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Introduction: 1-5% of all patients with COVID-19, a disease caused by infection with

Severe Acute Respiratory Syndrome Virus 2 (SARS-Cov-2), even those with mild

COVID-19 symptoms, continue to have symptoms after initial recovery. Symptoms

associated with the post-acute sequelae of COVID-19 (PACS) include, among others,

fatigue, shortness of breath, cough, and cognitive dysfunction. Since the dysregulated

immune response appears to be caused by the sustained activation of certain immune

cells, including monocytes, and the release of specific cytokines, the aim of our study

was to investigate the effect of PACS disease on monocyte subpopulations.

Methods: Twenty-two healthy and thirty-two patients with PACS were included

into this study. We performed blood gas analysis and measured hematological

parameters from peripheral blood of PACS patients and compared them with

healthy donors. Surface markers to identify monocyte subpopulations were

analyzed by flow cytometry.

Results: PACS patients had higher numbers of intermediate and CD56+

monocytes, whereas the numbers of total monocytes, classical and non-classical

monocytes were normal compared to healthy donors. Comparison of patients with

and without fatigue, cough, and dyspnea showed no difference in monocyte subset

frequencies. However, patients with cognitive dysfunction had increased numbers

of non-classical monocytes compared to patients without this symptom.

Discussion: This suggests a disturbed homeostasis of the monocyte subsets in

the peripheral blood of patients with PACS.
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Introduction

1-5% of all people infected with severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2) develop long-lasting

symptoms, collectively referred to as post-acute sequelae of SARS-

CoV-2 infection (PACS) or Long-COVID (1–3). Symptoms include

fatigue, cognitive dysfunction, and pulmonary complications, such

as shortness of breath (dyspnea) and chronic cough (4). In addition,

PACS patients show a persistent low grade inflammation (5–8).

Overall, the symptoms are similar to other post-infectious

conditions (9, 10). As patients with PACS vary considerably in

terms of symptoms, severity and recovery profile, attempts have

been made to distinguish different clinical phenotypes, but no

consensus has yet been reached (11, 12) and the underlying cause

of PACS symptoms has remained a mystery.

Human monocytes can be divided into three major populations:

classical (CD14++CD16-), intermediate (CD14++CD16+), and non-

classical (CD14+CD16+) monocytes (13), of which classical

monocytes in particular express high levels of the ACE-2 receptor

(14), which is one of the cellular entry receptor for SARS-CoV-2

(15). Monocytes and macrophages are involved in all phases of the

response to viral infections (16–18). Infection with SARS-CoV-2

leads to an altered monocyte phenotype in the acute phase (19–23),

and the alterations can predict the severity of the disease (24, 25).

Monocytes are also implicated in the pathogenesis of PACS. PACS

patients have elevated monocyte-platelet aggregates (7),

dysregulated monocyte subpopulations (5, 26–28), show signs of

activation (8, 28), and might be a reservoir for persistent

infection (27).

In this study, we analyzed peripheral blood monocyte

subpopulations in PACS patients. We found increased absolute

numbers of intermediate monocytes and CD56+ monocytes. In

addition, non-classical monocytes were increased in PACS patients

with cognitive dysfunction and decreased in PACS patients without

cognitive dysfunction compared to healthy controls. Moreover, D-

dimer concentrations were higher in PACS patients with cognitive

dysfunction than in patients without this symptom. The monocyte

compartment alterations in PACS patients suggest a dysregulation

of monocyte fate which might contribute to the persistence of Long-

COVID symptoms.
Materials and methods

Patients and controls

Blood samples from 32 PACS patients were provided by the

Post-COVID center of the Department of Pulmonology, Medical

Department I (University Hospital Carl Gustav Carus, Dresden,

Germany). The patients were referred because they showed

persisting symptoms after SRAS-CoV-2 infection, and the

diagnosis of PACS was made according to the German national

guideline for Long-COVID and included documentation of

previous SARS-CoV-2 infection, standardized symptom and

functional assessment, and standardized exclusion of other causes
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(29). All patients suffered previously from mild COVID-19

infection according to World Health Organization (WHO)

criteria for the clinical management of COVID-19. Fatigue was

assessed using the Fatigue Severity Scale (FSS) and the Fatigue

Assessment Scale (FAS). The FSS has been shown to demonstrate

high internal consistency, validity and sensitivity to changing

clinical conditions (30). The FAS questionnaire consists of 10

items answered on a 5-point Likert scale ranging from 1 (never)

to 5 (always) (31). Sleepiness was measured using the Epworth

Sleepiness Score (ESS). The ESS is a widely used, validated

questionnaire and has been shown to be a reliable measure of

persistent daytime sleepiness in adults (32). The PACS symptom

cognitive dysfunction was self-reported by the patients and was

included in the analysis with present or not present.

Age- and sex-matched blood samples from healthy donors

(n=22) were provided by the German Red Cross Blood Donation

Service North-East, Institute for Transfusion Medicine Dresden and

by the Department of Pulmonology, Medical Department I

(University Hospital Carl Gustav Carus, Dresden, Germany).
Blood collection and sampling

Six ml whole blood from healthy donors and from Long-

COVID patients were collected in S-Monovettes EDTA K3

(Sarstedt, Nümbrecht, Germany) by venipuncture using a sterile

disposable Safety-Multifly-Needle 21 G (Sarstedt). Blood cell

numbers were determined using a Sysmex XN 1000 (Sysmex

Deutschland GmbH, Norderstedt, Germany). The normal

reference range for monocyte numbers is 200–1000 monocytes

per µl blood. Measurement of COHb was carried out as part of the

blood gas analyzing with an ABL800 Flex (Radiometer Medical

ApS, Brønshø, Denmark). D-dimer was measured using the STA R

Max® (Stago, Düsseldorf, Germany) and blood was collected in

citrate monovettes (Sarstedt).
Ethics approval

Blood samples from all donors and Long-COVID patients were

used in anonymized form and in accordance with the guidelines

approved by the Ethics Committee of the Technical University of

Dresden [BO-EK-49012022]. Informed consent was obtained from

all donors and patients.
Flow cytometry

50µL whole blood was incubated with PE-labeled anti-CD14

(clone MjP9, BD Bioscience, Heidelberg, Germany), APC-labeled

anti-CD56 (clone NCAM16.2, BD Bioscience) and BV421-labeled

anti-CD16 (clone 3G8, BD Bioscience) for 15 minutes at room

temperature. Samples were then incubated in 450µL BD FACS™

Lysing Solution for 15 min, vortexed and analyzed by flow

cytometry using a FACSLyric flow cytometer (BD Bioscience)
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with FlowJo software. The gating strategy to identify the monocyte

subsets within all CD14+ monocytes has been described previously

(33). Absolute numbers of monocyte subsets were calculated using

the absolute monocyte count of the blood.
Graphs and statistics

Graphs and statistics were prepared with GraphPad Prism

10.2.2. Bar charts represent mean + s.e.m. and individual values of

each experiment are represented as symbols in bars. Statistical

significance was determined accordingly using the two-tailed non-

parametric, unpaired Mann-Whitney U tests, confidence interval of

95%. For multiple comparisons, the Kruskall-Wallis test with

Dunn’s test was performed and adjusted p-values were used.
Results

The clinical characteristics of patients with post-acute sequelae

of COVID-19 (PACS) and healthy donors are presented in Table 1.

Absolute monocyte numbers in the peripheral blood were

indistinguishable between healthy controls and PACS patients

(Figure 1a). Comparisons of patients with and without fatigue

(Figure 1b), cough (Figure 1c), dyspnea (Figure 1d), and cognitive

dysfunction (Figure 1e) revealed that total monocytes were not

different between the two groups.

PACS patients and healthy controls had equal percentages of

classical monocytes (86.6% ± 0.9 vs. 86.9% ± 0.9, ns) in total

monocytes. Calculations of absolute numbers of classical
Frontiers in Immunology 03
monocytes also showed no difference between PACS patients and

controls (Figure 2a). PACS patients with fatigue (Figure 2b), with

cough (Figure 2c), with dyspnea (Figure 2d), or with cognitive

dysfunction (Figure 2e) had the same classical monocyte numbers

than patients without the respective symptoms.

PACS patients had a higher percentage of intermediate

monocytes in total monocytes than healthy controls (6.0% ± 0.4

vs. 3.2% ± 0.3, p<0.0001), and as shown in Figure 3a the absolute

number of intermediate monocytes was also increased. This

expansion of intermediate monocytes is independent of PACS

symptoms fatigue (Figure 3b), cough (Figure 3c), dyspnea

(Figure 3d), and cognitive dysfunction (Figure 3e). We observed

no difference in the number of intermediate monocytes between

PACS patients with a disease duration >2 years and <2 years

(median 26 cells/µl blood, n=19 vs. median 26 cells/µl blood,

n=13, ns).

The percentage of non-classical monocytes in total monocytes

was not different between PACS patients and healthy controls (5.0%

± 0.7 vs. 4.9 ± 0.8, ns). The absolute numbers of non-classical

monocytes also did not differ between PACS patients and healthy

controls (Figure 4a). We also observed equal non-classical

monocyte numbers in PACS patients with and without fatigue

(Figure 4b), cough (Figure 4c), and dyspnea (Figure 4d). However,

we observed a striking difference between PACS patients with

cognitive dysfunction and without (Figure 4e). PACS patients

with cognitive dysfunction had more non-classical monocytes

than PACS patients without cognitive dysfunction and

healthy controls.

It has been previously reported that D-dimer levels in acute

COVID-19 predict the development if cognitive dysfunction in PACS

patients (34). We analyzed D-dimer levels in our cohort and found

increased concentrations in the blood of PACS patients with

cognitive dysfunction in comparison to patients without

(Figure 4f). However, only two patients with cognitive dysfunction

and one patient without cognitive dysfunction had clinical relevant

D-dimer concentrations above the cutoff of 500 µg/ml. Carbon

monoxide binding to hemoglobin, previously described by us to be

elevated in PACS patients (35), negatively correlated strongly with

non-classical monocyte numbers in PACS patients without cognitive

dysfunction (Figure 4g), whereas no correlation was observed in

PACS patients with cognitive dysfunction (Supplementary Figure 1).

We also included the CD56+ monocyte subpopulation in our

analysis. This subpopulation is part of the classical monocyte

subpopulation and expands during aging, obesity, and in

autoimmune diseases (33, 36, 37). PACS patients had a higher

percentage of CD56+ monocytes (10.5% ± 1.4 vs. 5.2% ± 0.7,

p<0.0001) in total monocytes than healthy controls. Calculations of

absolute numbers of CD56+ monocytes revealed that PACS patients

had more CD56+ monocytes than healthy controls (Figure 5a). We

reported previously that the CD56+ monocyte subpopulation

expands with age (36). We observed this again in the healthy

controls (Supplementary Figure 2a), but there was no correlation of

CD56+ monocytes and age within the PACS cohort (Supplementary

Figure 2b). The CD56+ monocytes were already expanded in young

PACS patients compared to age-matched controls (median 34 cells/µl
TABLE 1 Clinical characteristics of the study participants.

Parameters Healthy controls PACS

No. (Sex, F/M)1 22 (11/11) 32 (23/9)

Age, y2 48.5 ± 2.7 47.0 ± 2.2

Age, range 27-69 29-79

BMI, kg/m2 ND 26.9 ± 4.9

Onset (days) NA 565.3 ± 385

CRP (mg/L) ND 3.2 ± 4.1

Chronic fatigue NA 23 (71.9%)

Dyspnea NA 26 (81.3%)

Cough NA 23 (71.9%)

Cognitive dysfunction NA 9 (28.1%)

FSS NA 51.7 ± 10.6

FAS* NA 33.6 ± 7.2

ESS<ns/> NA 12.2 ± 4.4
All values are expressed as mean ± SEM. ND not determined, NA not applicable, * seven data
points missing, <ns/> one data point missing, 1 no significant difference between healthy
controls and PACS patients, Chi-square test, 2 no significant difference between healthy
controls and PACS patients, Mann-Whitney test.
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blood, n=11 vs. 16 cell/µl blood, n=7, p = 0.0121, age <40 years). The

number of CD56+monocytes was equal between PACS patients with

a disease duration >2 years and <2 years (median 37 cells/µl blood,

n=19 vs. median 38 cells/µl blood, n=12, ns). The increase in CD56+

monocyte numbers is independent of PACS symptoms fatigue

(Figure 5b), cough (Figure 5c), dyspnea (Figure 5d), and cognitive

dysfunction (Figure 5e).
Discussion

Our findings indicate that intermediate monocytes and CD56+

monocytes are expanded in PACS patients. These monocyte

compartment perturbations were also found in PACS patients

with a disease duration greater than two years, suggesting a

persistent and long-term dysregulation of the monocyte subsets.

Peripheral blood monocyte subpopulations circulate in a dynamic

equilibrium (38). Classical monocytes emerge from the bone
Frontiers in Immunology 04
marrow and circulate for one day. 99% of classical monocytes

leave the circulation, the other 1% then transition to intermediate

monocytes which circulate for four days. Finally, all intermediate

monocytes mature to non-classical monocytes which circulate for

seven days. This results in approximately 87-92% classical

monocytes, 3-5% intermediate monocytes, and 5-8% non-classical

monocytes in the peripheral blood monocyte pool. In a state of

inflammation, the differentiation from classical monocytes into

intermediate and non-classical monocytes can occur over a

shorter timespan (38).

Increased numbers of intermediate monocytes in PACS patients

have been reported previously. Park et al. reported about increased

total monocyte numbers and increased numbers of all three

monocyte subpopulations (28), whereas Patterson et al. observed

an increased percentage of intermediate monocytes (27). The

increase in intermediate monocytes in our PACS cohort was not

associated with any specific PACS symptom but was present in all

PACS patients. Intermediate monocytes are found in increased
FIGURE 1

Comparison of total monocyte numbers of healthy controls and PACS patients. (a) Absolute numbers of total monocytes of healthy controls (HC,
n = 22) and PACS patients (PACS, n = 32). Scatter plots show mean ± SEM. (b) Absolute numbers of total monocytes of healthy controls (HC, n = 22)
and PACS patients without fatigue (n = 6) and with fatigue (n = 26). (c) Absolute numbers of total monocytes of healthy controls (HC, n = 22) and
PACS patients without cough (n = 8) and with cough (n = 24). (d) Absolute numbers of total monocytes of healthy controls (HC, n = 22) and PACS
patients without dyspnea (n = 3) and with dyspnea (n = 29). (e) Absolute numbers of total monocytes of healthy controls (HC, n = 22) and PACS
patients without cognitive dysfunction (n = 23) and with cognitive dysfunction (n = 9). Scatter plots show mean ± SEM. Statistical analysis was
performed using two-tailed Mann–Whitney U test (a) or Kruskall-Wallis test with Dunn’s test (b-e). ns, not significant.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1613034
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Kronstein-Wiedemann et al. 10.3389/fimmu.2025.1613034
proportions during acute Sars-CoV-2 (20–22) infection, other viral

infections (39, 40), and many inflammatory diseases like

rheumatoid arthritis (41), obesity (33), and sepsis (42). We

among others have reported that intermediate monocytes are the

main producers of pro-inflammatory cytokines (41, 43). In

addition, intermediate monocytes are the main producers of

reactive oxygen species (44), they express high levels of HLA-DR,

CD80, and CD86 (41, 45), indicating their role in antigen

presentation, and CCR5 (41, 43, 45), a chemokine receptor.

With the dynamic equilibrium of the monocyte subsets in the

peripheral blood and the subsequent differentiation of all

intermediate monocytes into non-classical monocytes (38), we

expected to see also an increased proportion of non-classical

monocytes. This was only true for PACS patients with cognitive

dysfunction, all other patients showed normal non-classical

monocyte numbers. While other studies observed increased

percentages or numbers of non-classical monocytes in PACS

patients (26, 27), it is interesting to note that COVID-19 patients
Frontiers in Immunology 05
show a depletion of non-classical monocytes in the peripheral blood

as well as in the airways (19, 20, 22, 23, 46). Previously, we reported

that PACS patients had impaired oxygen-hemoglobin binding and

enhanced carbon monoxide binding (35). In the current study, non-

classical monocyte numbers in PACS patients without cognitive

dysfunction negatively correlated with carboxyhemoglobin

(COHb). COHb is also increased in COVID-19 (47), respiratory

infections (48), and sepsis (49), and endogenously derived from the

metabolism of heme by heme oxygenase.

We observed a striking increase in non-classical monocyte

numbers in PACS patients with a cognitive dysfunction.

However, it is important to note, as a limitation of our study, that

the cognitive dysfunction was a self-reported symptom and no

additional tests were performed. In general, there is no objective

cognitive marker for PACS. Recently, cognitive slowing was

described by Zhao et al. as such a marker that is easy to evaluate

using two short web-based cognitive tasks (50). A systematic study

on non-classical monocytes and cognitive dysfunction in a larger
FIGURE 2

Comparison of classical monocyte numbers of healthy controls and PACS patients. (a) Absolute numbers of classical monocytes of healthy controls (HC,
n = 22) and PACS patients (PACS, n = 32). Scatter plots show mean ± SEM. (b) Absolute numbers of classical monocytes of healthy controls (HC, n = 22)
and PACS patients without fatigue (n = 6) and with fatigue (n = 26). (c) Absolute numbers of classical monocytes of healthy controls (HC, n = 22) and
PACS patients without cough (n = 8) and with cough (n = 24). (d) Absolute numbers of classical monocytes of healthy controls (HC, n = 22) and PACS
patients without dyspnea (n = 3) and with dyspnea (n = 29). (e) Absolute numbers of classical monocytes of healthy controls (HC, n = 22) and PACS
patients without cognitive dysfunction (n = 23) and with cognitive dysfunction (n = 9). Scatter plots show mean ± SEM. Statistical analysis was performed
using two-tailed Mann–Whitney U test (a) or Kruskall-Wallis test with Dunn’s test (b-e). ns, not significant.
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cohort of PACS patients needs to be done to gain more insight into

these findings.

Non-classical monocytes in general are known to be involved in

the innate surveillance of tissues and in the response to viruses (43).

The murine counterpart of human non-classical monocytes was

found to be patrolling the endothelium of blood vessels and be

involved in the resolution of inflammation (43, 51). The non-

classical monocyte subset has been implicated to play a role in

the cognitive impairment of aging people with HIV (52) and in the

steady-state immune surveillance of the central nervous system

(53). In COVID-19, some patients develop neurological sequelae

and those patients have monocytes in the cerebrospinal fluid (54),

and PACS patients with cognitive dysfunction also show

recruitment of monocytes into the cerebrospinal fluid (55).

D-dimer is a fibrin degradation product and we found increased

D-dimer concentrations in PACS patients with cognitive

dysfunction in comparison to PACS patients without this

symptom. The presence of D-dimers are associated with a
Frontiers in Immunology 06
cognitive decline in older people (56, 57), and Taquet et al. linked

elevated D-dimer relative to C-reactive protein in acute COVID-19

to subjective cognitive deficits and occupational impact in PACS

patients (34). There is some evidence for thromboinflammatory

dysregulation in PACS patients. Increased D-dimer concentrations

have been reported in PACS patients (58–61) as well as coagulation

factor 11 (7). PACS patients have circulating fibrinolysis-resistant

microclots (62), platelet-monocyte aggregates (7), and persistent

complement dysregulation (7).

The combination of unchanged total monocyte numbers, the

increase in intermediate monocytes and normal non-classical

monocyte numbers in the majority of patients suggest a disturbed

homeostasis of the monocyte subsets in the peripheral blood or an

increased extravasation of non-classical monocytes in PACS

patients. Cervia-Hasler et al. reported about the down-regulation

of the transcription factor NR4A1 in classical monocytes of PACS

patients (7). NR4A1 is a transcription factor that is necessary for the

maturation of non-classical monocytes (63) and a down-regulation
FIGURE 3

Comparison of intermediate monocyte numbers of healthy controls and PACS patients. (a) Absolute numbers of intermediate monocytes of healthy
controls (HC, n = 22) and PACS patients (PACS, n = 32). Scatter plots show mean ± SEM. (b) Absolute numbers of intermediate monocytes of
healthy controls (HC, n = 22) and PACS patients without fatigue (n = 6) and with fatigue (n = 26). (c) Absolute numbers of intermediate monocytes
of healthy controls (HC, n = 22) and PACS patients without cough (n = 8) and with cough (n = 24). (d) Absolute numbers of intermediate monocytes
of healthy controls (HC, n = 22) and PACS patients without dyspnea (n = 3) and with dyspnea (n = 29). (e) Absolute numbers of intermediate
monocytes of healthy controls (HC, n = 22) and PACS patients without cognitive dysfunction (n = 23) and with cognitive dysfunction (n = 9). Scatter
plots show mean ± SEM. Statistical analysis was performed using two-tailed Mann–Whitney U test (a) or Kruskall-Wallis test with Dunn’s test (b-e).
ns, not significant.
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could point to a disturbed homeostasis of the monocyte subsets.

There is also some evidence for an increased recruitment of

monocytes into tissues in PACS patients. Scott et al. describe a

monocyte migration profile in PACS patients that would promote

migration of monocytes into the lung (64). They found an increased

expression of the chemokine receptor CXCR6 on monocytes of

PACS patients with unresolved lung injury and the ligand CXCL16

is abundantly expressed in the lung. Cheong et al. showed that

monocytes and hematopoietic stem and progenitor cells (HSPC)

showed epigenomic reprogramming up until one year following

severe COVID-19 (65). The monocytes had a more pronounced

pro-inflammatory response, and they found an increased

recruitment of monocytes into the lung and brain in a mouse

model. The focus of this study was not on PACS patients, however,

Cheong et al. re-analyzed data from post-mortem lung tissue from

post-acute COVID-19 patients from a study by Rendeiro et al. (66),

and found an increased accumulation of monocytes in the lung.

Interestingly, Rendeiro et al. observed a persistent presence of

SARS-CoV-2 epitopes in the lung of the patients up to 359 days

after the acute phase.
Frontiers in Immunology 07
We also observed a marked increase of CD56+ monocytes in

patients with PACS. The increase of CD56+ monocytes was found

in all PACS patients except patients without cough. CD56+

monocytes, a subpopulation within classical monocytes, are

expanded during healthy aging (36), in autoimmune diseases such

as rheumatoid arthritis (36) and Crohn’s disease (37), in obesity

(33), and in cancer (67). They produce more reactive oxygen

intermediates and pro-inflammatory cytokines, and are more

efficient antigen-presenting cells (36, 37, 68). CD56+ monocytes

have also been described in acute COVID-19. Campana et al.

observed an increased frequency of CD56+ monocytes in

intensive care unit (ICU) patients but not in non-ICU COVID-19

patients (46). They also described them as hyperinflammatory,

because the CD56+ monocytes produced more pro-inflammatory

cytokines. Dutt et al. also reported an increase of CD56+ monocytes

in COVID-19 patients (69). There is not much known about the

CD56+ monocyte subset in the convalescence phase. Ravkov et al.

observed no difference between convalescent COVID-19 patients

and healthy controls, however, they only included convalescent

patients who had a mild form of the disease (70).
FIGURE 4

Comparison of non-classical monocyte numbers of healthy controls and PACS patients. (a) Absolute numbers of non-classical monocytes (NCM) of
healthy controls (HC, n = 22) and PACS patients (PACS, n = 32). Scatter plots show mean ± SEM. (b) Absolute numbers of non-classical monocytes
of healthy controls (HC, n = 22) and PACS patients without fatigue (n = 6) and with fatigue (n = 26). (c) Absolute numbers of non-classical
monocytes of healthy controls (HC, n = 22) and PACS patients without cough (n = 8) and with cough (n = 24). (d) Absolute numbers of non-
classical monocytes of healthy controls (HC, n = 22) and PACS patients without dyspnea (n = 3) and with dyspnea (n = 29). (e) Absolute numbers of
non-classical monocytes of healthy controls (HC, n = 22) and PACS patients without cognitive dysfunction (n = 23) and with cognitive dysfunction
(n = 9). (f) D-dimer concentration in the serum of PACS patients without cognitive dysfunction (n = 23) and with cognitive dysfunction (n = 9).
(a-f) Scatter plots show mean ± SEM. Statistical analysis was performed using two-tailed Mann–Whitney U test (a, f) or Kruskall-Wallis test with
Dunn’s test (b-e). (g) Correlation of absolute numbers of non-classical monocytes of PACS patients without cognitive dysfunction with carboxylated
hemoglobin (COHb) (n = 23). Spearman correlation coefficient and level of significance as indicated. ns, not significant.
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We have described previously that the CD56+ monocyte subset

expands with age (36). We could replicate this finding again in the

healthy controls in this study. However, the CD56+ monocyte

subset in PACS patients did not show any dependence on age,

and more importantly the expansion of the subset was also found in

young PACS patients. This could point to a premature aging of the

monocytes (71), we observed this also in patients with rheumatoid

arthritis (36). Lo Tartaro et al. reported about an increase in CD56+

monocytes in aged patients (>70 years old) with severe COVID-19

pneumonia in comparison to younger patients (<60 years old) and

healthy controls (72). However, they also observed increased CD56

+ monocyte numbers in the younger patients compared to healthy
Frontiers in Immunology 08
controls, suggesting that the expansion of the subset is also not age-

dependent in acute COVID-19.

The appearance of CD56+ monocytes during aging is most

likely caused by the low-grade inflammation, and we have reported

about the expanded CD56+ subset in obese patients, another low-

grade inflammatory disease (33). A low-grade inflammation has

also been described in PACS patients (5, 7). In addition to the effect

of low-grade inflammation, the highly inflammatory events during

acute COVID-19 can have long-lasting effects to lead to epigenetic

re-programming of the monocytes (65, 73).

In conclusion, this study shows that PACS patients have

increased numbers of intermediate monocytes and CD56+
FIGURE 5

Comparison of CD56+ monocyte numbers of healthy controls and PACS patients. (a) Absolute numbers of CD56+ monocytes of healthy controls (HC,
n = 22) and PACS patients (PACS, n = 32). Scatter plots show mean ± SEM. (b) Absolute numbers of CD56+ monocytes of healthy controls (HC, n = 22)
and PACS patients without fatigue (n = 6) and with fatigue (n = 26). (c) Absolute numbers of CD56+ monocytes of healthy controls (HC, n = 22) and
PACS patients without cough (n = 8) and with cough (n = 24). (d) Absolute numbers of CD56+ monocytes of healthy controls (HC, n = 22) and PACS
patients without dyspnea (n = 3) and with dyspnea (n = 29). (e) Absolute numbers of CD56+ monocytes of healthy controls (HC, n = 22) and PACS
patients without cognitive dysfunction (n = 23) and with cognitive dysfunction (n = 9). Scatter plots show mean ± SEM. Statistical analysis was performed
using two-tailed Mann–Whitney U test (a) or Kruskall-Wallis test with Dunn’s test (b-e). ns, not significant.
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monocytes, while non-classical monocyte numbers were found to

be increased in PACS patients with cognitive dysfunction. This

suggests a disturbed homeostasis of the monocyte subsets in the

peripheral blood of patients with PACS.
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