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Exosomes are nanoscale, double-membraned vesicles released by a variety of living

cells. Awide variety of cargoes, including proteins, DNA and RNA, are transported by

exosomes to target cells, thereby transmitting biological signals. In addition to being

an essential component of the exosomal cargo, exosomal proteins are a reflection

of the physiological state of the originating cell, and play an essential part in

intercellular communication in numerous diseases, including cancer. The present

review provides a summary of the novel uses of exosomal proteins in cancer

diagnosis and prognosis, and highlights the distinct qualities that exosomal proteins

possess, when compared with typical serological measurements.
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1 Introduction

Cancer is a leading cause of death worldwide. At present, tissue biopsy is considered the

gold standard method for the clinical diagnosis of cancer. However, tissue collection may be

complex, due to the close proximity of some tumors to major arteries in the body. In addition,

obtaining tumor tissues from a specific location may not accurately represent the overall health

of the patient (1). By contrast, liquid biopsies, which include biopsies of circulating tumor cells

(CTCs), free DNA (cfDNA) and exosomes, provide further information regarding the status of

the tumor, and do not require invasive procedures (2). This information may be obtained

through frequent non-invasive sampling, which aids in the diagnosis of cancer and monitoring

the pathophysiologic condition of the patient (3, 4).

Exosomes are biologically active extracellular vesicles that range from 50–200

nanometers in size, and are produced by live cells (5). Exosomes are located in the

majority of bodily fluids, including urine, blood, saliva, ascites, breast milk, amniotic fluid

and cerebrospinal fluid (6). Exosomes are responsible for transporting a variety of

substances (7, 8), including proteins, nucleic acids, lipids, enzymes and metabolites, and
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2025.1613494/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1613494/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1613494/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2025.1613494&domain=pdf&date_stamp=2025-06-19
mailto:18329037521@163.com
mailto:aa3716340@163.com
https://doi.org/10.3389/fimmu.2025.1613494
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2025.1613494
https://www.frontiersin.org/journals/immunology


Shen et al. 10.3389/fimmu.2025.1613494
these are regulated by the physiology of the original cell (9). Several

mechanisms, including direct fusion with cell membranes,

endocytosis routes and ligand-receptor interactions, are involved

in the process of intercellular communication (10–12). Notably,

exosomes may play a role in intercellular communication.

As tumor cells are primarily responsible for the production of

tumor-derived exosomes that contain chemicals which reflect the

properties of the parental tumor cells (13), they may exhibit

potential as diagnostic markers for tumors (14). Importantly,

liquid biopsy of exosomes may be more useful than CTC or

circulating tumor DNA (ctDNA), as there is a large volume of

exosomes in bodily fluids (up to 1011 exosomes per ml in blood),

making them easier to detect. In addition, ~10% of exosomes

detected in the bodily fluids of individuals who have advanced

malignancies originate from tumor cells (15). At present, research is

focused on exosomal RNAs, including microRNAs, circular RNAs

(circRNA) and long non-coding RNAs (16–18). Exosomal proteins

are either encased inside an inner lumen or embedded on the

surface of the exosome. This allows for the categorization of

exosome subtypes based on surface biomarkers, without causing

any disruption to the structure of the exosomes. Compared with

alternate exosomal cargoes, exosomal proteins exhibit numerous

advantages, including i) a long half-life and stability inside the

exosomes in which they are found (19), and ii) a relatively

straightforward isolation procedure, due to identification of

exosomal surface proteins in smaller sample sizes (20–22).

Through the use of proteomics, protein coverage and sensitivity

have been significantly enhanced, which has led to an increase in the

breadth of exosomal proteomics data surrounding cancer causation,

function and disease association (23). Further investigations are

required to determine the specific process of carcinogenesis and the

advancement of cancer. The present study aimed to provide a
Frontiers in Immunology 02
summary of the diagnostic and prognostic functions that exosomal

proteins play in a variety of malignancies, and demonstrate the

potential uses of exosomal proteins in clinical cancer treatment.
2 Biogenesis of exosomes

Extracellular vesicles (EVs) are a collective name that refers to

nanoscale vesicles that are actively released by cells (24). Exosomes

are formed through the fusion of multi-vesicular vesicles with the

cell membrane, with a diameter of 50–200 nm, and microvesicles

are formed through the direct outgrowth of the cell membrane, with

a diameter of 200-2,000 nm. Moreover, apoptotic vesicles are

formed through the shrinkage and fragmentation of apoptotic

cells, with a diameter of 500-2,000 nm (25) (Figure 1A).

In 1983, exosomes were initially isolated from sheep

reticulocytes. Through the investigation of the transferrin receptor

during the maturation of reticulocytes, Johnston et al. discovered

that the mechanism of the transferrin receptor is lost when

exosomes are created during the maturation of erythrocytes (26).

There are a variety of cell types that are capable of actively

producing exosomes, including human umbilical vein endothelial

cells, reticulocytes and immune cells, such as lymphocytes,

macrophages, dendritic cells, natural killer cells, stem cells,

endothelial cells and neuronal cells (27–30). Exosomes may be

produced under both healthy and pathological conditions, and

exosomal development includes initiation, endocytosis, the

creation of multivesicular bodies and release. The creation of

exosomes begins with the endocytosis of vesicles, leading to the

development of early sorting endosomes via the invagination of the

cell membrane. Subsequently, these endosomes evolve into late

sorting endosomes (31), and these bud inward to form
FIGURE 1

Biogenesis and composition of exosomes. (A) Origin of exosomes. First, plasma membrane invagination of donor cells forms early endosomes,
which further mature into late endosomes. During the maturation, the membrane of early endosomes invaginates inwardly to form ILVs. Endosomes
with ILVs are often referred to as MVBs. When MVBs fuse with the plasma membrane, ILVs are released into the extracellular space and termed as
exosomes. (B) Common proteins of exosomes. Tetraspanin proteins (CD9, CD63, CD81), PD-L1, Integrins; Wnt protein, ALIX, Syntenin, HSPs, GPC1,
Rabs, Flotillin, etc.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1613494
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Shen et al. 10.3389/fimmu.2025.1613494
multivesicular bodies (MVBs). MVBs ultimately fuse with the

plasma membrane and discharge their contents into the

extracellular environment, and these are referred to as exosomes

(Figure 1A). Moreover, released exosomes may be directed to other

cells using a variety of cell surface proteins, including tetraspanning

proteins (32–34).

Endosomal sorting complexes (ESCRT) are required for

translocation-dependent processes. Significantly, ESCRT and non-

ESCRT mechanisms (35) play a key role in the production of

exosomes. ESCRT-0, ESCRT-I, ESCRT-II and ESCRT-III are the

four functional subcomplexes involved in the ESCRT mechanism,

and this is comprised of ~30 proteins. Particularly, the

aforementioned subcomplexes are required for exosomal

biogenesis. Lipids and associated proteins, such as the

transmembrane tetraprotein CD63, play key roles in the ESCRT

pathway, and these do not require any other proteins. Results of

previous studies demonstrated that specific structures, such as lipid

rafts and proteins with a four-transmembrane structural domain,

may play a crucial role in the creation of certain exosomes (36, 37).

Notably, exosomes transfer information to receptor cells via three

primary routes (Figure 2); namely, i) Receptor-ligand interactions;

ii) direct fusion with the cell membrane; and iii) endocytosis

via phagocytosis.
3 Proteins of exosomes

At present, research is focused on exosomal proteins due to

their unique biological functions and the key roles that they play in

regulating the tumor microenvironment (TME). Some exosomal

proteins are embedded on the surface of the membrane, and some

are completely encased in the membrane (Figure 1B). Importantly,

certain proteins, such as CD63, TSG101 and Alix, have been

recognized as biomarkers for exosomes, while others, such as

Calnexin, may function as negative markers for exosome

identification (38). Specific proteins on exosomes, such as

epidermal growth factor receptor (EGFR), Ephrin type-A receptor
Frontiers in Immunology 03
2 (EphA2) and Epithelial cell adhesion molecule (EpCAM), are

increasingly used to distinguish between tumor-derived exosomes

and non-tumor-derived exosomes (39). Metastatic ovarian cancer

cells release numerous exosomes carrying E-cadherin, which is an

inducer of angiogenesis (40). Expression levels of exosomal

lipopolysaccharide-binding protein and E-cadherin were used to

identify non-small cell lung cancer (NSCLC) and ovarian cancer

cells with metastatic phenotypes (41). Results of a previous study

revealed that in patients with head and neck squamous cell

carcinoma, exosomal Programmed cell death ligand 1 (PD-L1)

expression levels were associated with disease progression, UICC

stage and lymph node invasion (42). Moreover, the detection of PD-

L1 positive exosomes in blood samples from patients with

pancreatic ductal adenocarcinoma was associated with poorer

survival (43). As a key immune checkpoint molecule, the

expression levels of PD-L1 directly reflect the ability of tumor

cells to evade immune surveillance. It has been found that

revealed that PD-L1 inhibits T cell function and promotes

immune escape through binding to PD-1 on the surface of T cells

(44). In addition, epigenetic studies revealed that the demethylation

status of the PD-L1 promoter is positively correlated with its

expression levels (45). Collectively, these studies suggest that

exosomal surface proteins may exhibit potential in the diagnosis

and prognosis prediction of cancer; thus, exhibiting potential in

monitoring treatment response. In addition, exosomal surface

proteins may contribute to further understanding the

mechanisms underlying exosome biogenesis (46–51), targeting

(52, 53) and interaction (54–57). The main types of exosomal

surface proteins and their functions are displayed in Table 1.
4 Function of exosomes in cancer

Research has focused on the role of exosomes in tumors due to

the key role they play in intercellular communication. Exosomes

that originate from tumor cells or stromal cells are associated with

all phases of cancer development. These stages include tumor
FIGURE 2

The way exosomes bind to receptor cells. Exosomes transmit information to receptor cells through three main pathways: (1) receptor-ligand
interactions, (2) direct fusion with the cell membrane, and (3) endocytosis via phagocytosis.
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growth and cell proliferation, the prevention of cell death,

angiogenesis, immune evasion, invasion and metastasis. It has

been shown that exosomes may play a key role in the intricate

biological interactions that take place between tumor cells and the

TME (58). Interestingly, there are numerous different

physiologically active chemicals that are carried by exosomes.

These compounds are critical signals for reprogramming the

TME for the induction of carcinogenesis (59). For example, delta-

like 4 protein (DLL4) plays a key role in the promotion of cancer-

associated TME alterations (60) and the expansion of vascular

branching. The presence of DLL4 in individuals with colorectal

cancer (CRC) may be associated with aggressiveness of the tumor

and negative clinical outcomes (61). Moreover, tumor cell-derived

exosomes may function as catalysts for epithelial-to-mesenchymal

transition (EMT) and tumor metastasis. This is accomplished by

stimulating quiescent cancer cells to actively metastasize via the use

of a wide range of signaling molecules, such as Notch1 and HIF1a
(62, 63). It has been shown that tumor-derived exosomes may assist

tumor cells in evading monitoring of the immune system,

developing resistance to chemotherapy and further promoting the

growth of the tumor. Results of previous studies revealed that
Frontiers in Immunology 04
tumor-derived exosomes decrease the cytotoxicity of natural killer

cells and cytotoxic T-lymphocytes. Particularly, these cells are

essential components of the immune response, which plays a key

role in preventing the growth of tumors (64, 65). Previous research

has shown that tumor-derived exosomes may promote the

polarization of immature macrophages into M2 macrophages and

exhibit anti-inflammatory activity, both of which are beneficial to

the continued spread of the tumor. Interestingly, angiogenesis is a

fundamental physiological process during carcinogenesis that

involves numerous steps. A wide range of angiogenic factors,

including vascular endothelial growth factor, interleukin,

transforming growth factor-b and fibroblast growth factor, are

located inside exosomes (66). These factors play a crucial role in

promoting the proliferation and migration of endothelial cells, and

are essential in the generation of tumor angiogenesis (67, 68).
5 Potential use of exosomal proteins
in the diagnosis of cancer

Given their disease-specific alterations, exosomal proteins have

emerged as potential biomarkers for cancer. Exosomes that are

produced from tumors carry a large amount of data regarding the

biology of cancer cells (69). Levels of exosomal proteins in patients

with cancer are considerably higher than those observed in healthy

individuals. As a result, the identification of proteins in exosomes is

sensitive and advantageous for the early diagnosis of cancer. Thus,

the identification of exosomal proteins may exhibit potential in the

diagnosis of cancer and in predicting patient prognosis (70). The

tumor-derived exosomal protein analysis process is displayed in

Figure 3, and Table 2 summarizes the exosomal proteins that may

exhibit potential as diagnostic markers in various tumors.
5.1 Digestive cancers, including colorectal
cancer, stomach, liver and pancreatic
cancer

Exosomes include a variety of proteins that may exhibit

potential as diagnostic markers for CRC. These proteins include

carcinoembryonic antigen (CEA), epidermal growth factor

receptor, mitogen-activated protein kinase and keratin (71).

Previous studies have found that these proteins may be used for

the diagnosis of CRC. In the previous study, Glypican-1+ (GPC1+)

exosomes were successfully separated from the tissues and plasma

of CRC. Compared with controls, the expression of GPC1+

exosomes were markedly higher in the tumor tissues and plasma

of patients with CRC prior to surgical treatment (72). CD147-

positive exosomes have been shown to be effective as a diagnostic

indicator for colorectal cancer, with an AUC of 0.827 (73). In

addition, exosomes produced from CRC cells have been subjected

to proteomic analysis, which revealed the unique expression of a

number of metastatic factors. Importantly, these factors include

hepatocyte growth factor receptor, S100A8, S100A9 and tenascin C

(74, 75). A histological examination of phosphorylated proteins in
TABLE 1 Exosomal surface proteins and their roles.

Exosomal proteins Roles References

Major histocompatibility
complex (MHC): MHC class I,
MHC class II

Antigen presentation to
induce an
immune response

(53)

Tetraspanins (CD9, CD63,
CD37, CD81, CD82, CD53)

Protein scaffolding and
anchoring in cellular
membranes. CD9, CD63,
and CD81 are present at
high levels in exosomes,
are often used as exosome
biomarkers, and can
influence exosome
biogenesis
and composition

(47, 48)

GTPase, Annexins, Flotillin,
Rab GTPases

Crucial in intracellular
vesicle transport,
including endosome
recycling and MVB
trafficking to lysosomes.
They can mediate
intraluminal vesicle
budding and tethering of
MVBs to the
plasma membrane

(49–51)

Glycoproteins (b-galactosidase,
O-linked glycans, N-
linked glycans)

Specifically interact with
receptors and enable the
specificity of
exosome targeting

(53, 54)

Fas ligand, TNF receptor,
Transferrin receptor

Exosome targeting and
signaling, including the
induction of apoptosis
and iron transport

(55, 56)

Integrin-a, integrin-b,
P-selectin

Mediate the interaction,
attachment, and
membrane fusion with the
target cell

(53)
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exosomes obtained from metastatic CRC cells revealed that the

levels of phosphorylated proteins in these exosomes were higher

than in those located in exosomes derived from non-metastatic

CRC cells (76, 77). Further investigations are required to determine
Frontiers in Immunology 05
the potential use of exosomal proteins in the detection and

treatment of CRC.

According to theWorld Cancer Report, gastric cancer (GC) is the

fourth most common cancer worldwide, and the second highest
TABLE 2 Exosomal proteins as potential diagnostic markers in various tumors.

Type of cancer Protein marker Sample
type

Isolation
technique

Diagnostic accuracy Reference

Colorectal cancer Glypican-1 Plasma Immunocapture assays N/A (72)

CD147 Serum Immunocapture assays AUC 0.82 (73)

Gastric cancer GKN1 Serum Ultracentrifugation Sensitivity 91.2%, specificity 96.0%,
AUC 0.94

(79)

HER2 Serum precipitation Sensitivity 66.7%, specificity 74.2%,
AUC 0.74

(83)

Pancreatic cancer Glypican-1 Serum Ultracentrifugation Sensitivity 100%, specificity 80%, AUC 1.0 (87)

EGFR and HER2 Serum Ultracentrifugation Sensitivity 85% (88)

Prostate cancer Transmembrane
protein 256

Urine Ultracentrifugation Sensitivity 94% (91)

Bladder cancer 56 proteins Urine Ultracentrifugation N/A (93)

Cvarian cancer Claudin-4 Plasma Ultracentrifugation Sensitivity 98%, specificity 51% (97)

Non-small cell
lung cancer

LRG1 Urine Ultracentrifugation N/A (101)

IGHV4-4 and IGLV1-40 Plasma Ultracentrifugation AUC0.95 (104)

Versican Plasma Test kit Sensitivity 65.1%, specificity 83.2%,
AUC 0.81

(105)

Breast cancer Fibronectin Plasma Immunoaffinity capture Sensitivity 85.4%, specificity 61.8%,
AUC 0.79

(105)

Melanoma Caveolin-1 Plasma Ultracentrifugation Sensitivity 68% (110)

Parkinson disease LRRK2 Urine Ultracentrifugation AUC 0.84 (112)
N/A, Not applicable; AUC, Area Under Curve.
FIGURE 3

Tumor-derived exosomal proteins were used as diagnostic markers. Exosomes were extracted from body fluids from tumor patients and analyzed by
Western Blotting, ELISA, proteomics and other exosomal proteins for diagnosis.
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cause of cancer-associated death (78). Yoon et al. revealed that the

blood GKN1 levels of healthy controls were markedly higher than

those of patients with GC. Especially, the sensitivity and specificity of

GC were 91.2 and 96.0%, respectively (79). In addition, results of a

previous study revealed that serum GKN1 levels may aid in

distinguishing individuals with CRC from those with CRC, liver,

lung, breast, pancreatic, ovarian or prostate cancers that exhibited

area under the curve (AUC) values of >0.94 (80). Interestingly,

exosomes produced from GC cells possess the ability to promote

activation of the NF-ÙB pathway in macrophages, leading to the

advancement of cancer (81). It has been found that the involvement

of exosomes carrying tetraspanin 8 may be associated with the

proliferation and invasion of cells in GC, and that tetraspanin 8 is

an independent factor in determining the prognosis of patients with

GC (82). Serum-derived exosomes of HER2 as a promising

biomarker for advanced gastric cancer had an area under the ROC

curve of 0.746, a sensitivity of 66.7% and a specificity of 74.2% (83).

Collectively, these results imply that exosomal proteins may exhibit

potential as diagnostic and prognostic indicators for GC.

When liver cancer is in its early stages, the symptoms that

patients experience are often non-specific, and late diagnosis leads

to limited treatment options. Protein levels in serum exosomes

obtained from patients with hepatocellular carcinoma (HCC) and a

healthy cohort were analyzed by Arbelaiz et al, who demonstrated

that the expression levels of G3BP and PIGR were significantly

elevated in patients with HCC. Moreover, exosomal proteins were

more effective than AFP in predicting HCC (84). Fu et al. revealed

that the amount of SMAD3-positive exosomes generated fromHCC

cells was positively correlated with the staging and pathologic

grading of HCC; however, this was negatively correlated with the

disease-free survival of patients with HCC following surgery (85). In

addition, 14-3–3 protein expression levels were associated with a

larger tumor size, poorer tumor differentiation and more advanced

TNM staging. Wang et al. revealed that the amount of exosomal 14-

3–3 proteins were elevated in HCC cell sources. Notably, 14-3–3

protein expression levels were also associated with increased tumor

size (86).

In addition, exosomal proteins may exhibit potential in the

pathological detection of pancreatic cancer (PC). Buscail et al.

revealed that exosomes produced from PC cells that were positive

for GPC1 exhibited a high level of accuracy, with an AUC of 1.0, a

sensitivity of 100% and a specificity of 80% (87). Combined

detection of the exosomal membrane proteins EGFR and HER2

improves the diagnostic sensitivity of pancreatic cancer (85%) and

is particularly effective in CA19-9-negative patients (88).

Individuals with metastatic pancreatic cancer exhibited markedly

increased levels of macrophage migration inhibitory factors (MIFs),

compared with those who did not experience progression of PC.

These findings suggested that exosomal MIFs may exhibit potential

as predictive markers for liver metastasis (89). Thus, further

investigations are required to determine the specific function of

exosomal proteins in PC.
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5.2 Urinary cancers, including prostate,
bladder and ovarian cancer

Plasma prostate-specific antigen, also referred to as prostate

specific antigen (PSA), is a biomarker that is frequently used for the

purpose of detecting and monitoring prostate cancer. Nilsson et al.

revealed that urine exosomes derived from individuals with prostate

cancer exhibited high expression levels of b-catenin, prostate cancer
gene-3 (PCA-3) and several other markers associated with prostate

cancer. These findings highlight the potential for urine exosomes in

identifying and monitoring cancer (90). Moreover, Øverbye et al.

conducted a study on urine exosomal proteins in a group consisting

of 16 individuals diagnosed with prostate cancer and 15 healthy

controls. Results of this previous study revealed that 246 proteins

were differently expressed in both groups of patients. Out of 17 of

these proteins, all 17 exhibited a sensitivity of >60% and a specificity

of 100%, with TM256 exhibiting the highest level of sensitivity at

94% (91). Proteomes of urine exosomes obtained from patients with

prostate cancer and healthy participants were compared, and the

results revealed that TM256 and ADIRF exhibited the greatest

diagnostic value (91). Collectively, these results revealed that

urine exosomal proteins may exhibit potential as a source of

enrichment for prostate cancer indicators.

The tumor-associated calcium signaling 2 (TACSTD2) protein,

which exhibits potential in the detection of bladder cancer (92), is

one of the 29 urine exosomal proteins that have emerged as novel

prospective biomarkers. Lee et al. carried out proteome

characterization of urine-derived exosomes from ten healthy

controls and ten patients with bladder cancer. Results of this

previous study revealed that 56 proteins were highly expressed in

the urinary exosomes of patients with bladder cancer (93). In

addition, the expression levels of CD36 and CD44 in exosomes

were identified via immunoblotting and flow cytometry, and results

of this previous study revealed substantial differences in the

expression of CD36 and CD44 between healthy individuals and

patients with bladder cancer (94).

It is estimated that >70% of ovarian cancer diagnoses are made

at an advanced stage (95), leading to high levels of mortality in

female patients. Research focused on epithelial cell adhesion

molecules and CD24 in exosomes produced from ovarian cancer

has led to a novel option for the early diagnosis of ovarian cancer

(96). The study shows that serum-derived exosome Claudin 4

steadily increased with the advancement of cancer in patients with

ovarian cancer (97). In addition, expression levels of the exosome

surface marker, HSP70, were higher in exosomes formed from OC

cells, compared with those obtained from healthy controls.

Moreover, study find that the serum of individuals with OC

exhibited a significant quantity of exosomes that expressed

HER2. Thus, further investigations are required to determine

and distinguish exosomal populations, and investigate the

biological activities of exosomal proteins in biological

organisms (98).
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5.3 Thoracic cancers, including lung and
breast cancer

Exosomal proteins may exhibit potential in the diagnosis of

non-small cell lung cancer (NSCLC). Significantly, 2% of exosomes

were located in chronic inflammatory lung tissue (99). Wu et al.

revealed that 80% of exosomes recovered from NSCLC biopsies

were positive for EGFR. Interestingly, EGFR, K-Ras, claudin1,

claudin3 and RAB family proteins were among the potential

diagnostic indicators discovered by Park et al (100), when

exosomes were recovered from pleural effusions of patients with

NSCLC. Results of proteomic mass spectrometry (101) revealed

that human leucine-rich alpha-2-glycoprotein 1 (LRG1) was

concentrated in urine exosomes, and was expressed at higher

levels in patients with NSCLC, compared with healthy

individuals. Sandfeld et al. used 49 antibodies to identify EV

proteins obtained from 431 patients with lung cancer and 150

healthy individuals (102). Moreover, a diagnostic model containing

30 exosomal proteins was developed in a further study, with a

sensitivity and specificity of ~75% (103). The model was

constructed using an exosome array to harvest exosomes from the

blood of patients with NSCLC. Yang et al. identified plasma-derived

exosomal immunoglobulins IGHV4–4 and IGLV1–40 as new non-

small cell lung cancer biomarkers (104). A recent study has

identified plasma exosomal versican as a potential diagnostic

marker for non-small cell lung cancer (105). Thus, exosomes and

associated components may exhibit potential in the early

identification of lung cancer.

At present, breast cancer is considered the most prevalent form

of cancer among females. In patients with metastatic breast cancer,

the 5-year survival rate is ~20%, despite >50% of patients with

breast cancer developing metastases following systemic

intervention. Melo et al. demonstrated that 75% of patients with

breast cancer exhibited greater levels of exosomal GPC1 expression,

compared with healthy controls (106). The diagnostic value of

fibronectin and developmental endothelial locus-1 in exosomes

produced from breast cancer cells was reported by Moon et al,

with an AUC of 0.961, a sensitivity of 94.70%, and a specificity of

86.36% (107, 108). Moreover, the unique expression pattern of

exosomal survivin-2B in serum may exhibit potential as an

indicator for breast cancer in its early stages (109).
5.4 Other cancers

In a wide range of malignancies, exosomal proteins have been

proposed as potential diagnostic and prognostic indicators. The

study noted that numerous clinical samples may include a high

number of exosomal proteins that are specific to melanoma (110),

such as caveolin-1. Serum exosomes were analyzed in patients with

glioblastoma, and results of a previous study revealed that EGFR,

EGFRvIII and CD63 were expressed at high levels (111). Fraser et al.

discovered that leucine-rich repeat kinase 2 (LRRK2), which is

abundant in urine exosomes, may exhibit potential as a biomarker

for Parkinson’s disease (112). In addition, the existence of
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spongioblastoma-specific EGFR variant type III (EGFRV III) was

discovered through the detection of serum exosomes from 25

individuals with spongioblastoma (113). Reale recently showed

that proteomic characterization of human plasma extracellular

vesicles provides important implications for the development of

multiple myeloma diagnostics (114). A recent study identified 199

common proteins in exomes secreted from Synovial sarcoma cells,

with the monocarboxylate transporter 1 (MCT1) as a novel surface

marker, highly expressed in SS patient-derived exosomes compared

with healthy individuals (115). Wang et al. found that DIO3OS

could be a potential biomarker for thyroid-like cancer (116). With

further research, exosomal proteins are increasingly used in various

cancer diagnostics.
6 Potential therapeutic value of
exosomal proteins in cancer

Exosomal proteins not only exhibit potential as a molecular

marker for the diagnosis of cancer, but also demonstrate therapeutic

potential due to their unique biological characteristics. At present,

research is focused on use of engineered exosomes for the targeted

distribution of anti-cancer therapy. Results of a previous study

revealed that modified exosomes that include adriamycin may be

more effective in targeting tumors and inhibiting their growth (117).

An additional investigation was conducted in which the parental

cells of exosomes were modified to produce Lamp2b linked to av
integrin-specific iRGD peptide. Importantly, this peptide

demonstrated sufficient tumor-targeting characteristics in

prostate, breast and cervical cancer models (118). In addition,

The study noted that a subtype of MVBs, known as inhibitory

protein structural domain 1-mediated microvesicles, aids in the

transportation of NOTCH receptors to target cells and the

stimulation of downstream gene expression (119). Votteler et al.

discovered an innovative method for hybridizing exosomes using

envelope protein nanocages, also known as EPNs. Through the

process of membrane attachment and self-assembly, extracellular

polymeric nanoparticles (EPNs) transfer their payload into the

cytoplasm of recipient cells (120). This is accomplished through

binding a variety of designed proteins.

In addition, the immunological activity of exosomes may allow

them to be used as drug transporters in cancer immunotherapy or

as vaccines (121). As exosomes are responsible for transporting a

large number of tumor antigens, they may play a role in antigen

presentation, exhibiting potential as cancer vaccines (122).

Moreover, Hsp70 plays a key role in activating dendritic cells and

monocytes, which in turn stimulates immunological responses that

are mediated by tumor-derived exosomes (123). Hsp70 also plays a

key role in promoting the release of granzyme B from natural killer

cells, ultimately leading to the induction of apoptosis in tumor cells

(124). Interestingly, HSP70 may function as an exosome surface

antigen, eliciting anti-tumor antibody responses. Thus, exosomal

proteins exhibit potential in the treatment of a wide range of

malignancies. Clinical trials of exosomes in cancer therapy have

focused on the following areas, with specific applications including
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as drug delivery vehicles, immunomodulators, diagnostic markers,

and combination therapy tools. Most of the trials are currently in

the early stages (phase I/II), but the multifunctional properties of

exosomes make them have great potential in personalized cancer

therapy (Table 3). With advances in bioengineering technology,

more precise clinical applications may be realized in the future.
7 Discussion

As a novel form of liquid biopsy markers, exosomal proteins

may demonstrate potential in the diagnosis of cancer. In recent

years, tumor-derived exosomal proteins have demonstrated unique

diagnostic value, and key advantages of these proteins include the

following factors: i) Disease-specific enrichment, where the protein

composition of exosomes highly reflects the physiological and

pathological status of their parent cells, particularly tumor cell-

derived exosomes (TEXs). These exosomes carry a large number of

tumor-related proteins, such as EGFR, HER2, PD-L1, MET and

GPC1, which may be used as cancer-specific markers; ii) a high level

of stability, making them suitable for long-term storage and the

detection of clinical samples. The lipid bilayer membrane structure

of exosomes protects the internal proteins from proteases in the

blood. Notably, this is more stable than free proteins or ctDNA due

to the strong anti-degradation ability; iii) the potential clinical

application of minimally invasive/non-invasive testing. Especially,

small volumes of bodily fluid, such as 1 ml of blood or urine, is

required for routine tests, mitigating limitations associated with

tissue biopsy and sampling; and iv) multi-dimensional diagnostic
Frontiers in Immunology 08
information integration. Multiple protein marker combinations

may be analyzed at the same time to improve diagnostic accuracy.

Although exosomal proteins exhibit potential in the diagnosis of

cancer, limitations may remain, leading to limited use in clinical

practice. Limitations may include the following factors: i)

Complexities in the standardization of isolation and purification

techniques. At present, exosome isolation requires numerous

techniques, such as ultracentrifugation, size-exclusion

chromatography, polymer precipitation and immunoaffinity

capture. However, these methods exhibit notable differences in

recovery rate, purity and integrity of exosomes. Contaminants,

such as lipoproteins and protein aggregates in blood samples,

often co-precipitate with exosomes, affecting downstream

analysis. Although the International Society for Extracellular

Vesicles (ISEV) has proposed the MISEV guideline, a globally

recognized standardized process is yet to be developed, resulting

in poor comparability of data; ii) analytical challenges associated

with tumor heterogeneity. Importantly, exosomes in bodily fluids

may be derived from tumor cells, immune cells and platelets.

Tumor-derived exosomes may account for >1% of total exosomes,

and therefore require enrichment with highly specific markers. In

addition, the composition of exosomal proteins changes

continuously with tumor progression and treatment response,

and a dynamic monitoring system is required; and iii)

complexities in large-scale application and the translation to

clinical practice. The majority of studies include small-scale

cohorts and lack validation through multi-center, prospective

clinical trials. High-precision separation and detection

technologies, such as nanoflow or single exosome analysis are

costly, and there may be barriers associated with their use in

clinical practice.

Exosomal proteins exhibit high levels of potential in the

diagnosis of cancer; however, interdisciplinary collaboration,

optimization of technical processes and the establishment of a

globally uniform standardization system are required for their use

in clinical practice. Future research should focus on developing

high-purity and high-throughput separation technologies, such as

microfluidic chips and aptamer capture. In addition, further

investigations focused on the establishment of a multi-omics

integrated analysis process are required, to integrate proteins,

RNA and metabolites. Future research should also focus on the

use of AI-assisted marker screening to improve the efficiency of data

analysis. The aforementioned investigations may lead to evolution

of the field of liquid biopsy, revolutionizing the early diagnosis and

treatment of cancer.

As emerging tumor markers and therapeutic carriers, exosomal

proteins have demonstrated revolutionary potential in the diagnosis

and treatment of cancer. In the diagnosis of cancer, the unique

molecular features and high stability of exosomes may provide a

novel basis for early screening, precise typing and the dynamic

monitoring of tumors. As a natural delivery system, exosomal

proteins may exhibit potential in the treatment of cancer, leading

to the development of targeted therapies and immunomodulation.

However, future investigations are required to overcome key

challenges, including isolation standardization, up-scaling of
TABLE 3 Clinical trial applications of exosomes in cancer therapy.

Type of cancer Mechanisms Clinical
trial
phase

NCT
Number

Pancreatic Carrying
chemotherapeutic
agents/nucleic acids to
target tumors

Phase I/II NCT03608631

Non-small cell
lung cancer

Exosome vaccine
or immunomodulation

Phase I/II NCT01159288

Colid tumor Enhancing the efficacy
of
radiotherapy/
immunotherapy

Phase I/II NCT05375604

Colorectal cancer Anti-tumor
cytotoxicity T
lymphocyte response

Phase I undisclosed

Triple-negative
breast cancer

Inhibits tumor growth
and enhances
sensitivity
to radiotherapy

Phase I/II NCT04491240

Liver cancer Delivery of Sorafenib Phase I/II NCT04868344

Gastric cancer Activation of T-cell
immunity by dendritic
cell exosomes

Phase I/II NCT04313647
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production and clinical validation. With the integration and

development of interdisciplinary technologies, such as

nanotechnology, multi-omics analysis and artificial intelligence,

exosomal proteins may lead to considerable developments in the

diagnosis and treatment of cancer, aiding the development of

precise and personalized medicines. Notably, future investigations

should focus on establishing a standardized technical system

through multi-center clinical trials, and exploring the specific

molecular mechanisms associated with exosomes.
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