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Senescence-associated
signature based on
immunotherapy response
sequencing reveals PPIL3
as target for bladder
cancer treatment and
prognosis prediction
Kaixuan Du1,2†, Ning Kang1,2†, Yuda Lin1,2, Kaipeng Jia1,2,
Chong Shen1,2*, Zhouliang Wu1,2* and Hailong Hu1,2*

1Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China, 2Tianjin
Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical
University, Tianjin, China
Background: Bladder cancer (Bca) remains a major genitourinary malignancy

with unmet needs in immunotherapy optimization. Despite advancements in

immune checkpoint inhibitors (ICIs), challenges persist, including low response

rates and drug resistance. Emerging evidence links tumor cell senescence to

immunotherapy efficacy, yet predictive biomarkers are lacking.

Methods: We integrated genomic sequencing of real-world Bca patients

receiving low-dose paclitaxel combined with immunotherapy to identify

differentially expressed genes (DEGs) between responders and non-

responders. By intersecting DEGs with senescence-related gene sets (SRGs),

we derived senescence-related DEGs (SRDEGs) and constructed a senescence-

immunotherapy model (SIM) via TCGA-based multi-regression analysis.

Results: The SIM, validated across three independent cohorts, demonstrated superior

prognostic accuracy for overall survival (OS) compared to clinical parameters. High SIM

scores correlated with immunosuppressive tumor microenvironments (TME). Drug

sensitivity analysis revealed differential responses to cisplatin and paclitaxel between

SIM subgroups. Critically, real-world validation confirmed SIM’s predictive power for

immunotherapy response. Multi-omics profiling further highlighted PPIL3 as a hub

gene driving senescence and suppressing proliferation. In vitro experiments showed

elevated expression of PPIL3 facilitated the concentration of senescencemarkers (SA-

b-gal) and inhabited tumor cell proliferation.

Conclusions: This study establishes SIM as a dual-purpose tool for survival

prediction and immunotherapy stratification, and suggested that PPIL3 could

be a therapeutic target to enhance the efficacy of Bca by regulating senescence.
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Introduction

Globally, Bca is ranked as the ninth most common malignancy

overall, the sixth most prevalent among men, the tenth among

women (1, 2), and the number of cases was predicted to increase

significantly worldwide between 2022 and 2046 (3). Even with the

availability of multiple treatment modalities for Bca, the OS for

patients remains suboptimal. In the case of non-muscle invasive

bladder cancer (NMIBC), standard therapeutic interventions

include transurethral resection of bladder tumors (TURBT) and

localized perfusion therapies like Bacillus Calmette-Guérin (BCG)

immunotherapy. Although BCG therapy demonstrates efficacy in

numerous instances, approximately 30-40% of patients exhibit

resistance, and relapse rates can reach up to 50% (4, 5). For

muscle-invasive bladder cancer (MIBC), the conventional

treatment approach typically involves radical cystectomy (RC);

however, this procedure is associated with considerable morbidity

and a diminished quality of life. Consequently, bladder-sparing

treatment modalities have garnered substantial attention over the

past few years (6, 7). The advent of immunotherapy and antibody-

drug conjugate (ADC) have brought about the adoption of

innovative treatment approaches, such as PD-1/PD-L1 inhibitors

and RC48-ADC (8), in the management of Bca (9). Previous

research indicated that the integration of immunotherapy with

chemotherapy has the potential to enhance therapeutic outcomes,

particularly in patients with advanced-stage Bca (10). Despite the

considerable advancements achieved in the application of

immunotherapy for Bca treatment, several limitations persist. Key

challenges include suboptimal response rates (11), the lack of fully

reliable biomarkers (12), the occurrence of immune-related adverse

effects, and the appearance of resistance to medications (13).

Consequently, there is an imperative necessity to investigate

advanced immunotherapeutic strategies and integrative treatment

modalities to establish a promising approach for the comprehensive

management of Bca.

The cellular context in which a tumor develops is known as the

tumor microenvironment (TME) (14). Previous research indicated

that alterations in the TME can significantly influence tumor

progression (15), invasiveness, and treatment resistance (16). For

instance, tumor-associated macrophages (TAMs) are integral

elements of the TME, as they facilitate tumor angiogenesis and

suppress anti-tumor immunity, thereby diminishing therapeutic

efficacy (17). With the advancement of immunotherapy, strategies

aimed at restructuring the TME have increasingly garnered scholarly

interest. Consequently, research on the TME is intensifying, and a

comprehensive understanding of its composition and function is vital

for creating innovative therapies. Addressing the TME may greatly

boost the efficacy of cancer treatments and lower the chances of

developing resistance (18–20).

Cellular senescence represents a multifaceted biological

phenomenon typically induced by cellular stress, damage, or

proliferative stimuli. Senescent cells are integral to normal physiological

processes and exert significant influence on tumorigenesis and the

modulation of the immune microenvironment (21). Previous research

indicated that the stable interruption of the cell cycle and the linked
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secretory function, described as the senescence-associated secretory

phenotype (SASP), have the capacity to remodel the tumor-immune

microenvironment, consequently affecting antitumor immunity (22).

Senescent tumor cells exert multifaceted influences on the TME. They

have the capacity to activate anti-tumor immune cells, thereby fostering

an anti-tumor immune microenvironment, while simultaneously

activating immunosuppressive cells, which play a role in developing an

immunosuppressive microenvironment (15). Consequently, a

comprehensive investigation into the composition and mechanisms of

the tumor microenvironment, as influenced by tumor cell senescence

induced by various factors, establishes a foundational basis for the

reconfiguration of the tumor microenvironment associated with the

SASP. Simultaneously, this exploration significantly contributes to the

advancement of multi-faceted research in both enhanced and combined

immunotherapeutic strategies.

This study utilizes genome sequencing to investigate Bca

patients who have been treated with low-dose paclitaxel in

conjunction with immunotherapy in a real-world setting. By

exploring the genomic differences between those who respond to

immunotherapy and those who do not, we identified DEGs. We

jointly analyzed these DEGs with SRGs to obtain SRDEGs. We then

developed a predictive SIM based on five genes using data from the

TCGA database by applying univariate regression, LASSO

regression, and multivariate regression analysis. Subsequently,

patients were sorted into high and low categories using the

median value of the senescence-related and immunotherapy-

related model scores (SIMS), to facilitate an in-depth

investigation of the variations in the TME and immunotherapy

response between these subgroups. Ultimately, we confirmed the

impact of the model risk score on immunotherapy response using

independent databases and real-world data. More importantly, we

explored the important role of PPIL3 in inducing senescence and

inhibiting proliferation of Bca cells.

In conclusion, we aim to develop a senescence-associated

signature to enhance the prediction of treatment outcomes and

prognosis for patients with Bca and reveal a potential therapeutic

target for Bca by regulating cell senescence-related pathways.
Materials and methods

Data acquisition

The TCGA datasets were obtained from UCSC Xena, while the

GEO datasets were sourced from the National Center for

Biotechnology Information (NCBI). Senescence -related datasets

were retrieved from the Molecular Signatures Database (MSigDB),

and the Imvigor210 datasets were acquired through the R package

“IMvigor210CoreBiologies.”
Patient information

Bca tissue specimens were gathered from patients receiving

immunotherapy at the Second Hospital of Tianjin Medical
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University. Corresponding clinical data were also collected at this

institution. The Ethics Committee of the hospital reviewed and

approved every study.
Transcriptome sequencing

To begin, retrieve the Bca tissue sample from storage, either at

-80°C or in liquid nitrogen, and proceed with the extraction of total

RNA from the sample. The extracted RNA’s concentration and purity

are determined through the NanoDrop spectrophotometric method.

Each sample is measured two to three times to ensure accuracy, with

the average optical density (OD) ratio at 260/280 nm maintained

between 1.8 and 2.1, thereby meeting the required standards. The

concentration and purity metrics for each RNA sample are

meticulously recorded. Following this, the RNA is converted into

complementary DNA (cDNA). The cDNA synthesized through

reverse transcription is subsequently amplified to yield a sufficient

quantity of DNA, which is essential for the construction of a

sequencing library. The cDNA is then fragmented and ligated with

adapters at both ends. Following this, the library is further amplified

using polymerase chain reaction (PCR) to increase its concentration,

ultimately resulting in the formation of a cDNA library prepared for

sequencing. This library is then analyzed using high-throughput

sequencing platforms, enabling the production of comprehensive

sequence data.
Cell culture and transfection

The Bca cell lines of human were obtained from the American

Center for Type Culture Collection. Cells were cultured to

approximately 70% confluence and then transfected with HitransG

P viral infection reagent according to the manufacturer’s instructions.
Quantitative real-time PCR

The experimental steps for extracting RNA and obtaining

cDNA were as described above and in previous studies (23). The

primer sequences used in the experiment are shown in the

Supplementary Table 1.
Western blot

According to previous experimental methods (23), proteins from

Bca cells were extracted, separated and quantitatively analyzed.
Cell counting Kit-8 assay

According to previous experimental methods (23), using the

CCK8 assay to assess the proliferation activity of Bca cell lines.
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Colony formation assay

About 1000 cells were placed in a 6-well plate. After culturing

for about 10 days, they were fixed with paraformaldehyde for 15

minutes. More importantly, they were stained with 0.1% crystal

violet for 30 minutes. After drying, the number of colonies

was counted.
EdU assay

According to previous experimental methods (23), cell

proliferation was assessed according to the EdU detection kit

instructions. After incubation with EdU reagent for 2 hours, cells

were fixed with paraformaldehyde and permeabilized with Triton

X-100. Cells were then treated with reaction mixture for 30 minutes.

Finally, cell nuclei were stained with DIPA, observed under a

fluorescence microscope, and photographed and counted.
Immunohistochemistry

The experimental procedures were as described in previous

studies (23, 24), and the information of antibodies used in the

experiments was shown in the Supplementary Table 1.
Differential gene analysis

This study utilizes genome sequencing to investigate Bca

patients who have been treated with low-dose paclitaxel in

conjunction with immunotherapy in a real-world setting. A

comprehensive bioinformatics analysis was conducted on

extensive sequence data acquired through sequencing. Depending

on their clinical response to immunotherapy, two groups were

formed from Bca patients: responders and non-responders. The

analysis of DEGs expression performed in the R programming

environment, specifically employing the “DESeq” package, to

identify gene sets exhibiting significant variations between the two

groups (P<0.05) (Supplementary Table 2).
Unsupervised cluster analysis

Unsupervised cluster analysis was employed to categorize gene

expression levels, which was subsequently followed by a comparative

evaluation of clinical characteristics across the delineated subtypes. In

this study, the R package “ConsensusClusterPlus” (version 1.64.0) was

utilized in the clustering purposes, with references offering further

methodological context (25, 26). The PAC algorithm identified an

optimal K value of 3. Following this, a comparative analysis of the

clinical data across the three delineated subgroups was performed,

resulting in the conclusion that the gene set is significantly correlated

with the OS rate of patients.
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Lasso regression analysis

Lasso regression is a commonly utilized method of regression

analysis within the field of statistics (27). The primary objective is to

compress coefficients to facilitate variable selection and complexity

adjustment, ultimately boosting the predictive accuracy and

explanatory power of the model. The R package “glmnet (4.1-8)”

(27) was used to perform lasso regression on the selected gene

sets (28).
Cox regression analysis

Cox univariate analysis is a technique employed to assess the

influence of a single variable on patient survival or recurrence risk.

In this study, we utilized univariate regression analysis to identify

each gene within the DEGs that was associated with patient survival,

serving as a basis for subsequent modeling. Concurrently, we

applied Cox multivariate analysis to evaluate the impact of

multiple genes, identified through lasso regression, on patient

survival, thereby constructing the final predictive model.
Survival analysis

Kaplan-Meier survival analysis, a nonparametric technique for

estimating survival probabilities from observed survival time data,

was carried out with the R package “survival” (version 3.5-5).

Additionally, the function of SIM was corroborated through

validation in three independent Bca cohorts: GSE69795,

GSE70691, and GSE31507.
Model performance evaluation

We assessed the specificity and sensitivity of SIM by employing

the R packages “Survival ROC” and “time ROC” to compute the

area under the curve (AUC) using ROC curves. Additionally, the

function of SIM was corroborated using two independent Bca

validation cohorts, specifically GSE69795 and GSE31507.
Gene expression plots and enrichment
analysis

The R package “ggplot2” was utilized to generate volcano plots

and heatmaps, which illustrate the distribution of DEGs and the

expression levels of individual genes across each sample, respectively.

To identify DEGs, we utilized the entire genome as the

background set and subsequently employed the R package

“clusterProfiler” to complete Gene Ontology (GO) enrichment

analysis (29). P-values below 0.05 are considered the threshold for
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statistical significance. In addition, the R package “ggplot2” (version

3.5.1) was employed to visualize the enrichment consequences.

To systematically investigate the gene functions, genomic

information, and biochemical pathways of DEGs, we conducted a

Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment

analysis with the help of the R package “clusterProfiler”. Statistical

significance of KEGG pathway was determined using a p-value

cutoff of 0.05. Subsequently, the R package “ggplot2” (version 3.5.1)

was employed to visualize the enrichment results.

To assess whether a predefined set of genes demonstrates steady

variations between the two groups (high-SIMS and low-SIMS

subgroups) and to identify instances where overarching trends are

apparent despite the lack of significant changes in individual genes,

the R package “clusterProfiler” alongside the GSEA software were

utilized to carry out Gene Set Enrichment Analysis (GSEA) and

enrichment analysis of DEGs between the two groups. The

predefined gene set database utilized for this analysis was sourced

from the MSigDB.
Tumor microenvironment analysis

To study the differences in the TME across different groups, we

employed the R package “xCell” to infer the proportions of various

cell types within the TME based on gene expression data. This

analysis encompassed differences in the proportions of stromal and

immune cells. To ensure a precise assessment of immune cell

infiltration ratios, we utilized eight distinct algorithms:

ImmuCellAI, CIBERSORT, CIBERSORT.abs, quanTIseq, EPIC,

MCPcounter, TIMER, and xCell. The results of ImmuCellAI were

derived using the parameters of the single-sample gene set

enrichment analysis (ssGSEA) method, while the other algorithms

employed the respective R packages or online tools (http://

timer.cistrome.org/). To assess the immune escape mechanisms

within the TME and predict patients’ potential responses to

immunotherapy through gene expression analysis, we utilized the

online tool “Tumor Immune Dysfunction and Exclusion (TIDE)” to

compute the immune response score for each patient. Additionally,

we aimed to evaluate the prediction of immunotherapy response in

high-SIMS and low-SIMS groups within this model. The accuracy

of our model was determined by comparing the TIDE scores with

the predicted immunotherapy responses.
Gene mutation analysis

To investigate the genomic mutation distinctions between the

two groups, we employed the R package “maftools” to explore and

display the TCGA mutation annotation format (MAF) file (30).

Additionally, we conducted a comprehensive suite of functional

analyses, encompassing mutation frequency analysis, mutation type

distribution assessment, and the calculation of tumor mutation

burden (TMB).
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Drug sensitivity analysis

The Genomics of Drug Sensitivity in Cancer (GDSC) and the

Cancer Therapeutics Response Portal (CTRP) are extensive publicly

accessible databases designed to investigate the responsiveness of

cancer cell lines to a diverse array of anticancer agents utilizing

high-throughput screening methodologies. These databases provide

substantial genomic and drug sensitivity datasets. In our research,

we implemented the R package “oncoPredict” to conduct a

comprehensive analysis of genomic data from TCGA, as well as

from the GDSC and CTRP. Through this analysis, we were able to

forecast the IC50 for each patient with different drugs. We

conducted an analysis of drug resistance between the two patient

cohorts by evaluating their differential sensitivity to various

pharmacological agents.
Results

Identification of senescence-related
differentially expressed genes of
immunotherapy response sequencing in
Bca

To investigate the underlying causes of variability in the

effectiveness of immune checkpoint inhibitors, we conducted

transcriptome sequencing on cancerous tissues from Bca patients

in both the immunotherapy response group and the non-response

group undergoing treatment with these inhibitors. The differential

expression analysis, as illustrated in Figure 1A, identified 1,717 up-

regulated and 1,024 down-regulated genes. Prior research has

established a significant association between the TME and cellular

senescence. Specifically, the microenvironment of pancreatic

tumors has been shown to be characterized by inflammation

induced by senescence (31). Consequently, we integrated the

DEGs related to the immune response with the SRGs

(Supplementary Table 3). As illustrated in the Venn diagram in

Figure 1B, a total of 427 DEGs were recognized as being connected

with senescence. Subsequently, we carried out an enrichment

analysis on the expression of these SRDEGs using data from The

TCGA database. The consequences of the KEGG enrichment

analysis, depicted in Figure 1C, indicated that these SRDEGs were

predominantly enriched in immune-related pathways, including

the TNF signaling pathway, cytokine-cytokine receptor interaction,

IL-17 signaling pathway, and antigen processing and presentation.

Additionally, they were associated with senescence-related

pathways, such as the AGE-RAGE signaling pathway and the p53

signaling pathway, as well as other pathways, including apoptosis.

The consequences of the GO enrichment analysis presented in

Figure 1D indicated that the Biological Process (BP) category is

predominantly enriched in cytokine-mediated signaling, regulation

of cellular senescence, and negative regulation of immunity. The

Cellular Component (CC) category was primarily enriched in cell-

substrate junctions, cytoplasmic vesicle lumens, and endosome

lumens. Meanwhile, the Molecular Function (MF) category was
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chiefly enriched in cytokine activity, RNA-DNA binding, and

immune receptor activity. To further investigate the intrinsic

relationships among the significantly regulated differentially

expressed genes (SRDEGs), we employed an unsupervised

clustering method for classification (Figure 1E, Supplementary

Figures 1A, B). According to the PAC algorithm, the best number

of clusters (K) was verified to be 3. The clustering results, as

depicted in Figures 1F, G, and Supplementary Figures 1C, D,

demonstrated a robust clustering effect across the three categories.

Based on gene expression profiles, patients were stratified into three

distinct subgroups. Survival analysis (Figure 1H) revealed

significant differences in overall survival among these subgroups,

suggesting that gene expression variations are significantly

connected to the prognosis of Bca patients.

To sum up, we discovered a senescence-related differential gene

set by sequencing clinical samples undergoing immunotherapy and

integrating this data with the SRGs. Subsequent analysis using the

TCGA database revealed a noteworthy connection between these

differential genes and the OS of patients.
Construction of a senescence-related and
immunotherapy related model to predict
overall survival in Bca patients

To investigate which differentially expressed genes significantly

influence patient prognosis and the efficacy of immunotherapy, we

conducted a univariate regression analysis on 427 genes, identifying

101 genes associated with OS. Among these, 62 genes exhibited risk

factors less than 1 (Supplementary Figure 2), indicating their

protective nature, while the remaining 39 genes had risk factors

greater than 1 (Supplementary Figure 3A), classifying them as risk

factors. Subsequently, we employed LASSO regression analysis for

bioinformatics refinement, reducing the gene set to 25, as depicted

in Figure 2B. Ultimately, through multivariate regression analysis,

we identified five key core genes: Bone Morphogenetic Protein 6

(BMP6), Fibronectin 1 (FN1), Programmed Death-Ligand 1

(CD274), Homeobox B5 (HOXB5), and Peptidylprolyl Isomerase

Like 3 (PPIL3). The findings presented in Figure 3B illustrate the

association between five key genes and Bca patient outcomes.

Specifically, elevated expression levels of BMP6 and FN1 are

linked to a poor prognosis, whereas higher expression levels of

PPIL3, HOXB5, and CD274 correlate with a more favorable

prognosis. Prognostic models were developed using multivariate

regression analysis, focusing on senescence-related and

immunotherapy-related model (SIM). The SIMS were calculated

using the following formula: SIMS = expression of PPIL3 * (-0.13) +

expression of CD274 * (-0.15) + expression of HOXB5 * (-0.10) +

expression of BMP6 * 0.06 + expression of FN1 * 0.13. Bca were

stratified into high-SIMS and low-SIMS subgroups based on the

median SIMS score. Figure 2D depicts the distribution of patients

across different risk score categories. Simultaneously, the high-SIMS

subgroup predominantly occupied the region associated with

shorter OS, whereas the low-SIMS subgroup was primarily

located in the area corresponding to longer OS (Figure 2E). The
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FIGURE 1

Identification of senescence-related differentially expressed genes of immunotherapy response sequencing in Bca. (A) we conducted transcriptome
sequencing on cancerous tissues from Bca patients in both the immunotherapy response group and the non-response group who have been
treated with low-dose paclitaxel in conjunction with immunotherapy in a real-world setting. The volcano plot shows the distribution of differentially
expressed genes between the two groups. (B) The Venn diagram showed the intersection of genes related to differences in immune therapy
response and aging-related differential genes, totaling 427 genes. (C) KEGG gene analysis showed that the intersecting genes are mainly enriched in
cytokines, chemokines, cellular senescence, and immune response signaling pathways. (D) GO gene analysis showed that the intersecting genes are
mainly enriched in pathways related to cellular senescence regulation, cytokine mediation and immune response signaling, cell adhesion, nuclear
matrix, endoplasmic reticulum, cytokine activity, and RNA-DNA activity. (E) The figure showed the distribution of the consensus cumulative
distribution function under different numbers of clustering clusters k. (F) Distribution of the three clusters after PCA. (G) Heatmap of the consistency
matrix with k value (number of categories) equal to 3. (H) The KM survival curve analysis indicated that there are significant differences in the overall
survival rates among the three groups of patients.
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KM survival analysis further elucidated the survival disparities

between these two subgroups (Figure 2F). The findings

corroborated previous observations, indicating that the high-SIMS

subgroup experienced a much shorter OS compared to the low-

SIMS subgroup.

We performed an in-depth study of the connection between the

SIM and the clinical information of the patients. As depicted in

Figure 2G, the expression of the five genes exhibited significant

variability among different patients and was associated with the T

stage, N stage, and M stage, indicating a notable relationship with the

distribution of clinical stages. Through separate analyses of the

relationship between the SIM and clinical data (Supplementary

Figure 1E), we found, as anticipated, that the SIMS was significantly

correlated with the T stage, N stage, M stage, clinical stage, and

lymphovascular invasion. Furthermore, the consequences of the

univariate regression analysis demonstrated that the SIM was

statistically significant (Figure 2H). Simultaneously, the multivariate

regression analysis results indicated that the model exhibited greater

significance relative to other clinical factors (Figure 2I). To assess the

effectiveness and accuracy of the SIM, we employed it to analyze the

AUC for patients at 1-, 3-, and 5-years using data from the TCGA

database (Figure 2J). Furthermore, a comparison with other clinical

factors revealed that the model possesses strong predictive

efficacy (Figure 2K).

In conclusion, we obtained a predictive SIM utilizing a

differential gene set derived from real-world sequencing data,

which demonstrates superior capability in forecasting overall

survival compared to traditional clinical information.
The accuracy of the SIM was verified by
three independent databases

We have previously built the SIM using the TCGA database.

Next, we aim to validate the diagnostic efficacy of the SIM using

three independent datasets: GSE69795, GSE31507, and GSE70691.

As illustrated in Figures 3A–C, we analyzed the distribution of

patients based on increasing SIMS and categorized them into high-

SIMS and low-SIMS groups in accordance with the median SIMS.

Notably, in alignment with the consequences from the training set,

patients in the high-SIMS subgroups across the three independent

validation datasets predominantly exhibited shorter OS in

comparison to those in the low-SIMS subgroups. To assess the

statistical significance of these differences, we conducted Kaplan-

Meier survival curve analyses for each dataset, as depicted in

Figures 3D–F. The findings aligned with our initial hypotheses. In

all three data sets, the high-SIMS subgroup had a worse survival

prognosis than the low-SIMS subgroup, with statistically significant

survival differences. Subsequently, as illustrated in Figures 3G–I, we

presented the expression levels of the five genes included in the SIM

using a heat map. The overall expression trends for these five genes

were mostly aligned. Specifically, as the SIMS increased, the

expression levels of BMP6 and FN1 presented a gradual rise,

while the expression levels of PPIL3, CD274, and HOXB5

exhibited a gradual decline. Additionally, we provided an
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overview of the gene distribution within the SIM alongside the

clinical information of the patients. To further elucidate the

association between the SIM and other clinical variables, we

conducted univariate regression analyses utilizing the SIM and

the sole clinical information available in the GSE69795 and

GSE13507 datasets. As depicted in Figures 3J, K, the SIM

demonstrated robust predictive capability for overall survival (OS)

in patients. Furthermore, the consequences of the multivariate

regression analysis indicated that the SIM remained the most

effective predictor when compared to other clinical factors in the

GSE69795 and GSE13501 datasets. Subsequently, we calculated the

1-year, 3-year, and 5-year AUC values for SIM across the two

datasets. As illustrated in Figure 3L and Supplementary Figure 1F,

SIM demonstrates robust predictive capability, with the AUC in

GSE69795 reaching 0.86. When compared to the AUCs of other

clinical factors, the predictive performance of SIM remains superior

(Figure 3M, Supplementary Figure 1G).

In conclusion, we have revalidated the predictive efficacy of SIM

for OS in Bca using three independent databases, thereby

minimizing the likelihood of random chance influencing the

model construction process.
Link between SIM and tumor
microenvironment

The SIMmodel, developed based on immunotherapy response and

SRGs, has been shown to influence the OS of Bca patients. To

investigate the underlying mechanisms by which this model impacts

patient OS, we conducted a differential genomic analysis of two distinct

subgroups. The heat map illustrating the DEGs between these

subgroups is presented in Figure 4A. We also assessed the proportion

of immune cell infiltration in each patient, revealing noteworthy

variances in immune cell infiltration within the TME between the

subgroups, as depicted in Figure 4B. The GSEA of DEGs in immune-

related pathways, as shown in Supplementary Figures 3A, B, indicated

that the high-SIMS subgroup was predominantly enriched in gene sets

associated withmacrophages and helper T cells. In comparison, the low-

SIMS subgroup was principally enriched in pathways related to immune

response activation and specific Bca subgroups. The proportion of

immune cell infiltration was measured for each patient, followed by a

comparison of TME scores between the two subgroups. As illustrated in

Figure 4B, the TME in the high-SIMS subgroup exhibited greater

activity compared to the low-SIMS subgroup, characterized by

elevated immune and stromal scores. Figure 4C highlights a

significant disparity in immune cell infiltration within the TME

between the subgroups. The data indicate that the high-SIMS

subgroup has a higher prevalence of macrophages, helper T

lymphocytes, and other cell infiltrations, whereas the low-risk

subgroup predominantly features CD8+ lymphocyte infiltrations. To

further elucidate and accurately compare the cellular differences in the

tumor microenvironment of the two subgroups, we employed eight

distinct algorithms to analyze the immune cell infiltration scores for

each patient within each subgroup, as depicted in Figures 4D, E, and

Supplementary Figure 4. Despite some variability among the algorithms,
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FIGURE 2 (Continued)

Construction of a senescence-related and immunotherapy related model to predict overall survival in Bca patients. (A) The regression coefficient
path diagram presented in this article includes 101 variables, with each curve representing the trajectory of change for each independent variable’s
coefficient. The vertical axis indicates the value of the coefficient, the lower horizontal axis represents log(l), and the upper horizontal axis shows
the number of non-zero coefficients in the model at that moment. (B) Cross-validation curve. The X-axis represents the logarithm of the penalty
coefficient (log l), while the Y-axis indicates the likelihood deviation. A smaller value on the Y-axis signifies a better fit of the equation. The number
displayed at the top corresponds to the count of variables retained in the equation for various values of l. (C) Forest plot was used to show the
relationship between the five key genes obtained after multivariate Cox regression analysis and the overall survival rate of patients. (D) Scatter plot
of the distribution of Bca patients as risk scores increase. (F) As the risk score increases, the scatter plot illustrating the distribution of Bca patients
showed a clear division into high-risk and low-risk subgroups based on the median risk score. The low-risk subgroup was represented in turquoise,
while the high-risk subgroup was indicated in red. (E) As the risk score increases, the scatter plot of the survival of Bca patients showed that green
represents surviving patients and red represents dead patients. The lower left corner showed that the higher the risk score, the shorter the patient’s
overall survival time and the higher the death rate. (F) The KM survival curve analysis indicated that there are significant differences in the overall
survival rates between two subgroups. The high-risk subgroup exhibits significantly shorter survival time compared to the low-risk subgroup. (G)
Distribution heat map of five key genes and clinical information in the model. (H) The univariate Cox regression analysis showed the relationship
between the senescence-related and immunotherapy-related model scores (SIMS) and clinical factors and overall survival of patients. (I) The
multivariate Cox regression analysis showed the relationship between SIMS and clinical factors and overall survival of patients. (J) The receiver
operating characteristic (ROC) curve was used to describe the predictive value of the senescence-related and immunotherapy-related model (SIM)
for patients at 1-, 3-, and 5-years. (K) The ROC curve was used to describe the predictive value of the SIM and other clinical factors for patients.
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the overall trend remains consistent. The high-risk subgroup is

characterized by the development of an immunosuppressive

microenvironment that facilitates malignant tumor invasion, whereas

the low-risk subgroup is associated with an immune infiltration

microenvironment that inhibits tumor progression. Specifically, the

presence of regulatory T (Treg) cells, M2 macrophages, and cancer-

associated fibroblasts (CAFs) is significantly elevated in the TME of the

high-SIMS subgroup in comparison to the low-SIMS subgroup.

Conversely, the TME of the low-SIMS subgroup exhibits significantly

higher levels of CD8+ lymphocytes, CD4+ lymphocytes, T follicular

helper cells, and activated NK cells than that of the high-SIMS subgroup.

Furthermore, we examined the relationship between SIMS and immune

checkpoints. The gene expression heat map in Figure 4F reveals a strong

correlation between SIMS and specific checkpoints, including LGALS9,

TNFRSF25, CEACAM1, and CD86.

Subsequently, we employed the TIDE algorithm to evaluate

immune infiltration within the tumor microenvironment and to

predict the response to immunotherapy. As illustrated in Figure 4G,

the high-SIMS subgroup exhibited elevated immune rejection and

exhaustion scores in comparison to the low-SIMS subgroup. An

elevated rejection score typically suggests that the tumor may

obstruct T cell infiltration through various mechanisms, such as

stromal fibrosis and the overexpression of angiogenic factors,

potentially resulting in suboptimal immunotherapy outcomes.

Similarly, a high exhaustion score indicates that, despite T cell

infiltration, their functionality may be compromised by

immunosuppressive signals, including the PD-1/PD-L1 and CTLA-4

pathways, thereby limiting the efficiency of immunotherapy. Notably,

the low-SIMS subgroup demonstrated a higher Microsatellite

Instability (MSI) score relative to the high-risk subgroup. A strong

link often exists between highMSI levels and a greater tumormutation

burden (TMB), which can result in the production of additional

neoantigens, ultimately improving the effectiveness of immune

checkpoint inhibitors. High MSI scores may be associated with

lower TIDE scores, lower T cell inactivation, and less T cell

rejection, indicating a stronger immune response in the tumor

microenvironment. Overall, lower TIDE scores in the low-SIMS

subgroup suggest that they have a higher chance of benefiting from
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immunotherapy, whereas patients in the high-SIMS subgroup

respond poorly to immunotherapy. Therefore, SIM is expected to

become a predictive model for immunotherapy. In order to evaluate

its predictive efficacy, as shown in Figure 4H, the AUC of SIMS is the

largest compared with other clinical factors, indicating that SIM also

has outstanding predictive ability in predicting the effect of

immunotherapy in Bca patients.

In summary, the SIM are intricately associated with the tumor

microenvironment, which subsequently influences the OS of

patients. Furthermore, SIM serve as predictive indicators for the

response of Bca patients to immunotherapy.
The relationship between SIM and tumor
gene mutation

In our previous discussion, we noted that both the low-SIMS

and high-SIMS subgroups exhibited elevated MSI scores. To further

investigate the genetic mutation differences between these

subgroups, we conducted an analysis using data from the TCGA

database. As illustrated in Figures 5A, B, the mutation burden was

significantly greater in the low-SIMS subgroup compared to the

high-SIMS subgroup. By identifying the top 20 most frequently

mutated genes within each subgroup, we observed substantial

differences. Although TP53 and TTN were the most common

mutations in both subgroups, subsequent genes varied

considerably. Notably, the high-SIMS subgroup demonstrated a

higher prevalence of ARID1A and KMT2D mutations, whereas the

low-SIMS subgroup showed a greater incidence of KDM6A and

MUC16 mutations. Additionally, we compared the top 20 genes

exhibiting the largest mutation discrepancies between the two

subgroups, as depicted in Figure 5C. These genes include

CCDC88A, ALPK2, ATP8A2, and GRIK3. Such genetic

mutations may play a pivotal role in influencing the TME,

thereby impacting the OS of cancer patients.

In conclusion, we conducted an analysis of the distinct genomic

mutations differentiating the two subgroups, which may significantly

contribute to the progression and immunosuppression of Bca.
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FIGURE 3

The accuracy of the SIM was verified by three independent databases. (A-C) Scatter plots of the distribution of risk scores and the relationship
between risk scores and patient survival in three independent datasets, including GSE69795, GSE13507, and GSE70691. (D-F) KM survival curves
were constructed to describe the relationship between risk scores and overall survival of patients in the three datasets. High-risk patients had a
worse prognosis. (G-I) Heatmaps were used to show the distribution of genes in the SIM and clinical information in the three validation datasets.
(J, K) Both the univariate and multivariate Cox regression analyses demonstrated the association between SIMS, clinical factors, and the overall
survival of patients in the two validation datasets. (L) The ROC curve was used to describe the predictive value of the SIM for patients at 1-, 3-, and
5-years in GSE 69795 dataset. (M) The ROC curve was used to describe the predictive value of the SIM and other clinical factors for patients in GSE
69795 dataset.
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FIGURE 4 (Continued)

Link between SIM and tumor microenvironment. (A) Gene expression heatmaps were used to show the differential gene distribution between high-
risk and low-risk subgroups of Bca patients. (B) The Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data
(ESTIMATE) algorithm was used to evaluate the purity of tumor samples. It is a method that uses gene expression features to infer the proportion of
stroma and immune cells in tumor samples. (C) Percentage bar graphs were used to show the proportion of immune cells infiltrating in the tumor
microenvironment for each patient. There was a significant difference in the infiltration of immune cells between the high-risk subgroup and the
low-risk subgroup. (D) The CIBERSORT algorithm was used to calculate the infiltration ratio of immune cells in each patient, and the significant
differences in immune cells between the two groups were shown in the figure. (E) Eight different algorithm results were used to present the
differences between the two subgroups of immunosuppression-related cells and immune response-related cells. The red color in the figure
represents the cell type with a higher infiltration ratio in the high-risk group than in the low-risk group. On the contrary, the blue color represents
the cell type with a higher infiltration ratio in the low-risk group than in the high-risk group. (F) Correlation heatmaps were used to present the
correlation between risk scores and immune checkpoint gene expression. (G) The Tumor Immune Dysfunction and Exclusion (TIDE) algorithm to
evaluate immune infiltration within the tumor microenvironment and to predict the response to immunotherapy. We calculated the immune
dysfunction score, immune exclusion score and microsatellite instability score for the two groups. (H) The ROC curve was used to describe the
predictive value of the SIM for patients’ response to immunotherapy. (*p<0.05; **p<0.01; ***p<0.001;****p<0.0001).
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SIM and drug response prediction

Given that SIM can predict immunotherapy response, it raises

the question of whether SIM is also associated with responses to

other drugs. As illustrated in Figures 6A, B, we employed GSEA to

investigate the enrichment of drug-related pathways across different

risk subgroups within SIM. The analysis revealed that the high-

SIMS subgroup predominantly exhibited enrichment in pathways

such as gefitinib resistance and aging, whereas the low-SIMS

subgroup showed enrichment in pathways associated to DNA

damage repair and drug response. Subsequently, we utilized R

software and associated packages to assess the sensitivity of these

subgroups to various drugs. As depicted in Figure 6C, individuals in

the high-SIMS subgroup demonstrated insensitivity to several

commonly used chemotherapeutic agents, including cisplatin,

gemcitabine, paclitaxel, and docetaxel. Concurrently, we identified

potential therapeutic agents for the high-SIMS subgroup. The

results of Figure 6D indicated that this subgroup exhibited

increased sensitivity to olaparib, JAK_8517_1739, staurosporine,

and sunitinib. Conversely, as shown in Figure 6E, the low-SIMS

subgroup was more responsive to erlotinib, irinotecan, leflunomide,

and narciclasine.

Overall, by predicting drug sensitivity in the two subgroups, it

was discovered that SIM influences not only the response to

immunotherapy but also significantly affects the responses to

other medications. By examining the drugs sensitive to different

subgroups, more appropriate medications can be chosen for

patients, allowing for a personalized treatment plan.
Analyzing SIM in the real world

First, we verified the relationship between SIM and immune

response in Real World. As shown in Figure 7A, the SIRS scores of

patients in response group were higher than those of patients the

non-response group. We have proved our point again (Figure 7B) in

the well-known immune response database (IMvigor210) and

GSE78220 database. At the same time, in Figure 7C, SIMS in

patients with immune exclusion is the highest, which is consistent

with our previous research results.
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As shown in Figure 7D, in the real world, the KM survival curve

is used to confirm that patients in the high-SIMS subgroup have

lower overall survival and worse prognosis. Next, we explored the

expression of five genes in SIM at the RNA level (Figure 7E).

Patients who did not respond to immunotherapy had cancer tissues

with elevated BMP6 and FN1 expression, in contrast to those who

responded, where CD274, HOXB5, and PPIL3 were more

expressed. Notably, PPIL3 expression was lower in cancer tissues

for both patient groups. Finally, we studied the protein expression

levels offive genes in SIM in Bca patients by immunohistochemistry

(Figure 7F). We found that the protein expression levels for the five

genes were generally consistent with their RNA expression levels.

To sum up, we confirmed SIM’s predictive capability for

immunotherapy response in Bca patients using both real-world

and online validation sets, and validated the multi-omic gene

expression in SIM in real-world scenarios.
PPIL3 inhibited proliferation and promoted
senescence of Bca cells

Given that previous studies have found that PPIL3 has the

lowest risk ratio in the model and that its expression in tumor tissue

is lower than that in adjacent normal tissue, both in the

immunotherapy response group and the immunotherapy non-

response group, we further explored the effect of its expression on

Bca cell lines in in vitro experiments. We first investigated the

expression of PPIL3 in Bca cell lines. Western blot results showed

that PPIL3 was lowly expressed in Bca cells (Figure 8A). Next, as

shown in Figure 8B, we constructed PPIL3 stably overexpressing

Bca cell lines, T24 and UMUC3 cells. The CCK8 results in Figure 8C

revealed that after PPIL3 overexpression, the proliferation and

survival ability of Bca cells was significantly inhibited. Then we

verified the important role of PPIL3 in inhibiting the clone-forming

ability of Bca cells in a plate cloning experiment. The T24 and

UMUC3 cells in the PPIL3 overexpression group were significantly

inhibited (Figure 8D). We verified the inhibitory effect of PPIL3 on

the proliferation of Bca cells again through EdU experiments

(Figure 8E). Afterward, we measured the concentration of the

senescence marker b-galactosidase and the expression of P16 and

P21 in these two Bca cells. The results indicated that elevated
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expression of PPIL3 facilitated the process of cellular senescence in

Bca cells (Figure 8F, Supplementary Figure 5).

In summary, we believed that PPIL3 inhibits Bca cell

proliferation and promotes the formation of an anti-tumor

immune microenvironment by inducing senescence.
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Discussion

Current clinical decision-making for Bca mainly relies on

TNM staging and molecular classification, but lacks reliable

markers for predicting immunotherapy response. Biomarkers
FIGURE 5

The relationship between SIM and tumor gene mutation. (A) The oncoplot was used to display the top 20 most frequently mutated genes in the
low-risk subgroup of patients. (B) The oncoplot was used to display the top 20 most frequently mutated genes in the high-risk subgroup of patients.
(C) Top 20 genes with the largest difference in mutation frequency between the two risk subgroups.
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such as PD-L1 expression and TMB recommended by the NCCN/

EAU guidelines have high heterogeneity and limited predictive

efficacy in clinical applications (32). The SIM constructed in

this study integrates the dual characteristics of the aging

microenvironment and immune response, and its AUC in
Frontiers in Immunology 14
independent cohorts is significantly better than traditional

clinical parameters (Figures 2K, 3M). More importantly, SIM

can directly predict immunotherapy response (Figures 4H, 7A,

B), providing new guidance for the precise stratification

of immunotherapy.
FIGURE 6

SIM and drug response prediction. (A) GSEA results were used to present drug-related signaling pathway gene sets enriched in high-risk subgroups.
(B) GSEA results were used to present drug-related signaling pathway gene sets enriched in low-risk subgroups. (C) Analysis of differences in
sensitivity between the two risk subgroups to commonly used chemotherapy drugs in clinical practice. (D) Prediction of small molecule drugs that
are more sensitive in high-risk subgroups. (E) Prediction of small molecule drugs that are more sensitive in low-risk subgroups.
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FIGURE 7

Analyzing SIM in the real world. (A) Differences in the senescence-related and immunotherapy-related model scores (SIMS) among patients with
different immunotherapy responses in the real world. (B) Differences in the SIMS among patients with different immunotherapy responses in
IMvigor210 and GSE78220. (C) Differences in risk scores among three types of patients in the IMvigor210 database. (D) In the real world, KM survival
curves are used to confirm that patients in high-risk subgroups have lower overall survival and worse prognosis. (E) The results of PCR were used to
present the expression of 5 genes in the model. (F) Immunohistochemistry results show the expression of 5 genes in the model in 10 patients (5 in
the response group and 5 in the non-response group). The figure shows a representative image, and the scale bar is 100 mm. (*p<0.05; **p<0.01;
***p<0.001).
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FIGURE 8

PPIL3 inhibited proliferation and promoted senescence of bladder cancer cells. (A)The results of western blot showed that PPIL3 expression was
decreased in Bca cell lines. (B) The results of western blot showed that the PPIL3 stable overexpression cell lines we constructed was successfully
constructed. (C) The results of CCK8 showed that the proliferation and survival ability of PPIL3 stably overexpressing cell lines was inhibited. (D) The
results of plate cloning results showed that the clone formation ability of PPIL3 stably overexpressing cell lines was inhibited. (E) 5-Ethynyl-2’-
deoxyuridine (EdU) assay for measuring the proliferation ability of T24 cells and UMUC3 cells PPIL3 overexpression or not. The cell proliferation
ability of the PPIL3-overexpressing groups was significantly lower than the control groups. (Student’s t test; *p<0.05; **p<0.01; ***p<0.001.) The
scale bar is 100 mm. (F) We measured the senescence marker b-galactosidase in T24 and UMUC3 cells after PPIL3 overexpression. The results
indicated that elevated expression of PPIL3 facilitated the process of cellular senescence in Bca cells. The scale bar is 50 mm.
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Cell senescence is a complex biological process, which is usually

caused by stress, damage or proliferation stimulation of cells. In

addition to their role in normal physiological processes, senescent

cells greatly affect tumor growth and the immune microenvironment

(21). Over the recent years, a rising amount of research has

demonstrated that senescent cells play a dual role in the TME,

which may inhibit the occurrence of tumors and facilitate the

advancement of tumors (33–35). Therefore, exploring the intrinsic

relationship between cell senescence and TME can provide a

comprehensive solution for tumor treatment research.

Emerging drugs control cancer progression by enhancing

oxidative stress-induced senescence (36). Albumin-paclitaxel has

an important effect on cell cycle and cell senescence. At the same

time, our previous studies have found that low-dose albumin-

paclitaxel combined with immunotherapy has a good therapeutic

effect in the treatment of Bca (37, 38), so our research subjects are

Bca patients who choose a low-dose nab-paclitaxel combined with

tislelizumab treatment regimen. Nonetheless, systematic and

comprehensive studies on the inherent synergistic mechanism

between chemotherapy and immunotherapy are still lacking.

Chemotherapy or radiotherapy can induce cancer cell senescence.

Low-dose chemotherapy leads to the senescence state of tumor cells,

while high-dose chemotherapy induces cell apoptosis (39). We

jointly analyzed senescence-related genes and genes obtained

from immunotherapy response sequencing, and finally obtained

the SRDEGs.

Next, we found five key genes for constructing the model

through multivariate COX regression, which are BMP6, FN1,

PPIL3, CD274 and HOXB5. BMP6 and FN1 are risk factors of

the model, while PPIL3, CD274 and HOXB5 are protective factors

of the model. The role of BMP6 is significant in a range of biological

processes, including bone formation, cell differentiation,

proliferation, and apoptosis. BMP6 is fundamental components of

the senescent secretome, necessary for the paracrine induction of

senescence and identified as dormancy drivers (40). Moreover,

BMP6 has been implicated in the TME, particularly in melanoma.

Research indicates that increased BMP6 expression in melanoma

cells can modulate the tumor milieu by inhibiting dermal mast cell

recruitment, which in turn affects tumor progression (41). FN1 is a

glycoprotein widely present in the extracellular matrix and

contributes significantly to biological processes such as cell

adhesion, senescence (42), migration, proliferation and

differentiation. Research indicates that FN1 significantly promotes

the invasive and metastatic abilities of gastric cancer cells (43).

PPIL3 is a protein belonging to the cyclophilin family, a class of

enzymes that catalyze the cis-trans isomerization of proline residues

in peptide chains and are involved in a variety of intracellular

processes, including protein folding, signal transduction, and

immune regulation (44). Studies have revealed that the expression

of PPIL3 is significantly connected with OS of breast cancer (45).

CD274, a protein important for immune regulation, is chiefly

located on the surface of antigen-presenting cells, tumor cells, and

different cell types. Although there are many studies on the role of

CD274 in tumor immunity, for example, the expression of CD274

can inhibit anti-tumor immunity, especially by interacting with the
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PD-1 receptor on T cells, thereby reducing the activity and efficacy

of T cells (46). Senescent cells tend to accumulate in the TME and

evade immune surveillance by upregulating CD274, thereby

promoting tumor progression (47). However, there are still new

discoveries worth studying and thinking about. For example,

CD274 can bind DNA, thereby controlling different pathways

related to escaping immune surveillance or inflammation in the

TME, playing a dual role (48). The transcription factor HOXB5,

which belongs to the Homeobox gene family, has a significant role

in the regulation of cell differentiation, tissue formation, and organ

development. The expression of HOXB5 is closely associated with

the metastasis of colorectal cancer (49), breast cancer (50), and

hepatocellular carcinoma (51).

Next, we categorized the patients into a high-SIMS subgroup

and a low-SIMS subgroup in accordance with the SIMS of the SIM,

and further explored the intrinsic mechanism of the model in

predicting Bca OS by using the DEGs between the two groups.

Through bioinformatics analysis, we found that the immune

infiltration score and stromal score of the TME in the high-SIMS

group were notably higher than those in the low-SIMS group. To

further explore the intrinsic cellular differences in the TME between

the two groups of patients, we used 8 different algorithms to obtain

the scores of each cell in each patient. We found that the infiltration

ratios of CD4+T cells, CD8+T cells and activated NK cells in the

TME of patients in the low SIMS group were large, while the

infiltration ratios of M2 macrophages, CAFs and Tregs in the TME

of patients in the high-SIMS group were large. On the one hand,

CD4+ T cells (52), CD8+ T cells (53), and activated NK cells (54)

play crucial roles in the TME, and they are essential for

orchestrating immune responses and can promote immunity,

influencing the efficiency of cancer immunotherapy. On the other

hand, CAFs-derived IL-6 has been shown to cooperate with GM-

CSF to induce M2-TAMs, which are associated with

immunosuppressive functions (55). M2 macrophages, in turn, can

further enhance the recruitment and activation of Tregs, creating a

feedback loop that reinforces the immunosuppressive TME (56). In

conclusion, we believe that patients in the high-SIMS group

presented a more suppressive TME than those in the low-SIMS

group, which was associated with their worse OS.

We continued to investigate the differences in response to

immunotherapy between the two groups and found that patients

in the high-SIMS subgroup had higher immune exclusion scores

and immune dysfunction scores than those in the low-SIMS

subgroup, but lower MSI scores. Consistent with our

expectations, patients belonging to the low-SIMS subgroup had a

higher likelihood of benefiting from immunotherapy. More

importantly, compared with other information, our SIM served as

the most effective independent predictor of patients’ responses

to immunotherapy.

Given that the low-SIMS subgroup had a lower MSI score, we

further explored the differences in genomic mutations between the

two groups using bioinformatics algorithms. Recent studies have

demonstrated that tumors exhibiting high levels of MSI often

correlate with high TMB, which can enhance the likelihood of a

favorable reaction to treatments aimed at the PD-1/PD-L1 pathway
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1613056
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Du et al. 10.3389/fimmu.2025.1613056
(57). High TMB is associated with a greater likelihood of generating

neoantigens, which can boost the immune system’s power to

identify and destroy tumor cells (58). Higher TMB in the low-

SIMS group may be the key to better response to immunotherapy.

The genomic landscape characterized by clonal heterogeneity

and the regulation of mRNA stability (59) are key drivers of the

development of drug resistance in Bca (60). Xie R et al.’s study (61)

revealed the mechanism of NAT10-mediated mRNA stabilization

in Bca, laying the foundation for Nat10 as a therapeutic target to

overcome cisplatin resistance in Bca. Considering that the high

SIMS subgroup has lower sensitivity to first-line or commonly used

chemotherapy drugs such as cisplatin, gemcitabine, and paclitaxel,

we then looked for small molecule drugs to which patients in the

high-SIMS subgroup exhibited increased sensitivity, including

olaparib, JAK_8517_1739, staurosporine, and sunitinib. Olaparib

is a poly (ADP-ribose) polymerase (PARP) inhibitor that has been

used in the treatment of prostate cancer (62), breast cancer (63) and

other cancers. JAK_8517_1739, staurosporine, and sunitinib are

different kinase inhibitors, and these small molecule drugs are

expected to become ideal treatment options for patients in the

high-SIMS subgroup. In addition, we discovered that patients in the

low-SIMS subgroup were sensitive to erlotinib, irinotecan,

leflunomide, and narciclasine.

Finally, we validated the prediction of SIM for patients’

response to immunotherapy in real-world and online databases,

and verified the expression of genes in SIM in different tissues of

different Bca patients in the real world. At the same time, we

explored the important role of PPIL3 in inducing senescence and

inhibiting proliferation of Bca cells in vitro.

Of course, some limitations are also present in this study. This

study is only a single-center study in the real world and lacks multi-

center large-sample verification. Secondly, there is a lack of relevant

cell experimental verification and more detailed mechanism

research on the effect of gene expression in SIM on OS of Bca.

In general, our study has obtained a prediction model related to

senescence and immunity to predict the OS and treatment response

of Bca patients, which has important guiding significance for the

exploration of treatment options. At the same time, our results

revealed that PPIL3 is expected to become an important target for

the treatment and prognosis of Bca.
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SUPPLEMENTARY TABLE 1

The information of primers and antibodies used in the experiments.

SUPPLEMENTARY TABLE 2

The information of differentially expressed genes (DEGs) from sequencing

data analysis results.

SUPPLEMENTARY TABLE 3

The information of senescence-related datasets.

SUPPLEMENTARY FIGURE 1

(A) The Delta area chart was used to explore the relative change in the area

under the cumulative distribution function curve when comparing k and k-1. (B)
The Tracking Plot was utilized to examine the variations in the sample class

across different values of k. In this plot, the columns represented the samples,
the rows indicated each k value, and the colors denoted the categories within

the consistency matrix. (C) Heatmap of the consistency matrix with k value

(number of categories) equal to 4. (D) The Two-dimensional scatter plot was
used to explore the distribution differences among three groups of patients. (E)
Distribution of correlation between senescence-related and immunotherapy-
related model scores (SIMS) and patients' clinical information. The SIMS was

significantly correlated with the T stage, N stage, M stage, clinical stage, and
lymphovascular invasion. (F) The ROCcurvewas used to describe the predictive

value of the SIM for patients at 1-, 3-, and 5-years in GSE 13507 dataset. (G) The
ROC curve was used to describe the predictive value of the SIM and other
clinical factors for patients in GSE 13507 dataset.
Frontiers in Immunology 19
SUPPLEMENTARY FIGURE 2

Univariate Cox regression analysis was used to construct senescence-related

and immunotherapy-related models to predict the overall survival of Bca

patients. The Forest plots were used to show protective genes among the
differentially responsive genes to immunotherapy associated with aging, which

were positively correlated with the overall survival of patients.

SUPPLEMENTARY FIGURE 3

Construction and mechanism exploration of senescence-related and

immunotherapy response-related models. (A) The Forest plots were used

to show risk genes among the differentially responsive genes to
immunotherapy associated with aging, which were negatively correlated

with the overall survival of patients. (B) GSEA results were used to present
immune-related signaling pathway gene sets enriched in high-risk

subgroups. (C) GSEA results were used to present immune-related
signaling pathway gene sets enriched in low-risk subgroups.

SUPPLEMENTARY FIGURE 4

Different algorithms were used to calculate the proportion of immune cell

infiltration in Bca patients. (A) QUANTISEQ algorithm. (B) ImmuCell AI
algorithm. (C) CIBERSORT.ABS algorithm. (D) EPIC algorithm. (E)
MCPCOUNTER algorithm. (F) TIMER algorithm. (F) Xcell algorithm.

SUPPLEMENTARY FIGURE 5

The results of western blot showed that the expression of P16 and P21 in the
PPIL3 stable overexpression cell lines.
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patients with bacillus calmette-guérin-exposed high-risk non-muscle-invasive bladder
cancer. Eur Urol. (2022) 82:34–46. doi: 10.1016/j.eururo.2021.12.005

6. Giacalone NJ, Shipley WU, Clayman RH, Niemierko A, Drumm M, Heney NM,
et al. Long-term outcomes after bladder-preserving tri-modality therapy for patients
with muscle-invasive bladder cancer: an updated analysis of the massachusetts general
hospital experience. Eur Urol. (2017) 71:952–60. doi: 10.1016/j.eururo.2016.12.020

7. Naito T, Higuchi T, Shimada Y, Kakinuma C. An improved mouse orthotopic
bladder cancer model exhibiting progression and treatment response characteristics of
human recurrent bladder cancer. Oncol Lett. (2020) 19:833–9. doi: 10.3892/
ol.2019.11172

8. Hong X, Chen X, Wang H, Xu Q, Xiao K, Zhang Y, et al. A HER2-targeted
antibody-drug conjugate, RC48-ADC, exerted promising antitumor efficacy and safety
with intravesical instillation in preclinical models of bladder cancer. Adv Sci (Weinh).
(2023) 10:e2302377. doi: 10.1002/advs.202302377

9. Bellmunt J, de Wit R, Vaughn DJ, Fradet Y, Lee JL, Fong L, et al. Pembrolizumab
as second-line therapy for advanced urothelial carcinoma. New Engl J Med. (2017)
376:1015–26. doi: 10.1056/NEJMoa1613683

10. Avelumab outduels supportive care for urothelial cancer. Cancer Discov. (2020)
10:Of4. doi: 10.1158/2159-8290.CD-NB2020-049

11. Balar AV, Galsky MD, Rosenberg JE, Powles T, Petrylak DP, Bellmunt J, et al.
Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally
advanced and metastatic urothelial carcinoma: a single-arm, multicentre, phase 2
trial. Lancet (London England). (2017) 389:67–76. doi: 10.1016/S0140-6736(16)32455-2

12. Wang DR, Wu XL, Sun YL. Therapeutic targets and biomarkers of tumor
immunotherapy: response versus non-response. Signal transduction targeted Ther.
(2022) 7:331. doi: 10.1038/s41392-022-01136-2
13. Paulson KG, Voillet V, McAfee MS, Hunter DS, Wagener FD, Perdicchio M,
et al. Acquired cancer resistance to combination immunotherapy from transcriptional
loss of class I HLA. Nat Commun. (2018) 9:3868. doi: 10.1038/s41467-018-06300-3

14. Wu Q, Zhou L, Lv D, Zhu X, Tang H. Exosome-mediated communication in the
tumor microenvironment contributes to hepatocellular carcinoma development and
progression. J Hematol Oncol. (2019) 12:53. doi: 10.1186/s13045-019-0739-0

15. Li D, Shao F, Yu Q, Wu R, Tuo Z, Wang J, et al. The complex interplay of tumor-
infiltrating cells in driving therapeutic resistance pathways. Cell Commun Signal. (2024)
22:405. doi: 10.1186/s12964-024-01776-7

16. Swartz MA, Iida N, Roberts EW, Sangaletti S, Wong MH, Yull FE, et al. Tumor
microenvironment complexity: emerging roles in cancer therapy. Cancer Res. (2012)
72:2473–80. doi: 10.1158/0008-5472.CAN-12-0122

17. Brown JM, Recht L, Strober S. The promise of targeting macrophages in cancer
therapy. Clin Cancer research: an Off J Am Assoc Cancer Res. (2017) 23:3241–50.
doi: 10.1158/1078-0432.CCR-16-3122

18. Xiao Y, Yu D. Tumor microenvironment as a therapeutic target in cancer.
Pharmacol Ther. (2021) 221:107753. doi: 10.1016/j.pharmthera.2020.107753
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senescence in cancer stemness and tumor dormancy. Cells. (2020) 9(2):346.
doi: 10.3390/cells9020346

41. Stieglitz D, Lamm S, Braig S, Feuerer L, Kuphal S, Dietrich P, et al. BMP6-
induced modulation of the tumor micro-milieu. Oncogene. (2019) 38:609–21.
doi: 10.1038/s41388-018-0475-x

42. Latorre E, Pilling LC, Lee BP, Bandinelli S, Melzer D, Ferrucci L, et al. The
VEGFA(156)b isoform is dysregulated in senescent endothelial cells and may be
associated with prevalent and incident coronary heart disease. Clin Sci (London
England: 1979). (2018) 132:313–25. doi: 10.1042/CS20171556

43. Pan S, Zhu J, Liu P, Wei Q, Zhang S, AnW, et al. FN1 mRNA 3'-UTR supersedes
traditional fibronectin 1 in facilitating the invasion and metastasis of gastric cancer
through the FN1 3'-UTR-let-7i-5p-THBS1 axis. Theranostics. (2023) 13:5130–50.
doi: 10.7150/thno.82492

44. de Almeida L, Khare S, Misharin AV, Patel R, Ratsimandresy RA, Wallin MC,
et al. The PYRIN domain-only protein POP1 inhibits inflammasome assembly and
ameliorates inflammatory disease. Immunity. (2015) 43:264–76. doi: 10.1016/
j.immuni.2015.07.018
Frontiers in Immunology 20
45. An J, Luo Z, An W, Cao D, Ma J, Liu Z. Identification of spliceosome
components pivotal to breast cancer survival. RNA Biol. (2021) 18:833–42.
doi: 10.1080/15476286.2020.1822636

46. Masugi Y, Nishihara R, Yang J, Mima K, da Silva A, Shi Y, et al. Tumour CD274
(PD-L1) expression and T cells in colorectal cancer. Gut. (2017) 66:1463–73.
doi: 10.1136/gutjnl-2016-311421

47. Majewska J, Agrawal A, Mayo A, Roitman L, Chatterjee R, Sekeresova Kralova J,
et al. p16-dependent increase of PD-L1 stability regulates immunosurveillance of
senescent cells. Nat Cell Biol. (2024) 26:1336–45. doi: 10.1038/s41556-024-01465-0

48. Gao Y, Nihira NT, Bu X, Chu C, Zhang J, Kolodziejczyk A, et al. Acetylation-
dependent regulation of PD-L1 nuclear translocation dictates the efficacy of anti-PD-1
immunotherapy. Nat Cell Biol. (2020) 22:1064–75. doi: 10.1038/s41556-020-0562-4

49. Feng W, Huang W, Chen J, Qiao C, Liu D, Ji X, et al. CXCL12-mediated HOXB5
overexpression facilitates Colorectal Cancer metastasis through transactivating CXCR4
and ITGB3. Theranostics. (2021) 11:2612–33. doi: 10.7150/thno.52199

50. Lee JY, Hur H, Yun HJ, Kim Y, Yang S, Kim SI, et al. HOXB5 promotes the
proliferation and invasion of breast cancer cells. Int J Biol Sci. (2015) 11:701–11.
doi: 10.7150/ijbs.11431

51. He Q, Huang W, Liu D, Zhang T, Wang Y, Ji X, et al. Homeobox B5 promotes
metastasis and poor prognosis in Hepatocellular Carcinoma, via FGFR4 and CXCL1
upregulation. Theranostics. (2021) 11:5759–77. doi: 10.7150/thno.57659

52. Espinosa-Carrasco G, Chiu E, Scrivo A, Zumbo P, Dave A, Betel D, et al.
Intratumoral immune triads are required for immunotherapy-mediated elimination of
solid tumors. Cancer Cell. (2024) 42(7):1202–16. doi: 10.1016/j.ccell.2024.05.025

53. Lise V, Malenica I, Roychoudhuri R, Lugli E. Immune cell triads reprogram
exhausted CD8(+) T cells for effective tumor elimination. Cancer Cell. (2024) 42:1152–
4. doi: 10.1016/j.ccell.2024.06.010

54. Duan S, Guo W, Xu Z, He Y, Liang C, Mo Y, et al. Natural killer group 2D
receptor and its ligands in cancer immune escape. Mol Cancer. (2019) 18:29.
doi: 10.1186/s12943-019-0956-8

55. Iorio V, De Marco M, Basile A, Eletto D, Capunzo M, Remondelli P, et al. CAF-
derived IL6 and GM-CSF cooperate to induce M2-like TAMs-letter. Clin Cancer research:
an Off J Am Assoc Cancer Res. (2019) 25:892–3. doi: 10.1158/1078-0432.CCR-18-2455

56. Zhang R, Qi F, Zhao F, Li G, Shao S, Zhang X, et al. Cancer-associated fibroblasts
enhance tumor-associated macrophages enrichment and suppress NK cells function in
colorectal cancer. Cell Death Dis. (2019) 10:273. doi: 10.1038/s41419-019-1435-2

57. Wilbur HC, Le DT, Agarwal P. Immunotherapy of MSI cancer: facts and hopes.
Clin Cancer research: an Off J Am Assoc Cancer Res. (2024) 30:1438–47. doi: 10.1158/
1078-0432.CCR-21-1935

58. Palmeri M, Mehnert J, Silk AW, Jabbour SK, Ganesan S, Popli P, et al. Real-
world application of tumor mutational burden-high (TMB-high) and microsatellite
instability (MSI) confirms their utility as immunotherapy biomarkers. ESMO Open.
(2022) 7:100336. doi: 10.1016/j.esmoop.2021.100336

59. Cheng L, Yang C, Lu J, HuangM, Xie R, Lynch S, et al. Oncogenic SLC2A11-MIF
fusion protein interacts with polypyrimidine tract binding protein 1 to facilitate bladder
cancer proliferation and metastasis by regulating mRNA stability. MedComm (2020).
(2024) 5:e685. doi: 10.1002/mco2.v5.9

60. Tuo Z, Zhang Y, Li D, Wang Y, Wu R, Wang J, et al. Relationship between clonal
evolution and drug resistance in bladder cancer: A genomic research review. Pharmacol
Res. (2024) 206:107302. doi: 10.1016/j.phrs.2024.107302

61. Xie R, Cheng L, Huang M, Huang L, Chen Z, Zhang Q, et al. NAT10 drives
cisplatin chemoresistance by enhancing ac4C-associated DNA repair in bladder cancer.
Cancer Res. (2023) 83:1666–83. doi: 10.1158/0008-5472.CAN-22-2233

62. Karzai F, VanderWeele D, Madan RA, Owens H, Cordes LM, Hankin A, et al.
Activity of durvalumab plus olaparib in metastatic castration-resistant prostate cancer
in men with and without DNA damage repair mutations. J immunotherapy Cancer.
(2018) 6:141. doi: 10.1186/s40425-018-0463-2

63. Robson M, Im SA, Senkus E, Xu B, Domchek SM, Masuda N, et al. Olaparib for
metastatic breast cancer in patients with a germline BRCA mutation. New Engl J Med.
(2017) 377:523–33. doi: 10.1056/NEJMoa1706450
frontiersin.org

https://doi.org/10.1177/0962280219856238
https://doi.org/10.1186/s13148-019-0730-1
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1101/gr.239244.118
https://doi.org/10.1016/j.xcrm.2020.100020
https://doi.org/10.1016/j.annonc.2024.06.014
https://doi.org/10.1016/j.annonc.2024.06.014
https://doi.org/10.1002/cac2.12591
https://doi.org/10.1016/j.redox.2020.101614
https://doi.org/10.34133/research.0612
https://doi.org/10.1016/j.redox.2024.103208
https://doi.org/10.1016/j.euo.2024.04.020
https://doi.org/10.1016/j.euo.2024.04.020
https://doi.org/10.1158/1078-0432.CCR-24-3321
https://doi.org/10.1158/1078-0432.CCR-24-3321
https://doi.org/10.1038/s41568-022-00450-9
https://doi.org/10.3390/cells9020346
https://doi.org/10.1038/s41388-018-0475-x
https://doi.org/10.1042/CS20171556
https://doi.org/10.7150/thno.82492
https://doi.org/10.1016/j.immuni.2015.07.018
https://doi.org/10.1016/j.immuni.2015.07.018
https://doi.org/10.1080/15476286.2020.1822636
https://doi.org/10.1136/gutjnl-2016-311421
https://doi.org/10.1038/s41556-024-01465-0
https://doi.org/10.1038/s41556-020-0562-4
https://doi.org/10.7150/thno.52199
https://doi.org/10.7150/ijbs.11431
https://doi.org/10.7150/thno.57659
https://doi.org/10.1016/j.ccell.2024.05.025
https://doi.org/10.1016/j.ccell.2024.06.010
https://doi.org/10.1186/s12943-019-0956-8
https://doi.org/10.1158/1078-0432.CCR-18-2455
https://doi.org/10.1038/s41419-019-1435-2
https://doi.org/10.1158/1078-0432.CCR-21-1935
https://doi.org/10.1158/1078-0432.CCR-21-1935
https://doi.org/10.1016/j.esmoop.2021.100336
https://doi.org/10.1002/mco2.v5.9
https://doi.org/10.1016/j.phrs.2024.107302
https://doi.org/10.1158/0008-5472.CAN-22-2233
https://doi.org/10.1186/s40425-018-0463-2
https://doi.org/10.1056/NEJMoa1706450
https://doi.org/10.3389/fimmu.2025.1613056
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Senescence-associated signature based on immunotherapy response sequencing reveals PPIL3 as target for bladder cancer treatment and prognosis prediction
	Introduction
	Materials and methods
	Data acquisition
	Patient information
	Transcriptome sequencing
	Cell culture and transfection
	Quantitative real-time PCR
	Western blot
	Cell counting Kit-8 assay
	Colony formation assay
	EdU assay
	Immunohistochemistry
	Differential gene analysis
	Unsupervised cluster analysis
	Lasso regression analysis
	Cox regression analysis
	Survival analysis
	Model performance evaluation
	Gene expression plots and enrichment analysis
	Tumor microenvironment analysis
	Gene mutation analysis
	Drug sensitivity analysis

	Results
	Identification of senescence-related differentially expressed genes of immunotherapy response sequencing in Bca
	Construction of a senescence-related and immunotherapy related model to predict overall survival in Bca patients
	The accuracy of the SIM was verified by three independent databases
	Link between SIM and tumor microenvironment
	The relationship between SIM and tumor gene mutation
	SIM and drug response prediction
	Analyzing SIM in the real world
	PPIL3 inhibited proliferation and promoted senescence of Bca cells

	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References


