (17)) and the C1q globular head (PDB ID:
1PK6 (18)) were used to construct the models, one letter amino acid codes are shown in (b). Reproduced from Braig et al. (19) in accordance with
the Creative Commons CC BY license.
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interactions holding the CRP pentamer together. The increase in

both curvature and fluid nature of the lipid bilayer in damaged cell

surfaces exposes the PCh (or phosphoethanolamine) headgroups

further and the resulting mechanical shear force pulls the CRP

subunits apart (19, 30). Detection of the native pCRP isoform can be

achieved using antibodies which recognize the circulating

pentamer, such as anti-pCRP-8D8 (19). The dissociation of pCRP

can be detected using anti-mCRP/pCRP* antibodies, such as 9C9

and 3H12 (19, 31, 32). These two anti-mCRP/pCRP* antibodies

target residues 199–206 within a CRP subunit and this region is

often referred to as the neoepitope. The neoepitope is normally

buried at the subunit-subunit interface in pCRP and not accessible

for antibody binding. When the pCRP subunits start to dissociate

(Figure 1e), the neoepitopes are exposed while an overall

pentameric structure (pCRP*) is retained (19, 30). Once the

distance between adjacent subunits in pCRP* is > 4 Å

(Figures 1g, h), the subunits are only loosely associated with each

other and there are three main outcomes for pCRP*. Data obtained

by us, and others, indicates that the transformation from pCRP to

pCRP* is somewhat reversible, therefore one outcome is that the

subunits move back together and pCRP is reformed (19). A second

outcome is that the pCRP* subunits continue to move apart, and at

a distance of ~10 Å the dissociation process becomes irreversible. At

this point complete dissociation of the pentamer occurs, the

disulfide bond between Cys36-Cys97 is now exposed and can be

reduced. Breaking of the disulfide bond leads directly to the

individual CRP subunits unfolding, and results in the production

of the pro-inflammatory monomeric form of CRP (mCRP) which is

subsequently cleared from circulation (20). Interestingly, the

conformational change from pCRP (largely b-sheet secondary

structure) to mCRP (largely disordered secondary structure) leads

to a significant lowering in the protein’s solubility, transforming

from a soluble pentamer to an insoluble, tissue-bound monomer

aggregate (29–31).

The third outcome for pCRP* is the interaction with an effector

ligand such as the complement C1 complex, to activate the classical

complement pathway. The C1 complex is comprised of components

C1q, C1r and C1s. C1q, a hexameric protein, is known to directly

interact with CRP (23). Each chain in the C1q hexamer is

comprised of an N-terminal stalk connected to a collagen-like

stem (or arm) with a C-terminal globular head (Figures 1f–h) (18,

19, 23). The collagen-like stems splay out such that the C1q

hexamer resembles an upside down bunch of flowers. The main

interaction of C1q with CRP, determined by mutagenesis, is via

residues located in the C1q globular head. CRP residues identified

by mutagenesis to be involved in binding the globular head of C1q

are located on the pCRP effector face (A-face) toward the

pentameric ring interior (18, 23, 33–35). We utilized the crystal

structure of the C1q globular head (PDB ID: 1PK6 (18)) to model

the interaction with CRP (Figures 1f–h) (19). The diameter of the

globular head of C1q is too large for it to interact with the CRP

residues located on the interior surface of the native pCRP

pentamer ring, and we proposed that the C1q globular head

instead interacts with pCRP*. The model for the interaction of

one pCRP* molecule with one C1q globular headgroup is shown in
Frontiers in Immunology 04
Figure 1 and is consistent with our published data demonstrating

that C1q is recruited by microvesicle-bound pCRP* (19). The model

is also consistent with a 24 Å low-resolution cryo-electron

tomography structure for the CRP-C1 complex published in 2024

by Noone et al. (23). Since C1q is a hexamer, there is the potential

for all six C-terminal globular heads to independently bind to six

pCRP* molecules. Although their CRP-C1 complex structure is

low-resolution, Noone et al. were able to demonstrate that four C1q

chains interact (via their globular headgroup) simultaneously with

four pentameric CRP molecules laid out in a raft-like configuration

bound to the surface of a liposome, with two C1q chains remaining

free. It may be that the curvature of the liposome surface prevents

all six C1q chains from binding to six pentameric CRP molecules

simultaneously, however this remains to be explored using

liposomes of varying diameters. While Noone et al. proposed that

the C1q globular headgroups are interacting with pCRP, the

observed density would also accommodate pCRP* and the

authors acknowledge that the diameter of the globular head of

C1q is too large to interact with the interior surface of the native

pCRP pentamer ring (23). Clarification of the precise nature of the

pentameric form of CRP observed by Noone et al. will require

higher resolution cryo-electron tomography or cryo-electron

microscopy data (23).

The idea that non-inflammatory native pCRP undergoes

structural modulation, to pCRP* and mCRP (and possibly other

as yet undetermined isoforms), at sites of tissue damage to exhibit

its pro-inflammatory response has also been proposed by others

(36, 37). As described above, the canonical activation mechanism of

CRP includes the protein’s interaction with PCh headgroups

exposed on activated cell membranes. These activated cells

typically have increased levels of phospholipase A2 activity, a key

enzyme in the production of the lipid lysophosphatidylcholine

(LPC, Figure 1b) (31). Several studies, including our own research

findings, have demonstrated that pCRP can undergo complete

dissociation into the pro-inflammatory monomeric form of CRP

(i.e., mCRP) on the surface of endothelial cells (31), activated

platelets (38), monocytes (19) and microparticles (39), which are

all rich in lipids containing PCh headgroups (40). In addition to the

PCh-dependent dissociation mechanism described above, pCRP

can also dissociate via PCh-independent mechanisms. For example,

we recently described a novel mechanism of PCh-independent,

shear-induced pCRP dissociation relevant to pathologies involving

increased shear rates, such as aortic stenosis, atherosclerotic and

injured arteries (30).

As discussed above, dissociation of pCRP to the pCRP* isoform

enables the binding of C1q within the C1 complex, and the

subsequent activation of the classical complement pathway (19).

pCRP* located on the surface of microparticles secreted from

activated cells contributes to tissue inflammation. In our previous

work, we found that pCRP* constitutes a substantial percentage of

all CRP isoforms present in injured tissues including burn wounds,

atherosclerotic plaques and inflamed muscle (19). Due to its low

solubility and exceedingly disordered structure, mCRP is likely to be

removed quickly in vivo, whereas microparticles can act as a

chaperone for pCRP* (41). This then raises the question: is
frontiersin.org
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mCRP the major pro-inflammatory isoform of CRP or can this

activity be largely attributed to pCRP*? The surge in research into

characterizing CRP isoforms and their specific biological functions

will no doubt provide the answer to this question and may facilitate

new treatment opportunities for inflammatory diseases.
3 Protein misfolding diseases

3.1 Protein folding

In addition to the pro-inflammatory structurally disordered

mCRP being formed via the PCh-dependent dissociation of pCRP,

as detailed above, we have reported the generation of mCRP

through the direct interaction of non-inflammatory pCRP with

misfolded proteins (42). Furthermore, co-localization of both C1q

and CRP with amyloid plaques (insoluble clumps of tangled

amyloid fibrillar proteins) suggests the involvement of pCRP*

(and potentially mCRP) and implies that CRP interactions with

misfolded proteins play a central role in inducing immune
Frontiers in Immunology 05
responses (42). Misfolded proteins are thermodynamically

unstable and tend to interact with diverse macromolecules,

including functional proteins, forming complex interactomes that

can drive disease pathogenesis (43). In contrast, correctly folded

polypeptides achieve unique, thermodynamically stable, functional,

three-dimensional native conformations during their synthesis.

Rather than following a single pathway, protein folding typically

proceeds through a number of self-modulating processes guided by

the folding funnel energy landscape (Figure 2) (45). This landscape

depicts the energy of various conformational states for a protein,

each state decreasing in energy as the protein progresses toward a

more organized, native-like structure. At the initial folding stage,

secondary structure elements (e.g., a-helices and b-strands) form at

specific locations along the polypeptide chain, coinciding with a

decrease in free energy of the system. As the protein approaches its

precise native folded state, characterized by a unique arrangement

of the secondary structure features, it reaches its lowest free energy,

achieving both structural and functional stability (46). This efficient

and rapid search for the native state is often visualized as a funnel,

where the unfolded protein occupies a high entropy and high free
FIGURE 2

The protein folding and aggregation energy landscape. Schematic diagram depicting the energy landscape guiding protein folding. Newly
synthesized polypeptides navigate a multitude of possible conformations to achieve their unique, functional three-dimensional structure. The green
surface represents the folding funnel, where intramolecular contacts drive the unfolded protein toward its native state. The red surface illustrates
pathways leading to protein aggregation, either amorphous aggregates or amyloid fibrils, driven by intermolecular interactions. The overlap between
the green and red regions highlights the competition between folding, unfolding and aggregation. Molecular chaperones (e.g., Hsp70 (44) or
microvesicles (19) etc.) typically prevent protein aggregation. Aggregation can arise from intermediate conformations encountered during de novo
protein folding or from the destabilization of the native state into partially unfolded conformations. Importantly, cell-toxic oligomers can form as off-
pathway intermediates during amyloid fibril formation. Figure reproduced from Muntau et al. (45) with permission.
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energy state representing a multitude of random conformations

(Figure 2). The narrowing of the funnel reflects a progressive

reduction in the number of accessible protein conformations and

concomitant decreases in free energy and entropy (47). Chaperone-

assisted folding of proteins achieves relatively lower energy minima

(Figure 2), however, in the absence of chaperones, proteins may

misfold or aggregate. Under certain conditions, misfolding or

aggregation may lead to the protein adopting an amyloid state,

which is often the lowest energy minimum conformation (Figure 2).

While the funnel analogy typically depicts one of the lower energy

minima as the native protein conformation, a protein can possess

an ensemble of native or near-native conformations, all crucial for

its biological function. The rapid and efficient navigation of the

folding landscape is facilitated by a network of interactions between

key residues, often forming a folding nucleus that establishes the

native topology within the transition state ensemble (the folding

bottleneck) (6). The network of key interactions effectively guides

the protein through the complex energy landscape to its native,

functional state.
3.2 Protein misfolding and aggregation

Protein folding generally involves several transitional

conformation states and may encounter rate-limiting steps. While

most transition states lead to functional folding of proteins, some

can result in non-native interactions, promoting protein

aggregation (48). There is usually a significant energy barrier

between the native protein state and aggregated states (Figure 2).

Native protein folded states are often metastable, and kinetic

partitioning plays a crucial role in preventing misfolding and

aggregation (49). Kinetic partitioning is influenced by both

extrinsic and intrinsic factors. Extrinsic factors include quality

control machinery, such as molecular chaperones, which assist in

native functional folding, suppress misfolding, and target misfolded

proteins for degradation (50). The heat shock protein 70 kDa

(Hsp70) family of chaperones, for example, prevents misfolding

and aggregation under stress. Chaperone-mediated autophagy also

contributes to the degradation of misfolded and aggregated proteins

(51). For instance, Hsp70 and Parkinsonism-associated deglycase

facilitate the autophagic degradation of unstable neuronal proteins

that are the substrates for aggregation and a-synuclein (a-syn)
aggregates, respectively (52, 53). Control of translation dynamics,

through fluctuations in tRNA abundance and tuning of tRNA-

ribosome binding affinity, represents another extrinsic regulatory

mechanism influencing kinetic partitioning (54, 55).

Intrinsic factors are shaped by evolutionary pressure, leading to

the selection of so called “aggregation gatekeepers” that enhance the

kinetic partitioning. These gatekeepers contain specific sets of

residues, such as proline (which disrupts b-sheets) or

electrostatically charged residues, e.g., lysine, arginine, aspartate,

or glutamate, that neutralize aggregation-prone interactions (56).

Located within the aggregation prone regions (APRs), these

gatekeepers effectively reduce aggregation propensity (57). Loss-
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of-function, dysfunction or absence of aggregation gatekeepers is

frequently observed in intrinsically disordered proteins (IDP) and

intrinsic disordered protein regions (IDPR) (58), and contributes to

amyloid-related diseases. Examples include a-syn in PD, tau and

amyloid beta (Ab) in AD, TAR DNA-binding protein 43 in

amyotrophic lateral sclerosis (ALS), Huntingtin protein in

Huntington’s disease (HD), and transthyretin (TTR) in systemic

amyloidosis (59, 60). IDP/IDPR, due to their conformational

flexibility and rugged energy landscapes, are particularly

susceptible to intermolecular interactions that can lead to the

formation of oligomers and amyloid fibrils (61).
3.3 Protein aggregates: oligomers and
fibrils

Protein aggregates, encompassing both oligomers and fibrils,

play a central role in neurodegenerative and systemic amyloidosis.

While amyloid fibril deposition, both extra- and intracellularly, is a

hallmark of these diseases, accumulating evidence points to the

toxic nature of soluble oligomers (62, 63). Oligomers, characterized

by high hydrophobicity and a large surface-to-volume ratio (64),

can disrupt subcellular functions, including membrane integrity,

metal ion homeostasis, redox balance, and endolysosomal pathways

(65–67). Furthermore, oligomers stall subcellular activities and

directly interfere with the function of other proteins. For example,

a-syn oligomers impair mitochondrial respiration by inducing

depolarization and interacting with the respiratory chain complex

I (68). Oligomeric a-syn also interacts with Tom20, a

mitochondrial outer membrane protein, hindering mitochondrial

protein import (69). Similarly, tau and Ab oligomers disrupt

mitochondrial function by impairing the respiratory chain

complex activity (70, 71). Calcium dyshomeostasis and membrane

disruption are common consequences of oligomer toxicity (72).

Oligomers also contribute to elevated reactive oxygen species (ROS)

levels. Intriguingly, b-sheet-rich oligomers have been shown to

induce significantly higher ROS production in astrocyte-neuron

co-cultures compared to unstructured oligomers and monomers

(73, 74). While intracellular aggregates are typically cleared by

endolysosomal pathways, these pathways can be disrupted by

oligomers. For instance, phagocytosis of a-syn oligomers stall the

endolysosomal pathway resulting in an exponential accumulation

of a-syn aggregates (75). Tau oligomers, although also targeted for

clearance via the endolysosomal pathway, can themselves obstruct

this pathway, leading to lysosomal dysfunction (76). The

impairment of phagocytosis contributes to increased aggregation

kinetics and the formation of stable fibrils. Amyloid fibrils, insoluble

and highly ordered aggregates, are implicated in various diseases,

including neurodegenerative disorders like AD, PD, HD, ALS, and

prion diseases (77–79). Beyond neurodegenerative diseases,

amyloidosis can affect other tissues and organs, such as the

pancreas (islet amyloid polypeptide), the heart (light chain

amyloids and transthyretin amyloids) and kidneys (light chain

amyloids) (80). In systemic amyloidosis, the transfer of amyloid
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fragments, termed “proteopathic-seeds”, between tissues can

initiate fibrillation in recipient tissues (81–83). While the

pathological relevance of this seeding phenomenon requires

further investigation for many proteins, it is well-established in

prion diseases (84).

The formation of misfolded protein oligomers and fibrils is

widely recognized as a primary driver of immune activation,

making inflammation a central component of neurodegenerative

disease. Both stable, large fibrillar aggregates (fibrils) and unstable,

smaller oligomeric assemblies (oligomers) can initiate immune cell

activation, thereby triggering inflammatory signaling cascades e.g.,

nuclear factor-kB signaling (85, 86). This activation results in the

elevated expression of pro-inflammatory cytokines (including IL-1b
and tumor necrosis factor a (TNFa)), as well as CRP, which

collectively contribute to exacerbated cellular dysfunction and cell

death (87).
4 CRP and neurodegenerative
diseases

Neurodegenerative diseases represent a diverse group of

neurological disorders characterized by the progressive loss of

neurons in the peripheral nervous system (PNS) and/or central

nervous system (CNS), affecting millions globally (88). The

neuronal loss results in structural disintegration and dysfunction

of neural networks, which, due to the terminally differentiated

nature of neurons, exhibit limited regenerative capacity (88).

Beyond neuronal loss, progressive localized inflammation is a

hallmark of neurodegenerative diseases (89). While initially

attributed to protein aggregation, emerging evidence suggests that

inflammation is relevant in the early phase of the disease process,

potentially triggered by various pro-inflammatory macromolecules

within the plaque microenvironment (90). The immune system,

crucial for maintaining tissue homeostasis by clearing inflammatory

stimuli, such as protein aggregates, can become dysregulated in

neurodegenerative diseases. Failure to effectively resolve

inflammation leads to chronic activation and secretion of

neurotoxic factors, exacerbating disease progression (91).

Consequently, vital communicative circuits are disrupted,

resulting in impairments across sensory, motor, cognitive and

behavioral domains (1, 92).

CRP is considered a key inflammatory marker and a promoting

player in acute inflammation, suggesting it may have a significant

role in neurodegenerative inflammatory processes (11, 93). Though

the precise mechanisms by which CRP interacts with immune cells

and pro-inflammatory molecules are still not clearly understood, its

involvement in neurodegenerative disease progression is well

documented (11, 37). Elevated serum CRP levels are consistently

observed in PD patients, with levels correlating to disease severity as

assessed by the Hoehn-Yahr staging system (94). Similarly, patients

with ALS exhibit significantly higher CRP levels compared to

healthy controls (95). Furthermore, the presence of CRP within

senile plaques in AD suggests its potential contribution to the acute

inflammatory response associated with plaque formation (96).
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4.1 CRP and Alzheimer’s disease

Alzheimer’s disease (AD) is characterized histopathologically

by the accumulation of extracellular Ab peptides, phosphorylated

tau (p-tau), and the formation of senile plaques. Ab peptides are

generated through the proteolysis of amyloid precursor protein

(APP) by a-, b-, and g-secretases (97). Cleavage by a- and b-
secretases produces soluble APP fragments, (sAPPa and sAPPb,
respectively), which can be further processed by g-secretase to

release Ab peptides, P3 peptides, and the APP intracellular

domain (AICD) (98). Importantly, secretase activity can be

modulated by inflammatory cytokines, suggesting a potential link

between inflammation and Ab production (99). This supports the

hypothesis that individuals with pre-existing inflammatory

conditions may be more susceptible to AD pathology (100, 101).

Neuroinflammation is a key contributor to AD pathogenesis.

Initial inflammatory stimuli, such as Ab deposition, pathogenic

infection or cellular debris, activate microglia, leading to the release

of pro-inflammatory cytokines (IL-6, IL-1b, TNFa) and

chemokines (CCL)-2, CCL-4 and CCL-11 (102, 103). This

process, while typically tightly regulated, can become dysregulated

in AD. Excessive Ab and p-tau accumulation overwhelms the

microglial clearance capacity, resulting in sustained inflammation

and the recruitment of reactive astrocytes. These astrocytes and

microglia contribute to a chronic inflammatory environment,

further exacerbated by the release of damage-associated molecular

patterns (DAMPs) from necrotic cellular debris (104). The

persistent inflammation contributes to neuronal dysfunction and

ultimately neurodegeneration.

The association between CRP levels and AD is influenced by

various factors, including gender, age, socioeconomic status, and

pre-existing morbidities. For example, Schmidt et al. found that

elevated CRP levels were associated with a threefold higher risk of

dementia in men and that even moderately increased CRP levels

were linked to later-life AD development (105). More recent studies

have employed Mendelian randomization to investigate the causal

relationship between CRP and AD. Zhang et al. utilized genome-

wide meta-analysis data from 383,378 controls and 71,880 AD

patients, identifying 56 single nucleotide polymorphisms (SNPs)

associated with CRP levels (13). Their analysis revealed a significant

association between genetically predicted elevated CRP levels and

increased AD risk. These findings are consistent with previous

studies demonstrating a link between AD and elevated CRP, along

with other pro-inflammatory markers. Moreover, high CRP levels

are associated with elevated serum cholesterol, a known risk factor

for AD (13). Sensitivity analyses showed similar results, and no

pleiotropic bias was observed. Several studies have shown a

significant link between AD and CRP, along with higher levels of

pro-inflammatory markers including IL-1b, IL-6, and a-1-
antichymotrypsin (106).

In addition to a causal role in AD, CRP appears to play a central

role in eliciting inflammation in this disease. As discussed above, CRP

activates the classical complement system, leading to cell lysis and

phagocytosis (107). In the context of AD, complement activation can

contribute to neuronal damage and the lysis of healthy cells.
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Complement proteins are produced in the CNS by astrocytes,

microglia and neurons and levels of these proteins are elevated in

AD, PD and other neurodegenerative diseases. It has been

demonstrated that the C1q component of the complement C1

complex can bind directly to Ab fibrils in the brains of AD

patients, thereby activating the classical complement pathway (108–

111). Notably, complement pathway inducers, including the pro-

inflammatory CRP isoforms pCRP*/mCRP, have also been found in

AD lesions (112). Our research work further elucidated the role of

CRP in AD by demonstrating that Ab plaques can induce the

dissociation of native pCRP into its monomeric form (i.e., mCRP)

via the pCRP* isoform. In work published in 2012, we observed co-

localization of mCRP (using 9C9 antibody) with Ab plaques (using

NAB228 antibody) in AD patients, but no significant difference in

pCRP staining between AD patients and normal controls.

Additionally, co-localization of C1q and mCRP was observed in

AD patients (Figure 3). By 2017 we, and others, had identified a pro-

inflammatory pentameric form of CRP, which we dubbed pCRP*

(20). This pro-inflammatory CRP isoform is also recognized by

antibody 9C9, necessitating a reinterpretation of our 2012 data, i.e.,

that both pCRP* and mCRP could be co-localized with Ab plaques.

These findings suggest that Ab possesses an intrinsic ability to

convert pCRP to pCRP* and/or mCRP, thereby amplifying

neuroinflammation (42, 113–115). The interaction of C1q with Ab
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fibrils is mediated via the C1q globular headgroups (108–110), the

same region of C1q involved in the interaction with pCRP*

(Figures 1g, h). Thus, it is likely that upon binding to Ab fibrils,

pCRP dissociates to pCRP* followed by recruitment of C1q globular

headgroups and the subsequent activation of the C1 complex. This

process would enable a direct interaction of the C1q globular head

with both the surface of the Ab fibril and the CRP residues lining the

inner ring surface of pCRP*. The scenario can be visualized by

replacing the model cell membrane in Figure 1 with an atomic-level

structure of an Ab fibril. It is now possible to investigate the existence

of an Ab fibril:pCRP*:C1q complex using cutting edge cryo-electron

microscopy and cryo-electron tomography techniques. Furthermore,

Gan et al. demonstrated that mCRP can induce p-tau and Ab42
expression in primary neurons in an apolipoprotein e (APOE)

genotype-dependent manner (116). Their study revealed that

mCRP differentially affects APP and b-site APP cleaving enzyme-1

expression levels and Ab production in neurons expressing different

APOE isoforms, highlighting the complex interplay between CRP,

APOE genotype, and AD pathology. Taken together, these findings

strongly implicate CRP as a key mediator of neuroinflammation and

a potential therapeutic target in AD (116).

Not only do pCRP-Ab interactions amplify neuroinflammation,

pCRP has emerged as a potential key modulator of Ab aggregation

(115). For example, Ozawa et al. deciphered the anti-amyloidogenic
FIGURE 3

Identification of pCRP* and/or mCRP as the predominant CRP isoforms in human brain tissue from AD patients and co-localization with C1q and Ab
plaques. (A) Bright field and fluorescence microscopy images demonstrating co-localization of pCRP* and/or mCRP with Ab plaques in AD brain
tissue. pCRP* and/or mCRP (red) and Ab plaques (green) signals overlapped in AD tissue, indicating co-localization. (B) Co-localization of pCRP*
and/or mCRP with C1q in AD brain tissue. pCRP* and/or mCRP (red) and C1q (green) signals overlapped in AD tissue, indicating co-localization.
Healthy control tissue showed minimal staining for pCRP* and/or mCRP and C1q; reproduced from Strang et al. with permission (83).
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property of pCRP as being attributable to pCRP directly inhibiting

aggregation of Ab(1-40) (113). Whereas Ngwa et al. showed that

Ab(1-42) aggregation was unaltered in the presence of native pCRP

but inhibited when in the presence of a mutant pCRP. Mutation in

the PCh-binding site on the B-face of pCRP resulted in significant

inhibition of Ab(1-42) aggregation (114). However, these studies

did not consider the formation of pCRP* and/or mCRP while

incubating Ab-pCRP together, and these CRP isoforms could be the

anti-amyloidogenic agent(s) rather than native pCRP.
4.2 CRP and Parkinson’s disease

Parkinson’s disease (PD), a common neurodegenerative

disorder, is characterized by motor symptoms including rigidity,

bradykinesia, postural instability, tremor, and gait abnormalities

(117). Neuropathologically, PD is defined by a significant reduction

in dopamine levels within the substantia nigra pars compacta,

resulting from the selective degeneration of dopaminergic

neurons, and the presence of intraneuronal inclusions known as

Lewy bodies and Lewy neurites (118). These inclusions are

primarily composed of aggregated a-syn, which disrupts

lysosomal and mitochondrial function (119). Both wild-type and

mutant a-syn are prone to aggregate; however, the mutant forms

exhibit a higher propensity for oligomer and fibril formation,

indicating a central role for a-syn dysfunction in familial PD.

The presence of pathological a-syn oligomers and fibrils at

synapses suggests that early synaptic dysfunction is a key

initiating event in PD pathogenesis (120, 121). While a-syn
aggregates are predominantly intracellular, oligomers can also be

found in cerebrospinal fluid and plasma, potentially seeding the

fibrillation process in neighboring neurons. Lewy body formation

represents a later stage, wherein a-syn oligomers coalesce into pale

bodies within the neuronal cytoplasm (122). This seeding process

induces the formation of stable fibrils from smaller a-syn
aggregates, ultimately forming classic Lewy bodies. Although

Lewy bodies contribute to neuronal dysfunction by occupying

cytoplasmic space, evidence suggests that a-syn oligomers, rather

than fibrils, may be the primary drivers of cellular homeostasis

disruption in PD (123).

The mechanisms underlying immune activation in PD remain

complex. a-syn aggregates trigger innate immune responses by

interacting with Toll-like receptors (TLRs) on peripheral monocytes

and microglia, leading to T-cell infiltration into the brain and

subsequent adaptive T-cell responses (124). In PD, CD4+ and

CD8+ T-cells are enriched in the brain parenchyma, correlating

with neuronal damage. Mitochondrial dysfunction, a hallmark of

PD, can also initiate immune activation. Major histocompatibility

complex (MHC) class I, a mitochondrial antigen, can bind to CD8+

T-cells and upregulate cytokine expression (125). a-syn-mediated

T-cell responses are linked to human leukocyte antigen (HLA)

alleles, with a-syn aggregates interacting with HLA variants,

suggesting a genetic basis for HLA association with PD risk (126,

127). Upon T-cell receptor (TCR) binding to MHC-presented

antigen, CD4+ T-cells release effector cytokines, stimulating B-
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cells and CD8+ T-cells, which in turn secrete pro-inflammatory

cytokines such as interferon-g, IL-2, and TNFa (128). These

cytokines can upregulate CRP expression, potentially exacerbating

neuroinflammation and contributing to neurodegeneration.

Consistent with this, meta-analyses have shown elevated CRP

levels in both cerebrospinal fluid and peripheral blood of PD

patients compared to healthy controls (16). Studies have further

elucidated the association between CRP and PD pathology.

Moghaddam et al. demonstrated that CRP concentrations in

cerebrospinal fluid correlate with both motor and non-motor

symptoms, suggesting a role for neuroinflammation in the onset

as well as progression of PD (12). Choi et al. found an inverse

correlation between serum CRP levels and cognitive function, as

assessed by Mini-Mental State Examination (MMSE) scores,

indicating a potential link between increased CRP and cognitive

decline in PD (129). Furthermore, baseline CRP levels have been

associated with increased mortality risk in PD, independent of

cognitive function, disease severity, and duration, highlighting the

potential involvement of neuroinflammation in neurodegenerative

pathways (130). Similarly, Sawada et al. reported a logarithmic-

linear association between baseline CRP levels and mortality risk,

with a shorter mean survival time observed in PD patients with

higher CRP levels (98). Additionally, studies have shown that

baseline CRP levels correlate with motor deterioration and

prognosis, independent of other clinical factors (131). These

findings suggest that subclinical systemic inflammation, as

reflected by elevated CRP, may contribute to and exacerbate

neurodegeneration in PD.
4.3 CRP and amyotrophic lateral sclerosis

Amyotrophic lateral sclerosis (ALS) is a devastating

neurodegenerative disease characterized by the progressive

degeneration of both upper and lower motor neurons, originating

in the brainstem nuclei, spinal cord ventral roots, and motor cortex.

The exact cause of ALS has not been fully elucidated, however the

accumulation of aggregates of misfolded proteins such as mutant

superoxide dismutase 1, fused in sarcoma, ubiquilin 2, TAR DNA-

binding protein 43, and peptides derived from intronic repeats of

the C9ORF72 gene are key pathological hallmarks (132–134). These

protein aggregates disrupt cellular homeostasis, leading to

mitochondrial dysfunction, characterized by distorted cristae and

membranes in spinal motor neurons, and impaired calcium

buffering capacity (135). Additionally, increased ROS production

and altered adenosine triphosphate (ATP) metabolism contribute

to cellular stress and apoptosis. Neuroinflammation is recognized as

a critical component of ALS pathology. Microglial activation is

evident in early stages, and as the disease progresses, damaged

motor neurons release “danger signals” that polarize microglia into

a pro-inflammatory M1 phenotype, characterized by increased

secretion of cytokines such as IL-1b, IL-6, and TNFa. This

inflammatory milieu likely contributes to the elevated CRP levels

observed in ALS (136). The severity of ALS is commonly assessed

using the ALS Functional Rating Scale-Revised (ALSFRS-R).
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Interestingly, several studies have reported a strong correlation

between CRP levels and ALSFRS-R scores, suggesting a link

between inflammation and disease progression, while other

studies have yielded conflicting results. For instance, Keizman

et al. found a strong association between high CRP levels and

ALSFRS-R scores, indicating that CRP may be directly proportional

to disease progression (137). Similarly, Ryberg et al. (2010) observed

significantly elevated CRP levels in the cerebrospinal fluid of ALS

patients compared to controls (138). However, Beers et al. reported

inconsistent findings across two cohorts: in one cohort, higher CRP

levels were associated with rapidly progressing ALS, while in the

other, elevated CRP was observed in both fast and slow progressing

ALS (139). Furthermore, another study found elevated CRP levels

specifically in the cerebrospinal fluid and plasma of ALS patients

with C9ORF72 expansions, but not in the overall ALS group,

suggesting potential differences in peripheral and central

inflammatory regulation (140). To further investigate the

relationship between CRP and ALS risk, a population-based study

involving 289 ALS patients (65.7 ± 10.5 years of age) and 506

controls was conducted. ALS patients were categorized by smoking

prevalence and body mass index. Although a mutually adjusted

model showed no statistically significant association of ALS with

CRP, a higher risk of ALS for the top quartile of CRP was observed

when the model was adjusted for body mass index. These findings

highlight the complex relationship between CRP and ALS,

warranting further investigation to fully elucidate its role in

disease pathogenesis and progression (141).
4.4 CRP and Huntington’s disease

Huntington’s disease (HD) is an autosomal dominant

neurodegenerative disorder caused by CAG repeat expansions in

exon-1 of the Huntingtin (HTT) gene, resulting in an elongated

polyglutamine (polyQ) chain within the Huntingtin (Htt) protein.

The mutant Htt (mHtt) protein accumulates predominately in the

basal ganglia, cerebellum, and striatum, leading to motor control

dysfunction (142). Unlike AD and PD, the genetic etiology of HD is

well-established, with mHtt containing polyQ repeats exceeding 35

residues playing a central role in its pathogenesis (143). However,

the precise mechanisms underlying neuronal death and

neuroinflammation remain incompletely understood. Normal Htt

plays a vital role in cellular homeostasis, interacting with cytosolic

proteins and regulating apoptosis pathways (144). For instance, in

the striatum, normal Htt protects cells from apoptotic stimuli,

including Bcl-2 homologs (145). Additionally, Htt participates in

other crucial neuronal processes, such as exocytosis, endocytosis,

and synaptic vesicle trafficking (146, 147). The vulnerability to mHtt

toxicity is not uniform across neuronal populations, with specific

neuronal groups exhibiting heightened susceptibility. For example,

the medial and dorsal striatum show greater degeneration

compared to the lateral and ventral striatum. Recent studies have

explored the role of mHtt in triggering immune responses and
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contributing to neurodegeneration. mHtt appears to activate

microglia and astrocytes, inducing the secretion of pro-

inflammatory cytokines such as IL-6 (148). Moreover, mHtt

positively regulates the Nuclear factor-kB signaling pathway,

leading to the release of IL-8 and IL-6 (149). Consistent with

these findings, HD patients exhibit a distinct inflammatory

profile, with increased levels of IL-4, IL-10, TNFa, and CRP

observed as the disease progresses (150). However, meta-analyses

examining the correlation between CRP levels and HD have yielded

inconsistent results. For example, Sánchez-López et al. reported

elevated CRP levels in later-stage HD, but lower levels in early-stage

subjects compared to controls (151). Conversely, Wang and

colleagues found significantly elevated CRP levels in premanifest

HD compared to both healthy and familial controls, but no

significant elevation in manifest HD (152). These conflicting

findings suggest that the relationship between CRP levels and HD

is complex and potentially influenced by disease stage. The observed

increases in CRP could reflect an acute-phase response. A

comprehensive, systematic study encompassing all stages of HD is

crucial to elucidate the precise role of CRP as a biomarker in

disease progression.
5 CRP and other amyloidosis diseases

Cardiac amyloidosis (CA), another proteinopathy of significant

clinical interest, involves the extracellular deposition of insoluble

amyloid fibrils within the myocardium, leading to infiltrative

cardiomyopathy (153). Transthyretin (TTR), a plasma protein

primarily synthesized in the liver and responsible for transporting

thyroxine and retinol-binding protein, can misfold and form fibrils,

resulting in transthyretin amyloid cardiomyopathy (ATTR-CA)

(153). ATTR-CA is classified into two subtypes: hereditary ATTR

amyloidosis (ATTR-h), characterized by mutations in the TTR gene

and a broad range of clinical manifestations, and wild-type ATTR

amyloidosis (ATTR-wt) , where native TTR misfolds ,

predominantly affecting older individuals and causing heart

failure (154, 155). Pathologically, these subtypes overlap, with the

primary distinction being the presence of mutant versus wild-type

TTR gene sequences. Fibrils in ATTR-CA can be further

categorized based on the TTR length: ATTR type-A, containing a

mixture of full-length and truncated TTR, and ATTR type-B,

containing only full-length TTR (156). While comprehensive

meta-analyses on the association between CRP levels and ATTR-

CA are limited, studies have demonstrated a correlation. For

instance, research investigating the link between cardiac global

longitudinal strain and inflammatory markers in ATTR patients

revealed a significant association between CRP and ATTR (157).

Notably, CRP levels correlated strongly with the E/e’ ratio, a

measure of diastolic function (r = 0.58, p < 0.05), and IL-6 levels

correlated with right ventricular global longitudinal strain (r =

0.881, p < 0.05). Elevated IL-6 can upregulate CRP expression,

potentially leading to the formation of pro-inflammatory CRP
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isoforms (mCRP and pCRP*), which may further impair cardiac

function. A large study involving 2,566 ATTR patients found that

27% exhibited elevated CRP levels; however, while multiple

inflammatory markers were associated with mortality, CRP was

not identified as the sole determinant of disease severity (158).

These findings suggest that while elevated CRP is common in

ATTR-CA, its precise prognostic role requires further

investigation. In addition to ATTR-CA, immunoglobulin light-

chain (AL) amyloidosis also affects the myocardium, with 70–80%

of systemic AL amyloidosis cases involving cardiac involvement

(159–161). Unlike ATTR-CA, AL cardiomyopathy carries a poor

prognosis, with median survival less than one year in patients with

heart failure (162). AL amyloidosis is characterized by the

proliferation of monoclonal immunoglobulin light chains from

indolent B-cell clones, leading to amyloid accumulation in various

organs, including the heart. Although AL amyloidosis is not

traditionally considered an inflammatory disease l ike

neurodegenerative amyloidosis, which involves immune cell

a c t i va t ion and cy tok ine re l ea se , e l eva t ed l eve l s o f

metalloproteinases (involved in extracellular matrix homeostasis)

suggest an inflammatory milieu within the AL heart. A recent study

involving 165 AL cardiomyopathy patients with increased relative

myocardial wall thickness possessing higher CRP levels were

associated with a higher risk of mortality (163). While these

findings indicate that CRP may be a potential prognostic marker

in AL cardiomyopathy, further validation in larger cohorts is

needed to elucidate the mechanistic insights into a potential CRP-

driven inflammatory response in this condition.
6 Conclusion and perspectives

To date, the exact mechanism of CRP dissociation on amyloid

plaques remains unclear. While pCRP* and/or mCRP was found

localized to Ab plaques in AD brain tissue, the plaques have the

capacity to dissociate pCRP in vitro (42), suggesting a reciprocal

influence that may contribute to localized inflammation near

plaques due to CRP activation (42). Consistent with CRP’s pro-

inflammatory role, studies indicate that pCRP* and/or mCRP, not

pCRP, co-localizes with Ab plaques and initiates C1q-dependent

cortical inflammation in AD (42). Despite recent studies suggesting

a clinically relevant novel mechanism of CRP activation (30), the

PCh-dependent interaction with activated cell membranes is still

considered the primary mediator of pCRP dissociation (164) and

likely plays a substantial role in pCRP* and/or mCRP formation in

AD. Intriguingly, therapeutic targeting of CRP dissociation by

blocking PCh interaction with a low molecular weight inhibitor

has shown promise even for chronic conditions (22). While CRP

lowering strategies like CRP apheresis are effective in acute settings

(165), a low molecular weight inhibitor of CRP dissociation offers a

potentially more convenient administration route for chronic

conditions like amyloidosis (165). However, there is also evidence

that the binding face (i.e., B‐face, Figure 1) of pCRP interacts with

misfolded or aggregated proteins, i.e., proteins whose secondary
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structure is predominately b-sheets, by a mechanism independent

of the PCh binding pocket (166, 167). Therefore, the exact

pathophysiological role of CRP in amyloidosis and potential

mechanisms of CRP activation remains an area of significant

research interest. Nevertheless, the significant role of CRP in

amyloidosis and especially AD is undoubted. Consistently,

elevated CRP levels have been reported in AD patients (168) and

linked to accelerated disease progression (169).

Despite the growing body of research highlighting the

involvement of CRP in amyloid-based pathologies, several critical

questions remain unanswered. First, the temporal relationship

between protein aggregate formation and inflammation requires

further elucidation. It remains unclear whether the accumulation of

protein aggregates initiate inflammatory cascades or vice versa, i.e.,

pre-existing inflammation drives the formation and subsequent

aggregation of misfolded proteins. Second, the precise nature of

the interaction between CRP and protein aggregates warrants

further investigation, since it is ambiguous whether CRP

possesses a specific affinity for these aggregates, and if so, what is

the precise nature of CRP-amyloid binding. Third, the mechanisms

underlying CRP’s conformational changes in the presence of

protein aggregates remain unclear; more precisely, how does the

conformational transition of CRP from its pentameric to

monomeric form occur in this context. And finally, given the

inherent instability of mCRP and its propensity to aggregate (30),

the potential for mCRP to act as a seeding agent in amyloidosis need

to be addressed. Does mCRP exhibit seeding effects, contributing to

the propagation of amyloid fibrils, and if so, is the inhibition of

mCRP formation a relevant new target in proteinopathy therapy?

Addressing these fundamental questions will be crucial for

advancing our understanding of CRP’s role in protein misfolding

diseases and ultimately for the development of targeted

therapeutic interventions.
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