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Integrated transcriptomics and
machine learning reveal REN
as a dual regulator of tumor
stemness and NK cell evasion
in Wilms tumor progression
Qingfei Cao1†, Junyi Li1*†, Yunfei Zou2, Changwen Xu1,
Huihui Tang1 and Meixue Chen3*

1Department of Urology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou,
Liaoning, China, 2Department of Cardiology, The First Affiliated Hospital of Jinzhou Medical
University, Jinzhou, Liaoning, China, 3Department of Pediatric, The First Affiliated Hospital of Jinzhou
Medical University, Jinzhou, Liaoning, China
Introduction: Wilms tumor (WT) is the most common pediatric kidney cancer,

which presents significant therapeutic challenges, particularly in high-risk cases,

due to chemotherapy resistance and immunosuppressive tumor

microenvironments (TMEs). Tumor stemness and immune evasion mechanisms

are implicated in poor clinical outcomes, yet the molecular drivers underpinning

these processes remain inadequately understood.

Methods: We employed an integrative approach combining single-cell RNA

sequencing (scRNA-seq), spatial transcriptomics, bulk RNA-seq, and advanced

machine learning techniques to uncover molecular regulators of tumor behavior

in WT. A novel Cancer Stemness Prognostic Index (CSPI) was developed using

machine learning algorithms to stratify WT patients by risk and histological

subtype. Additionally, molecular docking simulations and in vitro functional

assays were performed to validate the role of key regulators in tumor stemness

and immune evasion, as well as to explore potential therapeutic strategies

targeting these molecular drivers.

Results: Renin gene (REN) emerged as a central regulator of tumor stemness and

immune evasion in WT. High-CSPI tumors exhibited enhanced tumor stemness

phenotypes, metabolic reprogramming (ROS/oxidative phosphorylation), and

suppressed immune activity. Spatial transcriptomics revealed distinct

histological subtype-specific localization of stemness-related gene expression

and physical proximity between REN-expressing tumor cells and natural killer

(NK) cells. At spatial and single-cell resolution, REN-expressing tumor cells

promoted NK cell exhaustion via PTN-NCL and COL4A1-CD44 ligand-

receptor interactions, while showing limited impact on T cell dysfunction.

Molecular docking identified estrogen-based compounds as potential REN

inhibitors. Functional assays validated REN knockdown as significantly

impairing tumor proliferation, migration, and survival in vitro.

Discussion: This study establishes REN as a pivotal driver of tumor stemness and

immune evasion in WT, playing a dual role in promoting tumor aggressiveness

and suppressing NK-mediated immune surveillance. Targeting REN offers
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promising therapeutic opportunities for high-risk WT cases by simultaneously

inhibiting tumor progression and restoring immune function. These findings

emphasize REN’s potential as a transformative target for precision oncology

and underscore the value of integrative transcriptomics in advancing

personalized cancer treatment strategies.
KEYWORDS

Wilms tumor, tumor stemness, natural killer cell evasion, renin gene, tumor
microenvironment, cancer stemness prognostic index
1 Introduction

Wilms tumor (WT), the most common pediatric renal malignancy

(1). Globally, malignant renal tumors account for approximately 5% of

all cancers occurring before the age of 15. Each year, around 14,000

children (aged 0–14 years) are diagnosed with renal tumors worldwide,

with regional variations in mortality. The incidence of WT varies

between regions and ethnicities (2, 3). Despite advancements in

multimodal therapies, including nephrectomy, radiation, and

anthracycline-based chemotherapy, 15–20% of patients develop

relapsed or refractory disease (4). These cases are often associated

with chemotherapy resistance (5) and long-term cardiopulmonary

toxicity (6). Current risk stratification protocols primarily rely on

histopathological features and staging; however, they fail to account

for the molecular heterogeneity within tumors (7), leading to

suboptimal outcomes for high-risk patient subsets. Interestingly,

nephrogenic rests—clusters of embryonic renal precursor cells—are

detected as premalignant lesions in 30–40% of WT cases (8). This

observation highlights the urgent need for molecular markers capable

of predicting malignant transformation, as well as improved

therapeutic strategies aimed at precision interventions.

The cancer stem cell (CSC) paradigm has significantly reshaped

our understanding of tumor biology, demonstrating that a specialized

subset of cells with self-renewal and differentiation capacities serves as

the driving force behind tumor initiation, chemoresistance, and

metastasis across diverse cancer types (9–11). Stemness indices

derived from genome-wide multi-omics studies reveal that tumor

stemness correlates with advanced disease states and therapeutic

failure across multiple malignancies (12, 13). In WT, nephrogenic

progenitor cells co-expressing SIX2 and CITED1 have been identified

as tumor-initiating cells, capable of recapitulating tumorigenesis in

xenotransplantation models (11). Spatial transcriptomics analyses

suggest that these progenitor populations dynamically regulate self-

renewal versus differentiation through integrin b1/b4 signaling

pathways (11), revealing deeply conserved mechanisms underlying

renal development and tumor progression.

Emerging evidence underscores tumor stemness as a pivotal

regulator of the tumor immunosuppressive microenvironment
02
(TIME). CSCs employ diverse mechanisms to modulate immune

evasion, including secretion of cytokines that recruit myeloid-

derived suppressor cells (MDSCs) and regulatory T cells (Tregs)

(14), upregulation of immune checkpoint molecules such as PD-L1

and CTLA-4 (15), and suppression of natural killer (NK) cell

proliferation and cytotoxic activity through membrane-bound

TGF-b and PGE2 signaling (16, 17). Additionally, CSCs directly

downregulate the expression of activating receptors on NK cells,

including NKp44, NKp30, NKG2D, and DNAM-1, while

promoting a phenotypic shift of NK cells toward the CD56dim

subset. As CD56dim NK cells exhibit diminished degranulation

capacity, this phenotypic shift directly attenuates their cytotoxic

responses against cancer cells (14, 16, 17). Collectively, these

mechanisms establish an immune-privileged niche that supports

CSC survival within the TIME.

Although significant progress has been made in mapping CSC-

mediated immune dynamics in adult cancers (18), the pediatric-

specific implications regarding WT remain poorly defined. A

critical knowledge gap persists in elucidating how WT-specific

CSC regulators orchestrate immune evasion programs (1, 11).

While SIX2+CITED1+ WT progenitor cells have been

demonstrated to drive tumor initiation (11), the molecular

triggers enabling their survival and immune evasion within the

immunocompetent microenvironment of WT remain elusive.

Understanding these regulatory mechanism is essential for

advancing therapeutic strategies that can disrupt CSC-mediated

immune evasion and reduce tumor progression.

In this study, a comprehensive multi-omics approach was

employed, integrating single-cell RNA sequencing (scRNA-seq),

spatial transcriptomics, and bulk RNA-seq data, alongside advanced

machine learning algorithms, to unravel the complex interactions

between REN-mediated tumor stemness and NK cell immune

evasion in Wilms tumor. Our findings highlight REN as a critical

regulator of CSC maintenance and immune suppression,

positioning it as a promising therapeutic target for the treatment

of high-risk WT. This integrative analysis provides a foundation for

identifying novel intervention strategies that may attenuate tumor

progression and improve clinical outcomes in WT patients.
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2 Materials and methods

2.1 Comprehensive transcriptomics data
acquisition and preprocessing

To enable an in-depth and multifaceted analysis of Wilms

tumor (WT), this study incorporates a range of high-dimensional

omics datasets, including bulk RNA sequencing (RNA-seq), single-

cell RNA sequencing (scRNA-seq), and spatial transcriptomics

data. The RNA-seq data and associated clinical information for

the WT cohort were sourced from the UCSC Xena database

(https://xena.ucsc.edu/) using the GDC TARGET-WT dataset.

For downstream analyses, raw gene expression data were

normalized to transcripts per million (TPM) values, and patients

with an overall survival time shorter than 30 days were excluded to

ensure robust analysis. Additionally, the GSE11024, GSE66045, and

GSE73209 datasets were obtained from the GEO (https://

www.ncbi.nlm.nih.gov/geo/) database and utilized for validating

key genes at the bulk transcriptomic level.

A high-quality single-cell RNA-seq dataset from a pediatric WT

patient (aged 84 months) was retrieved under the GEO accession

number GSM53443671 (11). Raw sequencing data were aligned and

quantified using STAR software with the GRCh38 reference

genome. Additional single-cell RNA-seq datasets from three WT

patients (aged 19, 27, and 57 months) were obtained from Young

et al.’s study (19), forming a comprehensive set for cellular

heterogeneity assessment.

To further evaluate the spatial architecture of WT, spatial

transcriptomic data were accessed through the ScPCA Portal

(https://scpca.alexslemonade.org/). These data included 10X

Visium spatial transcriptomic data representing favorable and

anaplastic histological classifications, enabling spatially resolved

gene expression analyses critical for understanding tumor

microenvironment heterogeneity. To elucidate candidate gene

dependencies and effects within this, the cancer cell lines data was

obtained from the Dependency Map (DepMap, https://depmap.org/

portal/) portal.
2.2 Quantification and identification of
tumor stemness signatures in Wilms tumor

Tumor stemness indices were quantified using the one-class

logistic regression (OCLR) machine-learning algorithm (12), which

has been widely adopted for stemness-related studies. The mRNA

stemness index (mRNAsi) for each WT sample was computed by

integrating gene expression profiles with the stemness signatures

weighted by the model coefficients. This approach provided a

quantitative measure of stemness across samples within the

TARGET-WT cohort. To identify WT-specific tumor stemness-

associated genes, differential expression analysis was conducted by

stratifying samples based on the median mRNAsi value. Key genes

were selected as WT-associated stemness markers based on the

criteria of log fold change (logFC) > 0.5 and adjusted p-value < 0.05.
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2.3 Tumor microenvironment evaluation in
relation to stemness indices

To comprehensively characterize the tumor microenvironment

(TME) in WT, the “IOBR” R package was utilized, implementing

eight distinct immune infiltration algorithms. This multi-

dimensional approach enabled a robust evaluation of immune cell

populations and their activity within the TME. Spearman

correlation analysis was performed to investigate the relationships

between the mRNAsi and various immune cell populations, as well

as key TME indicators. To further explore the functional

implications of tumor stemness in modulating the TME, tumor

signature scores and TME scores were calculated and compared

across subgroups stratified by mRNAsi levels.
2.4 Development of cancer stemness
prognostic index using integrated machine
learning algorithms

To systematically develop a robust Cancer Stemness Prognostic

Index (CSPI) for WT, we utilized data from the TARGET-WT

cohort, employing a five-fold cross-validation approach. Patients

were randomly divided into training and testing datasets in a 6:4

ratio, ensuring balanced sampling for model construction and

validation. The training cohort was utilized for feature selection,

while the testing cohort and overall cohort were used for validation.

Robust prognostic tumor stemness genes were identified using the

LASSO (Least Absolute Shrinkage and Selection Operator) algorithm

combined with the Bootstrap method, incorporating 10-fold cross-

validation and 1,000 sampling replacements. Genes recurring more

than 100 times across iterations were designated as candidate genes

for CSPI construction (20). To develop the prognostic model, an

ensemble of 101 integrated machine learning algorithms was

implemented in the training cohort. These algorithms included

Random Survival Forest (RSF), Elastic Network (Enet), LASSO

regression, Ridge regression, stepwise Cox regression, CoxBoost

regression, partial least squares regression for Cox (plsRcox),

Supervised Principal Components (SuperPC), generalized boosted

regression modeling (GBM), and Survival Support Vector Machine

(survival-SVM), all within a leave-one-out cross-validation (LOOCV)

framework (21). The optimal model was selected based on the highest

average concordance index (C-index), a metric reflecting the

predictive accuracy of survival outcomes. To objectively assess its

prognostic predictive performance, 1-, 3-, and 5-year calibration

curves, time-dependent receiver operating characteristic (ROC)

analyses, and Kaplan-Meier (KM) survival analyses were

conducted. The optimal cutoff value for stratifying risk groups was

determined algorithmically within the training cohort to minimize

subjective bias. This cutoff was subsequently applied to the testing

cohort and overall dataset to ensure consistent risk group

classification. Finally, univariate and multivariate Cox regression

analyses were performed to evaluate the prognostic robustness and

efficiency of the CSPI in conjunction with various clinical variables.
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2.5 Pathway enrichment analysis

To explore pathway-level distinctions between high- and low-

CSPI groups, tumor hallmark pathway activity was assessed using

the “GSVA” R package. Patients were grouped based on the median

CSPI score, allowing systematic comparisons of functional pathway

activity. Subsequently, differential pathway activity between the

groups was evaluated using the “limma” R package, with hallmark

pathways exhibiting an absolute t-value > 1 defined as significantly

enriched or differentiated pathways. Further KEGG pathway

enrichment analysis was performed using the “clusterProfiler” R

package to identify potential signaling pathways enriched across

different functional categories. This analysis was based on

differentially expressed genes (DEGs) identified between the low-

and high-CSPI groups.
2.6 Identification of prognostic tumor
stemness genes

To pinpoint critical genes involved in tumor stemness within

WT, a robust rank aggregation (RRA) algorithm was employed to

perform a meta-analysis of DEGs across three independent

transcriptomic datasets: GSE11024, GSE66045, and GSE73209.

This method reduces dataset-specific biases and enhances the

reliability of gene prioritization. DEGs were selected based on

stringent criteria, including an absolute logFC > 0.5 and a p-value

< 0.05, ensuring statistical significance and biological relevance.

Following this, an intersection analysis was conducted between

robust DEGs with the genes comprising the CSPI. This intersection

highlighted the pivotal prognostic tumor stemness genes that

potentially play essential roles in the tumorigenic and survival

mechanisms of WT.
2.7 Comprehensive single-cell analysis of
the tumor microenvironment in Wilms
tumor

To elucidate the TME and cellular heterogeneity in WT,

scRNA-seq data from four WT patients were integrated for

downstream analysis. A rigorous approach to minimize batch

effects was employed, leveraging the Single-cell Integration

Benchmarking (scIB) framework to balance the removal of

technical artifacts while preserving biological signals. Nine widely-

used methods for batch effect correction—scANVI, CellHint,

FastMNN, BBKNN, Seurat v4 CCA, Combat, Harmony, scVI,

and Scanorama—were systematically assessed. The method that

achieved the highest overall scIB score was selected for subsequent

analyses, reflecting its optimal performance in maintaining data

integrity across samples and sequencing platforms. Cell annotation

was conducted based on established marker genes derived from

previous studies (19), ensuring accurate identification of cell types.

Tissue-specific cellular preferences were evaluated using the

observed/expected (O/E) ratio, providing insights into differential
Frontiers in Immunology 04
cell-type enrichment across tissues. To infer malignant potential,

the “infercnvpy” Python package was implemented, using

potentially malignant cell types from normal tissue as reference

cells. Cellular clonality and malignancy were assessed using the

“leiden” clustering algorithm, where clusters were stratified based

on copy number variation (CNV) scores. Clusters with elevated

CNV scores were classified as tumor cells, enabling a robust

delineation of malignant populations within the TME. The

“CellChat” R package was employed to systematically infer

intercellular communication networks at the single-cell level,

leveraging gene expression profiles to identify ligand-receptor

interactions and deduce signaling pathways involved in cellular

crosstalk (22).
2.8 Spatial transcriptomics analysis of the
tumor microenvironment in Wilms tumor

To gain deeper insights into the spatial organization of the TME

in WT, spatial transcriptomics (ST) data from tissues representing

favorable and anaplastic histological subtypes were analyzed.

Integrating spatial information with single-cell transcriptomic

profiles, the “Cell2location” Python tool was utilized to

deconvolute cell types and quantify their proportions across

spatial spots. This approach leverages a deep learning framework

to predict cell-type distribution based on scRNA-seq expression

profiles and annotations, while the non-negative matrix

factorization (NMF) algorithm was applied to identify patterns of

cellular co-localization at the spatial level, highlighting spatial

interactions between distinct cell populations (23). To further

explore intercellular relationships within each spatial spot, the

“MistyR” R package was employed. Using a machine learning

model, this tool facilitates the prediction of cellular proximity and

spatial dependencies by modeling interactions among neighboring

cell types within localized regions (24). This spatial analysis

provided a detailed characterization of histological differences and

cellular spatial dynamics, offering critical insights into the structural

organization and functional interplay within the WT TME.
2.9 Molecular docking analysis

Molecular docking analysis was conducted to identify potential

interactions between REN and candidate ligands. The Comparative

Toxicogenomics Database (CTD; https://ctdbase.org/) under the

“Kidney Neoplasms” category was used to explore potential drugs

targeting REN and their effects on REN mRNA and protein

expression. The protein structure of REN was obtained from the

Protein Data Bank (PDB; https://www.rcsb.org/), while the

chemical structures of candidate drugs were retrieved from

PubChem database (https://pubchem.ncbi.nlm.nih.gov/). Docking

simulations were performed using AutoDock Vina v1.2.2 to

calculate binding affinity and molecular interaction patterns

between ligands and REN. Docking results were considered

significant if the binding energy was less than -5 kcal/mol and at
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least one hydrogen bond was formed between the ligand and the

protein. This approach facilitated the identification of drugs with

the potential to modulate REN function as a therapeutic target.
2.10 Cell culture and siRNA transfection

To investigate the functional role of REN in Wilms tumor cells,

two cell lines were utilized: human embryonic kidney cells (293T)

and Wilms tumor cells (WiT49). Both cell lines were obtained from

the Cell Bank of the Chinese Academy of Sciences. The cells were

maintained in Dulbecco’s Modified Eagle Medium (DMEM;

Gibco), supplemented with 10% fetal bovine serum (FBS; Gibco)

and 1% penicillin-streptomycin, under conditions of 37°C, 5% CO2,

and high humidity. Regular sub-culturing was performed upon

reaching 80% confluence to ensure optimal growth and viability

throughout the experiments. To knock down REN expression in

WiT49 cells, small interfering RNAs (siRNAs) targeting REN

mRNA were designed and synthesized by Beijing Tsingke Biotech

Co., Ltd., along with complementary primer sequences for

knockdown verification. Lipofectamine™ 3000 (Invitrogen) was

utilized for siRNA transfection following the manufacturer’s

instructions. Cells were seeded into 6-well plates at approximately

70% confluence, after which siRNA and transfection reagent

complexes were prepared using Opti-MEM™ Reduced Serum

Medium (Gibco) and subsequently applied to the cells. After

transfection, cells were incubated for 48–72 hours to achieve

effective silencing of REN. The success of REN knockdown was

validated using reverse transcription quantitative PCR (RT-qPCR),

ensuring robust and reliable gene silencing for downstream

functional assays. Detailed siRNA and primer sequences are

provided in Supplementary Table 1. Together, these experimental

approaches established the foundation for subsequent analyses of

REN’s role in Wilms tumor progression.
2.11 Cell functional assays

To evaluate the impact of REN silencing on cell behavior,

several functional assays were conducted. Cell proliferation was

measured using the Cell Counting Kit-8 (CCK-8) and EdU

incorporation assays: WiT49 cells transfected with siRNA

targeting REN or scrambled control siRNA were assessed at 24,

48, and 72 hours post-transfection, with EdU incorporation

quantified via fluorescence microscopy. Migration ability was

determined using a wound healing assay, where monolayer

scratches were monitored at 0, 12, and 24 hours for closure rates.

Transwell assays were used to assess migration and invasion

capabilities; cells seeded in serum-free DMEM migrated through

transwell inserts toward 10% FBS in the lower chamber, with

Matrigel pre-coating for invasion assays. Apoptotic populations

were quantified using flow cytometry, where Annexin V-FITC/PI

staining highlighted early and late apoptotic cells. Finally, cell cycle

distribution was analyzed by staining transfected cells with

propidium iodide (PI) after ethanol fixation, followed by flow
Frontiers in Immunology 05
cytometric quantification of cells in G1, S, and G2/M phases.

Each assay provided detailed insights into the functional roles of

REN in Wilms tumor cell physiology.
2.12 Statistical analysis

The processing and statistical analysis of transcriptome data

were performed using R software (Version 4.3.2). Log-rank tests

and Kaplan–Meier survival analyses were employed to assess the

prognostic impact of genes within the TARGET-WT cohort.

Experimental data were processed using GraphPad Prism

(Version 9.4.1), and group comparisons were conducted using

appropriate statistical methods, including t-tests, one-way analysis

of variance. All experiments were conducted in triplicate or more. A

p-value < 0.05 was deemed statistically significant in this study.
3 Results

3.1 Elevated tumor stemness drives Wilms
tumor progression

To investigate the role of tumor stemness inWilms tumor (WT)

progression, various stemness metrics, including mDNAsi (DNA

methylation-based stemness), mRNAsi (mRNA expression-based

stemness index), DMPsi (differentially methylated probes-based

stemness index), ENHsi (enhancer-based stemness index), EREG

mDNAsi, and EREG mRNAsi, were calculated for each patient in

the TARGET-WT cohort (Supplementary Figure S1A). The

correlation analysis showed that mRNAsi unrelated with other

stemness metrics as an independent regulator in WT

(Supplementary Figure S1B). Comparative analysis demonstrated

that mRNAsi was significantly elevated in diffuse anaplastic WT

(DAWT) compared to favorable histology WT (FHWT),

independent of patient age, tumor stage, or tumor event

(Figures 1A–D). Survival analysis further revealed a strong

association between elevated mRNAsi and reduced overall

survival (OS), indicating that higher tumor stemness is closely

linked to poor clinical outcomes (Figure 1E). Conversely, other

tumor stemness metrics did not demonstrate a significant

association with patient outcomes (Supplementary Figures S1C–

G). On the other hand, mRNAsi, identified as a key independent

stemness regulator, was subjected to downstream analyses to

elucidate its functional role and mechanistic contributions within

the TME. Correlation analysis underscored the interplay between

mRNAsi and features of the TME. Specifically, mRNAsi showed a

significant positive correlation with tumor purity and suppressor

cell populations, while exhibiting a negative correlation with the

infiltration of most immune cell types within the TME. High

mRNAsi groups demonstrated elevated tumor-specific signature

scores, encompassing key processes such as exosome assembly,

ferroptosis, and m6A methylation, among others (Figure 1G).

Additionally, analysis of TME scores highlighted the influence of

mRNAsi on several oncogenic factors, including excision repair
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mechanisms, CD8+ effector cell abundance, cell cycle regulation

and so on (Figure 1H). These findings collectively emphasize the

pivotal role of tumor stemness in driving WT progression and

shaping TME dynamics, providing valuable insights into potential

therapeutic targets for improving patient outcomes.
3.2 Development of a superior prognostic
index for cancer stemness using integrated
machine learning

To establish an efficient prognostic index for cancer stemness, a

combination of machine learning approaches was employed. Using

a bootstrap-driven Lasso regression algorithm, 19 key prognostic
Frontiers in Immunology 06
genes of tumor stemness were identified. These genes were selected

for their high frequency (>100 occurrences) across 1,000 iterations

in the training cohort (Figure 2A). Subsequently, 101 integrated

machine learning algorithms were applied to construct the Cancer

Stemness Prognostic Index (CSPI), which was validated across the

test and overall cohorts. Among all tested models, the elastic net

(Enet) method [a = 0.2] demonstrated superior predictive

performance, achieving an impressive concordance index (C-

index) of 0.755 (Figure 2B). The reliability and accuracy of CSPI

predictions were supported by calibration curves, which

demonstrated excellent alignment between predicted and

observed outcomes (Figures 2C, D). Receiver operating

characteristic (ROC) analyses further validated the model’s

performance within each cohort. In the training cohort, CSPI
FIGURE 1

Elevated tumor stemness promotes Wilms tumor progression and shapes the tumor microenvironment. (A–D) Comparison of mRNAsi across clinical
and pathological parameters, including age (A), tumor stage (B), histologic classification (C), and tumor event status (D), within the TARGET-WT
cohort. (E) Kaplan-Meier survival analysis demonstrating the association between mRNAsi levels and overall survival. (F) Spearman correlation
analysis between mRNAsi and tumor microenvironment components, including tumor purity, suppressor cell populations, and immune cell
infiltration. (G) Tumor-specific signature scores highlighting molecular processes enriched in high mRNAsi groups, including exosome assembly,
ferroptosis, and m6A methylation. (H) Evaluation of tumor microenvironment scores stratified by mRNAsi, showing alterations in oncogenic
pathways such as excision repair, CD8+ effector cell abundance, and cell cycle regulation. Statistical significance was assessed using appropriate
tests, where *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, and ns denotes not significant.
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FIGURE 2

Development and validation of the cancer stemness prognostic index using integrated machine learning. (A) Frequency distribution of candidate genes
identified through bootstrap-driven Lasso regression across 1,000 iterations. (B) Performance metrics (C-index) of CSPI derived from 101 integrated machine
learning models, highlighting the superior predictive capability of the elastic net (Enet) method [a = 0.2]. (C–E) Calibration curves showing alignment
between predicted probabilities and observed outcomes for 1-, 3-, and 5-year survival predictions, respectively. (F, H, J) Receiver operating characteristic
(ROC) curves evaluating CSPI’s predictive performance in the training cohort (F), test cohort (H), and overall cohort (J). (G, I, K) Kaplan-Meier survival curves
demonstrating significantly worse clinical outcomes in patients with high CSPI scores across all cohorts. (L, M) Distribution and survival status of patients
based on CSPI in the TARGET-WT cohort, stratifying individuals into high- and low-CSPI groups based on median CSPI values. (N) Heatmap of expression
levels for 16 key genes constituting the CSPI across high and low CSPI groups. (O) Correlation analysis between CSPI scores and immune cell profiles.
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achieved area under the curve (AUC) values of 0.702 for 1-year,

0.905 for 3-year, and 0.900 for 5-year survival predictions

(Figure 2F). Comparable results were observed in the test cohort

(AUC: 0.640, 0.701, and 0.701, respectively; Figure 2H) and the

overall cohort (AUC: 0.645, 0.790, and 0.812, respectively;

Figure 2J). Kaplan-Meier survival analyses revealed that patients

with higher CSPI consistently exhibited worse clinical outcomes

across all cohorts (Figures 2G, I, K). Classification of patients in the

TARGET-WT cohort into high- and low-CSPI groups based on

median CSPI values demonstrated a stark contrast in outcomes.

The high CSPI group encompassed the majority of patients with

fatal outcomes (Figures 2L, M). A heatmap illustrating the

expression levels of 16 pivotal genes constituting the CSPI further

emphasized their biological significance (Figure 2N). Correlation

analysis with immune cell profiles revealed that high CSPI scores

were associated with enhanced activation of M1 macrophages,

accompanied by suppressed infiltration and activation of key

immune cells such as CD4+ and CD8+ T cells (Figure 2O). In

addition, correlation analysis indicated that patients in the high-
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CSPI group exhibited elevated tumor stemness (Figure 3A). Gene

Set Variation Analysis (GSVA) showed that individuals with higher

CSPI were characterized by the activation of pathways related to

reactive oxygen species, oxidative phosphorylation, fatty acid

metabolism, and DNA repair, elucidating the metabolic

reprogramming observed in these patients with higher CSPI

(Figure 3B). DEGs between the groups were significantly enriched

in metabolic and oncogenic pathways, including carbon

metabolism, amino acid biosynthesis, hypoxia-inducible factor 1

(HIF-1) signaling, and mitogen-activated protein kinase (MAPK)

signaling pathways (Figure 3C). Further validation of CSPI’s

prognostic robustness was achieved through univariate and

multivariate Cox regression analyses, which identified CSPI as the

sole independent prognostic factor when compared to various

clinical features (Figure 3D). These findings underscore the

robustness of CSPI as a novel predictive biomarker for cancer

stemness-related outcomes and its potential to guide treatment

strategies by l inking stemness features with immune

microenvironment dynamics.
FIGURE 3

Functional characterization of CSPI and identification of core tumor stemness genes. (A) Correlation analysis demonstrating the positive association
between CSPI scores and tumor stemness (mRNAsi), indicating elevated stemness in patients with high CSPI. (B) Gene Set Variation Analysis
highlighting activation of key pathways in high-CSPI patients (C) KEGG pathway enrichment analysis of DEGs between high- and low-CSPI groups.
(D) Univariate and multivariate Cox regression analyses identifying CSPI as an independent prognostic factor, emphasizing its robustness and
predictive capability beyond clinical features. (E) Heatmap displaying the top 10 upregulated and downregulated DEGs between Wilms tumor tissues
and adjacent normal tissues, derived from multi-cohort analysis using the RRA algorithm. (F) Venn diagram illustrating the intersection between RRA-
selected DEGs and CSPI-associated genes, highlighting three core tumor stemness genes (REN, SFRP2, and AQP1).
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3.3 Identification of core tumor stemness
genes

DEGs between Wilms tumor tissues and adjacent normal

tissues were systematically identified using the RRA algorithm

applied to three independent datasets. This approach minimized

dataset-specific biases and ensured a high-level integration of multi-

cohort data. The resultant DEGs were ranked by their significance,

and the top 10 upregulated and downregulated genes were

visualized in a heatmap to highlight expression alterations that

are consistent across datasets (Figure 3E). To further refine these

findings, three pivotal tumor stemness-associated genes—REN,

SFRP2, and AQP1—were selected for downstream analysis. These

genes were prioritized based on their inclusion in the gene set

constituting the CSPI (Figure 3F). This multi-layer filtering process

underscores their biological significance and potential as

therapeutic targets and diagnostic markers in stemness-

driven oncogenesis.
3.4 Landscape of the tumor
microenvironment in Wilms tumor

To characterize the TME of Wilms tumor at a single-cell

resolution, nine batch correction methodologies were assessed to

enhance data quality. Among these, the “scANVI” algorithm

demonstrated superior performance in eliminating batch-related

artifacts while preserving biologically relevant variation, making it

the preferred method for scRNA-seq data processing (Figure 4A).

Cell annotation was performed using a hierarchical approach, as

visualized in a Sankey plot illustrating three distinct levels of cell

classification (Figure 4B). Uniform Manifold Approximation and

Projection (UMAP) analysis displayed tissue group distribution and

level 2 cell annotations, enabling an intuitive visualization of cellular

heterogeneity (Figure 4C). Furthermore, a heatmap detailing the

expression of marker genes for each cell type underscored the

accuracy of cell type identification (Figure 4D). Notably,

significant inter-sample variation was observed in cell population

composition, highlighting differences in cellular architecture

between samples (Figure 4E). Tissue preference analysis revealed

that specific cell types, including cap mesenchyme, myocytes,

fibroblasts, and immune cells, exhibited higher abundance within

tumor tissues compared to non-tumor tissues, suggesting their

active involvement in tumorigenesis (Figure 4F). To pinpoint

malignant cells within the TME, CNV analysis, cell clustering,

and hierarchical clustering were employed. These analyses utilized

normal tissue-derived cells as reference points, enabling the

identification of cell populations exhibiting amplified or deleted

genomic regions and elevated CNV scores. Specifically, clusters 0, 1,

5, and 6 were identified as harboring malignant properties based on

their CNV profiles, designating them as tumor cells (Figures 4G–J).

Furthermore, various Wilms tumor cell marker genes were utilized

to validate the annotation precision across all identified cell types.

The results revealed that tumor cells exhibited significantly elevated

expression levels of WT1, SIX1, SIX2, and CITED1, supporting the
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accurate annotation of tumor cells (Supplementary Figure S1J).

Updated cell annotations at level 3 were subsequently integrated

into the analysis for enhanced precision (Figure 4K). Finally, key

genes derived from bulk RNA-seq analysis were validated at the

single-cell level. This validation revealed cell type-specific

expression patterns: SFRP2 was predominantly expressed in

fibroblasts, AQP1 localized to proximal tubular cells, vasa recta,

and bud-like epithelial cells, while REN was primarily expressed in

tumor cells (Figure 4L).
3.5 Spatial validation of key tumor
stemness gene expression

To integrate spatial transcriptomic data with scRNA-seq

insights, spots from favorable and anaplastic Wilms tumor tissues

were deconvoluted and mapped using scRNA-seq data. The top two

most abundant cell populations for each spot were identified and

visualized, highlighting cellular distribution across tumor regions

(Figures 5A, D). The spatial expression patterns of three key tumor

stemness genes—REN, SFRP2, and AQP1—were examined in both

tumor subtypes. Notably, REN exhibited prominent localization

within tumor regions, consistent with its characteristic expression at

single-cell level. Conversely, SFRP2 and AQP1 were not confined to

tumor regions, reaffirming their non-specific expression patterns

observed in single-cell analysis (Figures 5B, C, E, F). These findings

validate the single-cell data at a spatial resolution and confirm the

functional and spatial distinctiveness of REN as a tumor-associated

gene. To investigate cellular interactions and spatial co-localization

patterns, the NMF algorithm was used to factorize spatial location

profiles. Striking differences in cellular context were identified

between favorable and anaplastic tumor subtypes. In favorable

Wilms tumor tissue, tumor cells were primarily factorized into a

single spatial cluster, indicative of their high differentiation

characteristics and limited cellular interactions within the TME

(Figure 5G). In contrast, anaplastic tumor tissue displayed a more

diverse co-localization pattern; tumor cells were spatially associated

with ureteric bud and podocyte populations—potential sources of

malignant cells—reflecting lower differentiation and greater

malignant potency. Moreover, an intriguing co-localization of

tumor cells with NK and B cells was observed, suggesting

potential immune modulation or evasion mechanisms within the

anaplastic tumor subtype (Figure 5H). These results provide spatial-

level validation of key stemness gene expression and reveal unique

cellular interaction landscapes associated with different Wilms

tumor histological subtypes.
3.6 REN as a key driver of Wilms tumor
progression and prognostic marker

To investigate the role of pivotal tumor stemness genes in

Wilms tumor progression, expression comparisons and Kaplan-

Meier survival analyses were conducted using the TARGET-WT

cohort. Among the three candidate genes—REN, SFRP2, and
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FIGURE 4

Single-cell landscape of the tumor microenvironment in Wilms tumor. (A) Evaluation of nine batch correction algorithms for scRNA-seq data
processing, highlighting “scANVI” as the top-performing method for resolving batch effects while retaining biological variance. (B) Hierarchical cell
annotation workflow illustrated via a Sankey plot, which depicts three levels of classification detailing cellular identities within the Wilms tumor
microenvironment. (C) UMAP visualization of tissue group distribution and level 2 cell annotations, showcasing cellular heterogeneity across normal
and tumor tissues. (D) Heatmap of cell type-specific marker gene expression, confirming accurate cell type identification and annotation. (E) Bar plot
showing inter-sample variability in the proportion of identified cell populations, reflecting differences in cellular composition across individual
samples. (F) Tissue preference analysis demonstrating significant enrichment of specific cell types within tumor tissues compared to normal tissues
(G) Copy number variation analysis based on hierarchical clustering and CNV profiles, identifying clusters with malignant properties. (H–J)
Visualization of CNV-based classification, including UMAP plots displaying CNV-derived clustering (H), cell annotations incorporating CNV features
(I), and CNV scores distinguishing malignant cells (J). (K) Updated level 3 cell annotations integrated with CNV data, pinpointing malignant tumor cell
populations within the Wilms tumor microenvironment. (L) Validation of bulk RNA-seq-derived core stemness genes (SFRP2, AQP1, and REN) at
single-cell resolution, revealing cell type-specific expression patterns.
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FIGURE 5

Spatial Transcriptomic Validation and Prognostic Analysis of Key Tumor Stemness Genes in Wilms Tumor. (A–C) Spatial deconvolution of favorable
Wilms tumor tissues identifies tumor cells concentrated within specific clusters, indicative of high differentiation potential. REN demonstrates
spatially restricted and tumor-specific expression, whereas SFRP2 and AQP1 show diffuse expression across the tissue. (D–F) Spatial deconvolution
of anaplastic Wilms tumor tissues reveals diverse cellular co-localization, characteristic of lower differentiation and enhanced malignancy. REN
maintains distinct tumor-specific localization, while SFRP2 and AQP1 display widespread expression patterns. (G–H) Cellular co-localization and
interaction patterns analyzed using NMF algorithm. (I) Comparative analysis of gene expression in the TARGET-WT cohort between tumor and
normal tissues, showing significant differential expression for REN and AQP1. (J–L) Kaplan-Meier survival analysis of AQP1, REN and SFRP2 in
TARGET-WT cohort. (M–P) Comparison of REN expression across clinical and pathological parameters, including age (M), tumor stage (N),
histologic classification (O), and tumor event status (P), within the TARGET-WT cohort. Statistical significance was assessed using appropriate tests,
where **p < 0.01 and ns denotes not significant.
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AQP1, only REN and AQP1 exhibited significant differential

expression between tumor tissues and normal tissues (Figure 5I).

However, survival analysis highlighted REN and SFRP2 as key

prognostic markers impacting patient outcomes, with REN

identified as the most critical regulator due to its consistent

association with poor clinical outcomes across the cohort based

on optimal cutoff values to avoid subjective bias and reveal

prognostic value (Figures 5J–L). Further clinical subgroup

analyses revealed no significant variation in REN expression

among age groups, disease stages, histological classifications, or

tumor event subtypes, except for its pronounced overexpression in

DAWT. Higher REN expression was strongly correlated with

malignant progression, tumor dedifferentiation, and increased

aggressiveness (Figures 5M–P). This finding emphasizes the role

of REN in driving Wilms tumor evolution toward the unfavorable

DAWT subtype, which is associated with poorer clinical prognosis

(Figure 5O). Subsequent expression analysis revealed that REN was

significantly upregulated in the Higher-CSPI group (Figure 2O and

Supplementary Figure S1H). Furthermore, REN expression showed

a strong positive correlation with mRNAsi (Supplementary Figure

S1I). Taken together, these findings identify REN as a key regulator

of tumor stemness, warranting further downstream analyses to

elucidate its mechanistic role.

To unravel the molecular mechanisms underlying REN-

mediated tumor progression, Gene Set Enrichment Analysis

(GSEA) was performed. The results revealed that REN

profoundly activates multiple oncogenic pathways, including cell

cycle regulation, DNA replication, and homologous recombination,

while simultaneously suppressing the P53 signaling pathway and

immune functions, specifically those mediated by NK cells

(Figure 6A). Furthermore, functional enrichment analyses

confirmed that REN is implicated in biological processes such as

immune modulation and suppression of NK cell activation, which

plays a critical role in anti-tumor immunity (Figure 6B).

Collectively, these findings underscore REN as a key regulator of

tumor stemness and a potent oncogene in Wilms tumor. Beyond

driving tumor progression, REN functions as an immune

suppressor, particularly by impairing NK cell-mediated tumor

surveillance mechanisms. The identification of REN as both a

prognostic marker for poorer outcomes and a critical driver of

oncogenesis suggests its potential as a therapeutic target for

combating stemness-driven Wilms tumor progression and

immune evasion.
3.7 REN drives tumor cell evasion of NK
cell-mediated immune surveillance

A comprehensive analysis was performed to elucidate the

mechanisms by which WT cells evade immune killing by NK

cells. scRNA-seq data was utilized to investigate cellular

interactions at the single-cell level, while ST data validated spatial

proximity and interaction feasibility across the TME. The scRNA-

seq data revealed that NK cells within the WT TME exhibit

significant immune exhaustion, characterized by reduced immune
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cytotoxicity and functional impairment (Figure 6C). Furthermore,

NK cells and T cells emerged as the top two cell types receiving

outgoing interaction signals from other cell types within the TME,

indicating their central roles in immune-tumor dynamics

(Figure 6D). Notably, tumor cells with high REN expression

exhibited distinct differences in cellular communication patterns

with NK and T cells, especially through PTN and COLLAGEN

signaling pathways (Figure 6E). In the context of PTN and

COLLAGEN signaling, both NK and T cells were major

recipients of these outgoing signals, while fibroblasts and high-

REN-expressing tumor cells acted as major producers of the

signaling molecules (Figure 6F). Ligand-receptor (L-R) pair

analyses indicated that tumor cells with high REN expression

engaged NK and T cells through specific ligand-receptor pairs—

namely PTN-NCL and COL4A1-CD44, interactions that were

largely absent in low-REN-expressing tumor cells (Figure 6G).

Spatial analyses further validated these cellular interactions. The

spatial distribution of tumor cells, NK cells, and T cells was analyzed

in both favorable and anaplastic WT tissues. Tumor cells and NK

cells were shown to share similar spatial distributions in both tumor

subtypes, suggesting frequent physical proximity and interaction

(Figures 6H, K). Spatial co-localization analysis revealed that tumor

cells co-localize significantly with NK cells, both as predictors and

targets, within individual ST spots. However, this relationship was

not observed between tumor cells and T cells, or between fibroblasts

and NK/T cells (Figures 6I, L). Detailed cell co-localization patterns

for both WT subtypes were visualized in diagrams, highlighting

tumor cells’ preferential interactions with NK cells over other

immune cell types (Figures 6J, M). These findings suggest that

high-REN-expressing tumor cells actively manipulate cellular

interactions to evade NK cell-mediated immune surveillance. By

leveraging specific ligand-receptor interactions, such as PTN-NCL

and COL4A1-CD44, tumor cells impose a regulatory influence on

NK cells while bypassing significant engagement with T cells or

fibroblasts. This indicates that REN serves as a central regulator of

NK cell immune evasion in theWT TME, offering potential avenues

for targeted therapeutic intervention to restore NK cell functionality

and enhance anti-tumor immunity.
3.8 REN promotes tumor proliferation,
migration, and invasion in Wilms tumor
cells

Functional studies were conducted to investigate REN’s role in

Wilms tumor progression using Wilms tumor cell line WiT49 and

human embryonic kidney cell line 293T as a control. REN mRNA

expression was validated via RT-qPCR, revealing significant

upregulation in WiT49 cells compared to 293T cells (Figure 7A).

To assess its function, REN expression in WiT49 cells was knocked

down using small interfering RNA (siRNA), resulting in

significantly reduced REN expression levels as confirmed by RT-

qPCR (Figure 7B). Functional assays demonstrated the tumor-

promoting role of REN in Wilms tumor cells. A CCK-8

proliferation assay revealed a significant reduction in cellular
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FIGURE 6

High REN Expression Reshapes Tumor-Immune Cell Communication and Spatial Dynamics in Wilms Tumors. (A) Gene Set Enrichment Analysis
based on KEGG pathways, depicting the activated and suppressed biological pathways associated with REN expression in tumor tissues. (B) GSEA
using Gene Ontology biological processes, highlighting the activated and suppressed biological processes associated with REN expression in tumor
tissues. (C) Box plots illustrating NK cell functional impairment in tumor tissues, with reduced exhaustion markers and diminished cytotoxic activity
compared to normal tissues. (D) Overall cell-cell communication network analysis within the TME, indicating NK and T cells as primary recipients of
interaction signals from other cell types. (E) Comparison of cell-cell communication patterns in high-REN versus low-REN tumor cells. (F) PTN and
COLLAGEN signaling networks reveal major producers and recipients within the TME. (G) Ligand-receptor pair analysis identifies REN-specific
interactions, such as PTN-NCL and COL4A1-CD44, which are exclusively enriched in tumor cells with high REN expression and absent in low-REN-
expressing cells. (H, K) Spatial maps illustrating tumor cell, NK cell, and T cell distributions across favorable and anaplastic subtypes of WT,
highlighting physical proximity between tumor cells and NK cells. (I, L) Co-localization heatmaps exhibit the spatial relationship of each cell type in
single spot across favorable and anaplastic subtypes of WT. (J, M) Co-localization network diagrams providing a detailed visualization of cell-to-cell
co-localization preferences within the TME. Statistical significance was assessed using appropriate tests, where ****p < 0.0001, and ns denotes
not significant.
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FIGURE 7

Functional Validation of REN Expression in Wilms Tumor Cells. (A) Relative REN mRNA expression levels as analyzed by RT-qPCR, demonstrating
significant upregulation of REN in WiT49 cells compared to 293T cells. (B) Efficiency of REN knockdown using siRNA in WiT49 cells, as confirmed by
RT-qPCR, showing significantly reduced REN expression compared to the negative control (NC) group. (C) CCK-8 proliferation assay assessing
cellular activity over time, showing reduced proliferation rates in REN-knockdown (si-REN) cells compared to the NC group. (D) Fluorescent images
from EdU incorporation assays comparing DNA synthesis in NC and si-REN groups. Representative images show DAPI staining (nuclei), EdU
incorporation (cell proliferation), and merged overlays. (E) Quantification of EdU-positive cells indicates a significant reduction in tumor cell
proliferation in the si-REN group compared to the NC group. (F) Representative images of wound healing assays evaluating cell migration at 0, 12,
and 24 hours in NC and si-REN groups. Red shading denotes migration area. (G) Quantitative analysis of cell mobility at 24 and 48 hours post-
wound generation, showing significantly lower migration rates in si-REN cells compared to NC cells. Statistical significance was assessed using
appropriate tests, where *p < 0.05, ***p < 0.001 and ns denotes not significant.
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activity and proliferation in the REN-knockdown (KD) group

compared to the negative control (NC) group (Figure 7C).

Further validation using the EdU incorporation assay showed

markedly slower rates of tumor cell proliferation in the KD

group, highlighting REN’s oncogenic influence on cellular growth

(Figures 7D, E). Migration ability was assessed through wound

healing assays, which demonstrated significantly reduced migration

of tumor cells in the KD group at both 12-hour and 24-hour time

points (Figures 7F, G). Apoptosis and survival analyses confirmed

that REN contributes to tumor cell viability. Flow cytometry-based

apoptosis assays revealed higher apoptosis rates in the KD group,

indicating that REN supports tumor cell survival mechanisms

(Figures 8A, B). Interestingly, cell cycle distribution analysis

found no significant differences between the KD and NC groups

in the G1, G2, or S phases (Figures 8C, D), suggesting that RENmay

influence tumor progression independently of cell cycle regulation.

Invasion and migration capabilities were further assessed using

transwell assays, which demonstrated a significant reduction in the

number of migratory and invasive cells following REN knockdown

(Figures 8E–G). This suggests that REN plays a critical role in

facilitating tumor cell invasiveness. Knockout data from the

DepMap database supported this finding, showing that most renal

carcinoma cell lines, including clear cell renal cell carcinoma and

other subtypes, exhibit high dependence on REN for survival, with

cell death or reduced proliferation observed after REN knockout

across 26 kidney cancer cell lines (Figure 8H). Molecular docking

analysis provided deeper mechanistic insight, revealing that

estrogen proteins can effectively bind to the REN protein and

reduce REN mRNA expression (Figure 8I). This interaction

suggests potential therapeutic strategies targeting REN regulation

via estrogen-based compounds to mitigate tumor progression.

Together, these findings highlight REN as a critical driver of

Wilms tumor cell proliferation, survival, migration, and invasion.

The dependence of tumor cells, particularly renal carcinoma cell

models, on REN underscores its potential as a therapeutic target.

Future work should focus on developing targeted approaches to

inhibit REN and disrupt its oncogenic functions, particularly in

renal cancer subtypes such as Wilms tumor.
4 Discussion

Wilms tumor (WT), the most common renal malignancy in

infants and young children, is closely tied to aberrations in early

kidney development. While current multimodal therapies—

comprising surgery, chemotherapy, and radiotherapy—achieve cure

rates exceeding 90% in most cases, 20% of patients experience relapse,

and 25% of long-term survivors report severe complications, including

renal failure, cardiovascular disorders, and secondary malignancies (3).

These factors underscore the urgent need to unravel the molecular

mechanisms underlying WT, enhance prognostic accuracy, and

develop more refined therapeutic strategies. Tumor stemness, a

hallmark characteristic of cancer stem cells (CSCs), plays a critical

role in tumorigenesis, progression, relapse, and resistance to therapy

(11). WT, in particular, has been shown to heavily rely on tumor
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stemness for its aggressive behavior and resistance to conventional

treatments (12).

In this study, we employed a multi-omics integrative approach,

combining bulk RNA-seq and scRNA-seq datasets with advanced

machine learning techniques, to unravel the molecular mechanisms

underlying tumor stemness in WT. By leveraging integrated machine

learning methodologies, we successfully developed the Cancer

Stemness Prognostic Index (CSPI), a robust predictive model with

exceptionally high prognostic accuracy. The CSPI effectively stratified

patients into distinct risk groups, demonstrating that those with

higher CSPI scores exhibited elevated tumor stemness and a

significantly poorer clinical outcome. Our findings further revealed

that patients with high CSPI scores exhibited notable metabolic

reprogramming, characterized by the upregulation of pathways

related to reactive oxygen species (ROS) metabolism and oxidative

phosphorylation. These metabolic shifts appear to play a critical role

in sustaining tumor stemness and driving tumor progression (25).

Conversely, patients within the low CSPI group primarily relied on

canonical stemness-associated signaling pathways, including the Wnt

and Notch pathways, as previously reported (9, 13). This dichotomy

highlights the heterogeneous mechanistic strategies that WT tumors

employ tomaintain their stemness and underscores the importance of

tailoring therapeutic approaches accordingly. After comprehensive

and robust multidimensional validation, incorporating differential

expression analyses and survival assessments, three key tumor

stemness-associated genes—REN, AQP1, and SFRP2—were

carefully compared. Of these, REN was the only gene exhibiting

significantly elevated expression in WT tissues and demonstrating a

profound impact on patient outcomes. Further scRNA-seq and ST

analyses revealed enrichment of REN expression specifically within

tumor cells and tumor regions, underscoring its spatial and cellular

relevance in Wilms tumor biology. Given these findings, REN was

identified as a critical regulator of tumor stemness in WT, warranting

further investigation into its functional roles and potential

mechanisms within the TME. Moreover, integrated transcriptome

approach revealed REN as a critical regulator of tumor stemness and a

major contributor to NK cell immune evasion. REN was found to be

overexpressed in WT, correlating strongly with poor survival

outcomes and advancing CSC-like properties by enhancing

stemness and impairing differentiation potential, thereby

potentiating tumor aggression, particularly in the DAWT subtype.

Intriguingly, REN transcription has been shown to be regulated by the

WT1 gene (specifically the WT1-KTS isoform), which is frequently

mutated in WT patients and associated with elevated plasma renin

levels and hypertension (26). Mutations or dysregulation of WT1

were further linked to elevated REN expression, hypertension, and

exacerbated tumor progression. These findings underscore the

synergistic role of WT1 and REN in reinforcing CSC-driven

aggressiveness in WT (27, 28).

Spatial and single-cell analyses provided critical insights into REN’s

immunosuppressive role. REN expression was mapped to specific

tumor cells as well as distinct tumor microenvironmental niches,

establishing its involvement in driving NK cell exhaustion. Single-cell

communication analyses identified unique signaling axes, including

PTN–NCL and COL4A1–CD44, which were exclusive to high-REN-
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FIGURE 8

REN Knockdown Enhances Apoptosis and Impairs Tumor Migration, Invasion, and Survival. (A) Representative flow cytometry plots showing
apoptosis rates in the REN-knockdown (si-REN) and negative control (NC) groups. (B) Quantification of apoptotic cells, revealing significantly higher
apoptosis rates in the si-REN group compared to the NC group. (C) Flow cytometry analysis of cell cycle distribution, presenting G1, G2, and S phase
percentages in both NC and si-REN groups. (D) Statistical comparison of cell cycle distribution, showing no significant differences between the NC
and si-REN groups across all phases. (E) Representative images of transwell migration and invasion assays comparing NC and si-REN cells. (F)
Quantitative analysis of migratory cells, showing a significant reduction in cell migration upon REN knockdown. (G) Quantification of invasive cells,
indicating a significant decrease in invasive capability in the si-REN group compared to the NC group. (H) Gene dependency analysis using DepMap
data for 26 renal carcinoma cell lines, illustrating that most kidney cancer cell lines exhibit high dependency on REN expression for survival. (I)
Molecular docking model showing the interaction between estrogen proteins and the REN protein, with predictions indicating binding events that
lead to reduced REN mRNA expression. Statistical significance was assessed using appropriate tests, where *p < 0.05, **p < 0.01 and ns denotes
not significant.
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expressing tumor cells and their NK cell interactions. These pathways

were absent in tumors with low REN expression, indicating direct

engagement between REN-expressing tumor cells and NK cells at both

molecular and spatial levels. Spatial transcriptomics confirmed intra-

spot colocalization of REN-expressing tumor cells and NK cells, a

phenomenon not observed with T cells. These findings suggest that

REN promotes immune evasion primarily by suppressing NK cell

cytotoxicity rather than affecting T cell functions. Mechanistically,

interactions like COL4A1–CD44 activate immune regulatory

pathways (such as PI3K/AKT and MAPK signaling) (29), further

impairing NK cell-mediated killing. Similarly, PTN–NCL, a signaling

axis involved in stem-cell properties and angiogenesis (30), collaborates

with immune checkpoints to drive profound immune suppression (31).

Additionally, tumor-derived factors such as PGE2 and IL-6 exacerbate

NK cell dysfunction, suppressing IFN-g secretion and inducing an

exhausted NK cell phenotype (14, 16). Together, these findings

establish REN as a central mediator of tumor stemness and immune

evasion and provide a strong rationale for targeting REN to enhance

NK cell activity and improve therapeutic outcomes in WT.

The renin gene (REN), encoding the enzyme renin, serves as a

central component of the renin-angiotensin system (RAS), which plays

critical roles in blood pressure regulation, electrolyte balance, and

cellular proliferation. Dysregulation of REN expression has been

implicated in diverse pathologies, particularly hypertension, renal

diseases, and kidney tumors (32). Renin is a conserved aspartyl

protease whose primary function is to cleave angiotensinogen into

angiotensin I (Ang I), thereby activating the RAS pathway. Its

transcriptional regulation involves intricate, multilayered mechanisms,

including the interplay of promoters, enhancers, intronic silencers, and

various signaling pathways, such as cAMP, calcium, inflammatory

mediators, and nuclear receptors (32). These mechanisms ensure

precise expression of REN under both physiological and pathological

conditions, maintaining RAS homeostasis (32, 33).

Emerging evidence suggests that beyond its canonical roles in

blood pressure control, REN activation contributes to tumor initiation,

progression, and the modulation of the tumor immune

microenvironment, particularly in renal malignancies (34, 35). In

renal cell carcinoma (RCC), REN-mediated activation of the RAS—

especially the Ang II/AT1R axis—within the tumor microenvironment

has been shown to drive pro-tumorigenic processes such as

angiogenesis, inflammation, and metastasis, as well as immune

suppression (36). Clinical reports of tumors with aberrant REN

expression, including those with secondary hypertension arising from

renin-secreting tumors, further support the association between REN

and cancer biology (37, 38). Notably, RAS inhibitors (RASi) have

demonstrated both antihypertensive and anti-tumor effects, with

combinations of RASi and VEGF-targeting agents significantly

improving overall survival in metastatic RCC (39).

Mechanistically, REN exerts its oncogenic influence via RAS

activation, with the Ang II/AT1R axis promoting proliferation,

angiogenesis, fibrosis, metastasis, and immune suppression within

the TME. RAS inhibitors mitigate these effects by blocking AT1R

signaling, thereby reducing fibrosis, restoring vascular integrity,

reprogramming immune cells, and enhancing responsiveness to
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immunotherapies (34, 35). Preclinical studies combining RASi with

chemotherapy or immunotherapy have demonstrated promising

therapeutic outcomes, though robust optimization through precision

medicine approaches remains essential. As REN represents an

upstream regulator of the RAS pathway, targeting REN itself may

offer a more precise and effective therapeutic approach, mitigating the

tumor-promoting and immunosuppressive effects of RAS activation.

Building on our findings, direct modulation of REN activity to

reinvigorate NK cell cytotoxicity, as well as targeted inhibition of its

downstream signaling pathways, holds the potential to disrupt the

immunosuppressive tumor microenvironment and overcome tumor

stemness-driven resistance. Such strategies could serve as promising

adjuncts to existing therapeutic modalities, paving the way for

precision-based interventions aimed at improving clinical outcomes

and survival for WT patients.
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