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Tumor-associated neutrophils (TANs) significantly influence tumor
development, immune system suppression, and the spread of cancer in triple-
negative breast cancer (TNBC). However, their molecular pathways and potential
for therapy are not completely understood. We utilized Seurat and Harmony to
perform quality control, batch correction, and cell annotation on single-cell
RNA-seq data from TNBC patients (GSE222854). Comprehensive bioinformatics
approaches—including immune infiltration analysis, GSEA, GSVA, drug sensitivity
profiling, and ligand-receptor interaction network analysis were combined with
functional validation (colony formation and Transwell assays) and clinical
correlation studies via polychromatic immunofluorescence. Four TAN-
associated genes (RASGRP4, TIMM10B, TNFRSF13C, and GRAP) with distinct
roles in TNBC progression were identified. Functional assays revealed pro-
tumorigenic effects of RASGRP4, TIMM10B, and GRAP, whereas TNFRSF13C
exhibited tumor-suppressive properties. Clinically, elevated RASGRP4 and
TIMM10B expression with reduced TNFRSF13C expression correlated with poor
survival and accelerated disease progression, underscoring their prognostic
significance. Our study revealed RASGRP4, TIMM10B, and TNFRSF13C as
promising therapeutic targets in TNBC. Targeting these TAN-associated genes
may disrupt pro-tumor immune responses, suggesting novel strategies to
improve patient outcomes.
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Introduction

Triple-negative breast cancer (TNBC) is characterized by the
loss of estrogen receptor (ER), progesterone receptor (PR) and
epidermal growth factor receptor 2 (HER2) expression. This
represents approximately 10-20% of all cases of breast cancer (1),
and is associated with poor differentiation and a high recurrence
rate (2, 3). Compared with HER2-positive or hormone receptor-
positive breast cancers, TNBC shows a limited response to targeted
therapies and immunotherapies, with a median survival of only 13
months (4-6). Therefore, innovative approaches are urgently
needed to decipher the basic mechanisms underlying TNBC
progression and to create more effective treatment strategies.

Within the tumor microenvironment (TME), infiltrating immune
cells such as B cells, T cells, NK cells, macrophages, neutrophils, and
dendritic cells are recognized as critical determinants of progression
and prognosis in breast cancer patients (7-9). Among these immune
components, tumor-associated neutrophils (TANs) are notably
prevalent and are postulated to possess anti-tumor (N1) and pro-
tumor (N2) functions, thereby affecting patient outcomes (9-11). They
contribute to TNBC cell proliferation by increasing a proliferation-
inducing ligand (APRIL) and releasing neutrophil elastase (NE) (12,
13). In addition, TANs facilitate tumor angiogenesis through the
release of vascular endothelial growth factor (VEGF), chemokines,
and matrix metalloproteinase-9 (MMP-9) (14). They also contact
circulating tumor cells (CTCs), resulting in the formation of
neutrophil extracellular traps (NETs), which facilitate blood-borne
metastasis, particularly to the lungs (15-18). While inhibiting
neutrophil infiltration can suppress the growth and metastasis of
TNBC, neutrophils are the most abundant immune cells in the body,
and blocking them entirely may impair immune defense. Thus, the
selective targeting and elimination of N2 TANs is emerging as a
promising therapeutic strategy for TNBC, aiming to decrease tumor
progression without impairing overall immunity.

Understanding the heterogeneity and identifying the biomarkers of
TANSs holds substantial potential for improving survival prediction and
guiding TAN-based therapeutic strategies for TNBC. Traditional bulk
RNA sequencing (RNA-seq) methods are inadequate for accurately
profiling the transcriptional characteristics of specific cell types (19, 20).
However, new advances in single-cell RNA sequencing (scRNA-seq)
have shed novel light on cell diversity at the single-cell level and
facilitated the classification of distinct cell types within an organ (15,
16). This technological innovation presents a unique opportunity to
bridge the knowledge gap by enabling detailed dissection of cellular
modeling. Numerous scRNA-seq studies have been conducted on breast
cancer, with some specifically targeting individual cell populations in
TNBC, such as B cells (21), exhausted T cells, M2 macrophages (22, 23),
and fibroblasts (24). Other studies have characterized the general
features of immune cells (25) or provided a comprehensive depiction
of the tumor microenvironment by sequencing the total cell population
isolated from breast tumors (26, 27). Nevertheless, scRNA-seq
investigations explicitly aimed at elucidating the immunosuppressive
roles of TANs in TNBC have yet to be reported.

In this study, we integrated published single-cell datasets from
TNBC and identified neutrophil subsets and their marker genes.
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Combining functional analysis with clinical validation, we
pinpointed translocase of inner mitochondrial membrane 10B
(TIMM10B), Ras guanyl nucleotide-releasing protein 4
(RASGRP4), and transmembrane activator and calcium
modulator and cyclophilin ligand interactor (TNFRSF13C) as
potential genes involved in TAN-mediated tumorigenesis in TNBC.

Materials and methods
Data resources

The GEO database (28) supplied the single-cell dataset
GSE222854, which contains peripheral blood single-cell
expression profiles from two triple-negative breast cancer cases
for examination. This dataset specifically focuses on CD45" Ter119”
cells, thereby excluding erythroid lineage cells. This selection
strategy facilitates targeted investigation of immune components,
particularly tumor-associated neutrophils, within the tumor
microenvironment. Additionally, bulk transcriptomic data from
115 triple-negative breast cancer samples were obtained from the
TCGA database for complementary analysis.

Quality control

Using the Seurat package, the scRNA-seq profile was initially
analyzed, with cells filtered according to several criteria, such as the
total unique molecular identifier (UMI) for each cell, the quantity of
expressed genes and the percentage of mitochondrial and ribosomal
gene expression per cell. Theproportion of mitochondrial and
ribosomal gene expression was defined as the percentage of the
total expression attributed to these genes relative to the overall gene
expression. Cells exhibiting elevated levels of mitochondrial and
ribosomal gene expression tend to have low RNA expression,
indicating that these cells are undergoing apoptotic processes. For
quality control, we employed the median absolute deviation (MAD)
method. Conventionally, any variable exceeding 3-MADs from the
median was classified as an outlier and was excluded from analysis.

Dimension reduction, clustering and cell
annotation

During analysis, dimension reduction, clustering, and cell
annotation were performed using established methodologies. The
‘LogNormalize’ method, recognized worldwide, was applied by
scaling the total expression in each cell to 10,000 using a
coefficient SO, followed by a logarithmic transformation for
standardization. Cell cycle scores were computed utilizing the
CellCycleScoring function. To identify highly variable genes, the
Find Variable Features function was applied. Furthermore, the
ScaleData function was utilized to mitigate gene expression
variability attributed to differing proportions of mitochondrial
gene expression, ribosomal gene expression, and cell cycle effects.
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The expression matrix was subsequently subjected to linear
reduction via RunPCA, with principal components subsequently
selected for further analysis. To mitigate batch effects, Harmony was
applied, and nonlinear dimensionality reduction was achieved
through the RunUMAP Unified Manifold Approximation and
Projection (UMAP) approach. For cell annotation, cell types and
their marker genes in the tissues were identified mainly through the
CellMarker and PanglaoDB databases and relevant literature,
supplemented by automated annotation using the SingleR software.

Random survival forest method analysis

Using the randomForestSRC software package, we selected
features and evaluated the significance of prognosis-related genes
with the random survival forest algorithm, performing 1000
iterations in a Monte Carlo simulation. If the relative importance
of genes was above 0.2, they were categorized as final marker genes.

Immune cell infiltration analysis

To evaluate the types of immune cells in the microenvironment,
the CIBERSORT approach, which applies support vector regression to
deconvolute the expression matrix of immune cell subtypes, is
commonly utilized. This method includes 547 biomarkers that
distinguish 22 types of human immune cells, such as T cells, B cells,
plasma cells, and different myeloid cell subsets. The CIBERSORT
algorithm was used to analyze patient data and ascertain the relative
proportions of 22 infiltrating immune cell types. A correlation analysis
was performed to study the connections.

Drug sensitivity analysis

By accessing the Genomics of Drug Sensitivity in Cancer database
(GDSC), the most comprehensive repository of cancer drug sensitivity
information, available at https://www.cancerrxgene.org/, we used the
‘oncoPredict’ package in R to analyze the sensitivity of individual
tumor samples to chemotherapy. The half-maximal inhibitory
concentration (IC50) values for each chemotherapeutic agent
were derived through regression analysis. The accuracy of the
regression and prediction models was evaluated through tenfold
cross-validation on the GDSC training dataset. In the analysis,
default configurations were implemented, which included using
‘combat’ to address batch effects and averaging repeated gene

expression readings.

Gene set enrichment analysis

The classification of patients into high and low expression
categories was performed according to the levels of important
genes. Subsequent analysis of the differences in signaling
pathways between these two groups was conducted using GSEA.
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The gene sets used as a background were annotated from version 7.0
of the Molecular Signatures Database (MSigDB) and served as
annotation gene sets for subtype pathways. Pathways were
subjected to differential expression analysis by group, and gene
sets with significant enrichment (adjusted p-value under 0.05) were
ranked by consistency scores. GSEA is frequently employed to
investigate intricate associations within biological data.

Gene set variation analysis

GSVA is a nonparametric, unsupervised approach utilized for
assessing the enrichment of gene sets within a transcriptome. By
systematically scoring the gene set of interest, GSVA transforms
gene-level variations into pathway-level alterations, thereby
facilitating the evaluation of the biological functions of the
sample. In this research, gene sets from the Molecular Signatures
Database were utilized along with the GSVA algorithm to produce
detailed scores for each gene set, allowing for the evaluation of
possible biological functional variations across different samples.

Nomogram and correction curve of key
genes participating in the construction

By employing regression analysis, a nomogram was created on a
single plane with scaled linear segments that illustrate gene
expression and clinical symptoms, highlighting the relationships
between variables in the predictive model. Through the use of a
multifactor regression model, scores were given to each level of
influencing factors based on their contribution to the outcome
variable, as determined by the magnitude of the regression
coefficient. The total score was subsequently calculated to
determine the predicted value.

Ligand receptor interaction analysis

CellCall is an all-encompassing toolkit aimed at deducing
intercellular communication networks and internal regulatory
signals by merging intracellular and intercellular signals. It
assembles datasets of ligand-receptor—transcription factor (L-R-
TF) axes from KEGG pathway results. By utilizing established L-R-
TF interaction knowledge, CellCall infers intercellular
communication through the integration of ligand and receptor
expression data with the downstream activity of transcription
factors linked to specific L-R pairs.

Quasitemporal analysis

Studies conducted at the single-cell level have facilitated the
characterization of transcriptional regulation within complex
physiological processes and highly heterogeneous cell populations.
These investigations have been instrumental in identifying genes
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that are specific to particular cell subtypes, genes that serve as
markers for intermediate stages of biological processes, and genes
that mediate transitions between distinct cell fates. In numerous
studies focusing on single cells, gene expression is not synchronized,
with each cell serving as a distinct temporal snapshot of the
transcription process being examined. The Monocle algorithm
introduced a strategic approach to address this complexity.

Cell culture

MDA-MB-231 cells were obtained from Immocell
Biotechnology (IM-H026, Xiamen, China). HL-60 cells were
obtained from Anweisci (AW-CHO0142, Shanghai, China). MDA-
MB-231 cells were grown in DMEM (PYG0073, Boster Biotech,
Wuhan, China) supplemented with 10% FBS (40-001-1ACS, BI,
Israel) and 1% penicillin-streptomycin (BL505A, Biosharp, Hefei,
China). HL-60 cells were cultured in RPIM 1640 (PYG0122, Boster
Biotech, Wuhan, China) supplemented with 20% FBS and 1%
penicillin-streptomycin. To induce neutrophil-like differentiation
in HL-60 cells, 1% DMSO (1084ML500, BioFroxx, Germany) was
added to the culture media for a period of 6 days. For coculture
experiments, we employed 6-well transwell plates (703001, NEST,
China) featuring polyester membrane inserts (0.4 pm pores,
TCS001006, Jet, China), with dHL-60 cells in the upper
compartments and MDA-MB-231 cells in the lower compartment.

Transient overexpression and knockdown
of genes in dHL-60 cells

Full-length plasmids for overexpressing RASGRP4, TIMM10B,
TNFRSF13C, and GRAP were purchased from MiaoLing Plasmids
(Wuhan, China). An empty vector served as a negative control. The
plasmids were temporarily introduced into dHL60 cells using
Lipofectamine 3000 (L300015, Thermo Fisher, USA) following
the manufacturer’s instructions.

RNA extraction and quantitative real-time
polymerase chain reaction

TRIzol reagent (Invitrogen) was used to extract total RNA, and
reverse transcription was carried out using the M-MLV Reverse

TABLE 1 List of primers used for qRT-PCR.

10.3389/fimmu.2025.1613529

Transcriptase Kit from CWBIO, Beijing, China. Gene transcript
levels were measured relative to that of control gene (GAPDH)
using Real SYBR Mixture (Q711-02, Vazyme, China). The qRT-
PCR primers used are listed in Table 1.

Colony formation assay

A cell suspension of two milliliters, containing 1 x 10°> MDA-
MB-231 cells, was placed in each well of 6-well plates and cultured
for 10 days with supernatants from control and RASGRP4/
TIMMI10B/TNFRSF13C/GRAP overexpressing dHL-60 cells. The
colonies were fixed with 4% PFA (BL539A, Biosharp, Hefei, China)
for 15 minutes, followed by staining with 0.5% crystal violet
(E607309-0100, Sangon Biotech Co., Ltd, Shanghai, China) for
another 15 minutes. Colonies with more than 50 cells were counted.

Transwell migration assay

After co-culturing MDA-MB-231 cells with control or
RASGRP4-, TIMMI10B-, TNFRSF13C-, or GRAP-overexpressing
dHL-60 cells at a ratio of 1:10 (dHL-60: MDA-MB-231) for three
days, the MDA-MB-231 cells were harvested, resuspended in
serum-free medium, and seeded into the upper chambers of
Transwell inserts (8 um pore size; 3422, Corning, USA) at a
density of 1 x 10* cells in 100 uL per well. The lower chambers
were filled with 600 UL of complete medium containing 10% FBS as
a chemoattractant. Cells were allowed to migrate at 37 °C for 24
hours. After incubation, non-migrated cells on the upper side of the
membrane were gently removed, and the migrated cells on the
lower side were fixed with 4% paraformaldehyde and stained with
0.5% crystal violet. Migrated cells were counted under a light
microscope in five randomly selected fields.

Polychromatic immunofluorescence
staining

Tissue microarray slides were purchased from Superchip Outdo
Company, and the study was approved by the Ethics Committee of
Shanghai Outdo Biotech Company (HBreD120CS01). Next the tissue
samples were subjected to polychromatic immunofluorescence staining
using a six-color multiplex fluorescence immunohistochemical staining

Gene hame Forward primer (5°-3’) Reverse primer (5°-3’)
GAPDH CTGGGCTACACTGAGCACC AAGTGGTCGTTGAGGGCAATG
TIMM10B GAGACGGGGTTTCACTGTAT TCCCATCCTCCTATCTTCTG
GRAP CTCCATCTCTGTCAGGCATGA TGTCCTGTAGTAGTCTACCAGC
TNFRSF13C GAACTCCTGACCTTGTGATC TTCCCATCCTCCTATCTTCTG
RASGRP4 GCACCGGAAAAATAGGAGGG CAGCACCATGTTGAGCATGT
Frontiers in Immunology 04 frontiersin.org
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kit (Absin, abs50014). To prevent nonspecific binding, the slides were
first blocked using Tris-buffered saline with Tween 20 and 5% serum
before antibody incubation. The primary antibodies used in the
experiment included antibodies against MPO (ZSGB-Bio, ZA-0197,
diluted1:200), TIMM10B (Proteintech, 10907-1, diluted 1:200), GRAP
(Proteintech, 14505-1, diluted 1:200), and TNFRSF13C (Proteintech,
22582-1, diluted 1:200), RASGRP4 (Abcam, 96293, diluted 1:100).
Following incubation with the appropriate antibodies, nuclei were
counterstained with DAPI, and the slides were sealed and scanned
using a fluorescence scanner to capture high-resolution images. The
expression levels of MPO, TIMMI10B, GRAP, TNFRSF13C, and
RASGRP4 were evaluated through semiquantitative analysis, and
THC scores were assigned based on both the staining intensity and
the percentage of positively stained cells.

Statistical analysis

Statistical analyses were performed using R (version 4.3.0), with
the significance level set at P < 0.05. The data are shown as the mean
+ standard deviation (SD) from at least three separate experiments.
Statistical significance was assessed using a one-way ANOVA, with
*P < 0.05, **P < 0.01, ***P < 0.001, and ***P < 0.0001 regarded as
statistically significant in compared with the control group.

Results
Single cell transcriptome profiling of TNBC

To obtain high quality data across different samples, cells with
results capturing fewer than 50 genes were not included in the
analysis. The following criteria were used for filtering: the
mitochondrial content (mt) was required to be less than or equal
to the median plus three times the median absolute deviation
(3MAD); the number of detected genes (nFeature_ RNA) was
required to be less than or equal to the median plus 3MAD; and
the total number of unique molecular identifiers (nCount_RNA)
was required to be less than or equal to the median plus 3MAD.
Additionally, cells whose nFeature RNA was greater than 50 and
whose mitochondrial content (percent.mt) was less than or equal to
the median plus 3MAD were retained. Here, nFeature_RNA is the
measure of genes detected, nCount_RNA represents the total
number of unique molecular identifiers per cell, percent.mt
indicates the fraction of mitochondrial reads, and percent.ribo
represents the fraction of ribosomal reads. The filtered data are
presented in both a violin plot and a scatter plot (Supplementary
Figure S1A). In all, we discovered 2,000 highly variable genes
(Supplementary Figure S1B) were discovered after completing
data normalization, homogenization, PCA, and harmony
processing (Supplementary Figures SIC-F).

Furthermore, nine distinct cell subtypes were identified through
uniform manifold approximation and projection (UMAP) analysis
(Figure 1A). Each subtype underwent annotation, resulting in the
classification of all clusters into five major cell categories: B cells, T
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cells, NK cells, neutrophils, and monocytes (as illustrated in
Figures 1A, B). A bubble diagram depicting the classical markers
for these five cell types is presented in Figure 1C, while Figure 1D
provides a bar diagram illustrating the cell proportions across
various subsamples. The differential expression of the marker
genes of neutrophils, i.e., S100a9, S100a8, Ifitml, Retnlg and
Witdcl7, was visualized (Figure 1C). Additionally, we conducted
an analysis of cell subtype differences at the single-cell level utilizing
the markerVocalno function from the scRNAtoolVis package. This
approach identified cluster-specific marker genes for each cell type,
aiding in precise cell annotation and deepening our understanding
of tumor microenvironment heterogeneity in triple-negative breast

cancer (Figure 1E).

Identification of candidate genes through
random survival forest analysis

To investigate the role of TANs in TNBC, we performed
deconvolution analysis using the InstaPrism (v1.0.0) tool on bulk
RNA-sequencing data from the TCGA-BRAC cohort. Patients were
stratified into high and low neutrophil infiltration groups based on
an optimal cutoff value determined by maximizing the survival
difference between groups. The results showed that greater
neutrophil infiltration was positively correlated with poorer
patient survival (Figure 2A). We then utilized 1,436 marker genes
from neutrophils for RSF analysis and identified those with a
relative importance score exceeding 0.2 as final markers, thereby
emphasizing the importance ranking of eight genes (Figures 2B, C).
Subsequent survival analysis of these eight highly significant genes
revealed that four genes, TIMM10B, GRAP, TNFRSF13C, and
RASGRP4, were significantly associated with survival outcomes
(p<0.05) (Figures 2D-G). Conversely, no significant differences
were detected for COX20, CD47, LY86, or ATP6V0OD1
(Supplementary Figures S2A-D).

Immunoinfiltration patterns of the
candidate genes

Given that TANSs are known to facilitate tumor progression and
metastasis mainly through immunosuppressive effects, we further
investigated the immune infiltration patterns associated with TAN-
related gene expression. We then compared the proportions of
immune cells between groups characterized by high or low
expression of each key gene in various forms (Figures 3A, C, E, G).
Significant differences in the proportions of naive B cells, activated
NK cells, resting memory CD4 T cells, and resting NK cells were
detected between groups with different TIMM10B expression levels
(Figure 3B). In addition, there were marked differences in the
proportions of resting mast cells, activated memory CD4 T cells,
regulatory T cells (Tregs), activated dendritic cells, and gamma delta
T cells between groups with high and low GRAP expression
(Figure 3D). When comparing the groups with high and low
TNFRSF13C expression, notable differences in the proportions of
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FIGURE 1

Single-cell transcriptome profiling of triple-negative breast cancer. (A) scRNA-seq data from 12,316 triple-negative breast cancer cells were
subjected to UMAP. (B) UMAP visualization of the scRNAseq data showing all the cells, with clusters indicated by colors and labeled based on
inferred cell types. (C) Dot plot showing the expression of known marker genes in these five clusters. Dot size reflects each gene’s expressing
percentage of each cluster’s cells; Dot color represents the expression level. (D) Proportions of B cells, T cells, NK cells, neutrophils, and monocytes.
(E) For each cell type, volcano plots display the fold change in gene expression (log2FC) against the percent difference in expression, highlighting

genes with significant differential expression.

memory CD4 T cells, resting memory B cells, naive B cells, M1
macrophages, plasma cells, neutrophils, and T cells were detected
between the two groups (Figure 3F). Similarly, notable differences
between the groups with high and low RASGRP4 expression were
found in the proportions of resting dendritic cells, follicular helper T
cells, naive B cells, monocytes, activated memory CD4 T cells, and
neutrophils (Figure 3H).

We conducted a comprehensive analysis of the associations
between key genes and immune cell populations. Our findings
revealed that TIMM10B was significantly positively correlated with

Frontiers in Immunology

06

resting memory CD4 T cells. Additionally, GRAP was positively
correlated with naive B cells, resting mast cells, plasma cells, gamma
delta T cells, and regulatory T cells (Tregs) but significantly
negatively correlated with activated dendritic cells. Moreover,
TNFRSF13C was significantly positively correlated with memory
B cells, naive B cells, eosinophils, plasma cells, follicular helper T
cells, and regulatory T cells (Tregs) and negatively correlated with
resting dendritic cells, MO macrophages, M2 macrophages, and
monocytes. Conversely, RASGRP4 was positively correlated with
M2 macrophages, resting mast cells, monocytes, and gamma delta T
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Identification of candidate genes. (A) Differences in survival between the high and low neutrophil group. (B) RSF analysis and expression levels of
genes related to prognosis. (C) Expression levels and distributions of RASGRP4, COX20, CD47, TIMM10B, LY86, GRAP, TNFRSF13C and ATP6VOD1 in
different tumor subtypes. (D-G) Kaplan—Meier graphs displaying the survival potential of patients with TNBC, grouped by the expression levels of

significant genes.

cells, and significantly negatively correlated with naive B cells and
follicular helper T cells (Figure 31).

Furthermore, we analyzed the associations between key genes
and various immune factors, including immunosuppressors,
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immunostimulators, chemokines, and receptors. The results

suggest that key genes are intricately associated with the degree of

immune cell infiltration and play a significant role in modulating

the immune microenvironment (Supplementary Figures S3A-E).
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Identification of potential drugs for TNBC
patients

To further explore the clinical significance of the risk scores and
prognostic genes, we determined the IC50 values for different drugs
in TNBC patients. By leveraging drug sensitivity data from the
GDSC database and applying the oncoPredict R package, we
predicted the response of individual tumor samples to
chemotherapy, with a focus on the TIMMI10B, GRAP,
TNFRSF13C, and RASGRP4 genes in relation to commonly used
chemotherapeutic agents. The analysis revealed that TIMM10B was
associated with sensitivity to AZD7762_1022 (Figure 4A). GRAP
was associated with sensitivity to camptothecin_1003,
olaparib_1017, axitinib_1021, AZD8055_1059, and
PD0325901_1060 (Figure 4B). TNFRSF13C was associated with
sensitivity to olaparib_1017 and axitinib_1021 (Figure 4C).
RASGRP4 was associated with sensitivity to camptothecin_1003,
olaparib_1017, AZD8055_1059, and PD0325901_1060 (Figure 4D).
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These findings highlight the potential of these biomarkers in
predicting responsiveness to chemotherapy, thereby providing
valuable insights for the development of personalized treatment
strategies for patients with triple-negative breast cancer.

GSEA and GSVA analysis

We then investigated the specific signaling pathways involving
key genes and studied the molecular mechanisms through which
these genes impact disease progression. GSEA revealed that
TIMMI10B was associated with the AMPK signaling pathway,
c¢GMP-PKG signaling pathway, glutamatergic synapse, and other
pathways (Figure 5A). GRAP was associated with the NF-kappa B
signaling pathway, the mRNA surveillance pathway, and oxidative
phosphorylation (Figure 5B). TNFRSF13C was strongly associated
with B-cell receptor signaling pathway, chemokine signaling
pathways, hematopoietic cell lineage pathways, and other
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signaling pathways (Figure 5C). RASGRP4 was prominently
associated with signaling pathways, including the TNF signaling
pathway, platelet activation, and the T-cell receptor signaling
pathway (Figure 5D).

GSVA revealed that TIMM10B was associated with pathways
linked to adipogenesis, bile acid metabolism, and various other

Frontiers in Immunology

signaling pathways (Figure 5E). GRAP was associated with IL2/
STATS5 signaling, IL6/JAK/STAT3 signaling, and other signaling
pathways (Figure 5F). TNFRSF13C was associated with
angiogenesis, allograft rejection, and other signaling pathways
(Figure 5G). RASGRP4 was associated with the inflammatory
response and IL6/JAK/STAT3 signaling pathways (Figure 5H).
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These data suggest that these key genes could play a part in the
progression of triple-negative breast cancer through these pathways.

Assessment of the prognostic effect

Based on the multivariate Cox regression coefficients of the gene
signature and clinical traits (age and TNM stage) of patients in the
TCGA training dataset, we built a prognostic nomogram for clinicians
to quantitatively predict the 1-, 3- and 5-year OS probabilities of TNBC
patients. The outcomes of the regression analysis were presented in a
bar graph, reflecting the expression levels of pivotal genes. This analysis
demonstrated that the values of diverse clinical indicators and the
distribution of key gene expression among all samples contributed
variably to the overall scoring process (Figure 6A). Additionally, a
predictive analysis of overall survival (OS) data for one, three, and five
years was conducted (Figures 6B-D). The findings demonstrated that
the predicted OS was closely aligned with the observed OS data,
confirming the efficiency of the nomogram model.

10.3389/fimmu.2025.1613529

Cell communication and quasitemporal
analysis

To explore the interplay between neutrophils and other cells, we
analyzed the ligand-receptor relationships of features in the single-
cell expression profile of triple-negative breast cancer. We found
complex interaction pairs among these cell types (Figure 7A), and
demonstrated that ligands of neutrophils interact with other cell
types as well as with neutrophils themselves (Figure 7B). Next, a
quasitemporal analysis was conducted, where we initially
determined the similarity between cells and built cell
differentiation pathways. By visualizing the trajectory, a
pseudotime picture of cell differentiation was constructed to
illustrate the cell development process, which is useful for
studying cell differentiation and gene expression. Illustrations
showing cell coloring with pseudotime values, cell types, and
groups were produced individually (Figures 7C-E). The changes
in the expression of key genes from the start to the end of the
pseudotime process are shown in Figures 7F-H.
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FIGURE 7

Cell communication and quasitemporal analysis. (A) Circus plot illustrating the greater total number of significantly interacting pairs between
neutrophils and immune cells as estimated by CellPhoneDB (P<0.05). (B) Bubble diagram of the cell communication network between ligands and
neutrophils and other cell subtypes as well as with neutrophil itself themselves. (C-E) Trajectory analysis of the potential relatedness between the
two groups according to pseudotime, cell type and group. (F-H) Changes in the expression of TIMM10B, GRAP, TNFRSF13C and RASGRP4 over

pseudotime.

Overview of key genes in single cells

To analyze the expression of crucial genes in single cells, we
employed the FeaturePlot and Dotplot functions from the SeuratR
package (Figures 8A-D). The Results showed that RASGRP4 and
TIMMI10B were highly expressed in neutrophils, while GRAP and
TNFRSF13C were down-regulated in neutrophils (Figures 8A-C). We
also checked the expression pattern of the four targeted genes in
tumor-free and TNBC-bearing mice. The results revealed that
RASGRP4 and TIMMI10B were highly expressed in TNBC-bearing
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mice, while GRAP and TNFRSF13C were highly expressed in
tumor-free mice (Supplementary Figure S4). AUCell was used
to quantitatively score genes related to immune metabolism in
single cells, and bubble map was generated to visualize the
differences in the activity of key genes in immune metabolism-
related pathways. The results showed high activity of Tnfrsfl3c in
interferon_gamma_response and other pathways; high activity of
Rasgrp4 is in il6_jak stat3_signaling; and tnfa_signaling via_nfkb
and other pathways; and high activity of Grap in allograft_rejection,
myc_target_vl and other pathways (Figure 8D).
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FIGURE 8

Gene expression levels in cells. (A) Atlas showing the expression levels of the specified genes, with red denoting expression. (B) Bubble plot showing
the expression levels of the selected genes in different cell types. (C) Violin plots illustrating the expression levels of specific genes that define the
inferred cell types. (D) Bubble plot illustrating variations in the activity of key genes involved in immune metabolism pathways.

RASGRP4 and TIMM10B exhibit pro-tumor in dHL-60 cells. The qRT-PCR results confirmed the significant
activities overexpression of all four genes (Supplementary Figure S4A). In the
colony formation assay, MDA-MB-231 cells cultured with

To evaluate the influence of the four candidate genes on the  supernatants from RASGRP4- and TIMMI10B-overexpressing
pro-tumor functions of neutrophils, we overexpressed these genes ~ dHL-60 cell cultures presented increased colony formation ability.
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In contrast, MDA-MB-231 cells cultured with supernatants from
TNFRSF13C-overexpressing dHL-60 cell cultures showed a
reduced colony formation capacity, whereas no significant
difference was observed in MDA-MB-231 cells cocultured with
GRAP-overexpressing dHL-60 cell culture supernatants
(Figures 9A, B). Additionally, Transwell migration assays revealed
that compared with control cells, MDA-MB-231 cells cocultured
with RASGRP4, TIMM10B, or GRAP-overexpressing dHL-60 cells
exhibited increased migration ability (Figures 9C, D). We also
cocultured dHL-60 cells with MDA-MB-231 cells and then
examined the mRNA levels of the four genes. The mRNA levels
of TIMMI10B and RASGRP4 were significantly increased, whereas
the level of TNFRSC13C was decreased. There was no change in the
mRNA level of GRAP (Supplementary Figure S4B).

These findings imply that a neutrophil subpopulation with
upregulated RASGRP4 and TIMMI10B expression and
downregulated TNFRSF13C may contribute to pro-tumor
activities within the tumor microenvironment.

Elevated RASGRP4 and TIMM10B
expression, alongside reduced TNFRSF13C
expression

To confirm the clinical importance of these newly identified
candidate genes, we utilized polychromatic immunofluorescence
staining to evaluate the expression levels of the neutrophil marker
MPO and the genes TIMM10B, GRAP, RASGRP4, and
TNFRSF13C in TNBC (Figure 10A). The results revealed that
MPO, TIMMI10B, and RASGRP4 were expressed at significantly

oeCtrl TIMM10B

oeCtrl

TIMM10B

TNFRSF13C RASGRP4

FIGURE 9

GRAP

GRAP

10.3389/fimmu.2025.1613529

higher levels in grade IIT TNBC tumors than in both adjacent tissues
and grade I-II tumors, whereas TNFRSF13C expression was lower
in grade III tumors than in grade I-II tumors (Figure 10B). There
was no notable difference in GRAP expression between grade I-1I
and grade III TNBC tumors (Figure 10B).

Next, we analyzed the correlation between MPO and these four
target genes. In grade I-II TNBC tumors, there was no correlation
between MPO and TIMM10B, GRAP, or TNFRSF13C, but MPO
was negatively correlated with RASGRP4 (Figure 10C). In contrast,
in grade IIT TNBC tumors, MPO was positively correlated with
TIMMI10B and RASGRP4 but negatively correlated with
TNFRSF13C (Figure 10D). Moreover, neutrophils expressing
TIMM10B and RASGRP4 were more frequently observed in stage
III TNBC than in stage I-II TNBC and normal tissues, whereas
neutrophils expressing TNFRSF13C were less frequently observed
in stage III TNBC than in stage I-II TNBC (Figures 10E, F). Taken
together, these findings suggest that higher expression of TIMM10B
and RASGRP4 in grade III TNBC tumors is associated with MPO
expression and a poor prognosis, whereas lower TNFRSF13C
expression in grade III TNBC tumors is negatively correlated with
MPO expression.

Discussions

TANSs are integral to the TME of TNBC, where they exhibit
both tumor-promoting and immune-modulating functions (29). In
our study, we performed a detailed single-cell transcriptomic
analysis of the TME in TNBC, which led to the identification of
crucial prognostic genes—TIMM10B, RASGRP4, and TNFRSF13C
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Clinical relevance of TIMM10B, GRAP, TNFRSF13C and RASGRP4. (A) Polychromatic immunofluorescence staining showing the distribution of MPO,
TIMM10B, GRAP, TNFRSF13C and RASGRP4 expression. Scale bar (upper panel), 200 pm. Scale bar (bottom panel), 50 pm. (B) IHC scores of MPO,
TIMM10B, GRAP, TNFRSF13C and RASGRP4 in adjacent tissue (AT), stage I-1I (I-1) and Il TNBC. (C) Correlations between MPO and the four
candidate genes in stage I-1l (I-1l) TNBC. (D) Correlations between MPO and the four candidate genes in stage Ill (lll) TNBC. (E) Representative
images of coimmunostaining for MPO and four target genes in adjacent tissue from the stage I-1l and Il TNBC groups. Scale bar, 20 pm. (F)
Percentage of TIMM10B-, GRAP-, TNFRSF13C- and RASGRP4-positive cells in AT and stage |-l and IIl TNBC. *p < 0.05, **p < 0.01, ***p < 0.001,
****p < 0.0001. ns, not significant
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—that demonstrate significant clinical relevance in TNBC patients.
The predictive accuracy of these genes was validated using a
nomogram model, underscoring their potential as biomarkers for
patient prognosis. These results align with those of previous studies
linking TANS to cancer aggressiveness through mechanisms such as
the formation of neutrophil extracellular traps (NETs) and the
inhibition of cytotoxic T lymphocytes (CTLs) (30-32).

The analysis of immune infiltration demonstrated that these genes
are intricately associated with various immune cell populations. For
example, GRAP was positively correlated with Tregs and negatively
correlated with activated dendritic cells, indicating its role in fostering
an immunosuppressive microenvironment. Similarly, TIMM10B and
RASGRP4 were significantly correlated with macrophages and T cells,
highlighting their involvement in modulating the immune response
within the TME. These interactions reflect mechanisms by which
neutrophils suppress cytotoxic T lymphocytes, thereby facilitating
tumor progression and metastasis. Notably, TIMM10B, RASGRP4,
and GRAP were linked to poorer survival outcomes, suggesting their
participation in tumor-promoting pathways, whereas TNFRSF13C
exhibited context-dependent roles that may influence immune
modulation within the TME. Although several studies have
investigated the inflammatory response and immunomodulatory
roles of GRAP, TNFRSF13C, and RASGRP4 (33-37), few
investigations have focused on the immunomodulatory functions of
these four genes in neutrophils specifically.

GSEA and GSVA revealed that the four candidate genes are
involved in diverse signaling pathways, suggesting their potential roles
in regulating TNBC progression through multiple biological
mechanisms. These pathway associations support the notion that
these genes may influence the tumor microenvironment via metabolic
regulation, inflammation, and immune cell interactions, further
reinforcing the multifaceted role of TANs in shaping the immune
landscape in TNBC. However, we acknowledge that these pathway
analyses are based on transcriptomic correlations and do not provide
direct mechanistic evidence. Functional validation experiments—such
as pathway inhibition assays, downstream target analysis, or reporter-
based readouts—were not performed in the current study. This remains
a key limitation. In future work, we aim to conduct mechanistic
investigations using immune-tumor coculture systems, phospho-
protein analysis, and pathway-specific perturbation models, to clarify
the causal relationships between these genes and their downstream
signaling effects in the tumor microenvironment of TNBC.

Furthermore, we assessed the sensitivity of these genes to
chemotherapeutic agents via the GDSC database. TIMMI10B,
GRAP, TNFRSF13C and RASGRP4 were found to be associated
with sensitivity to specific chemotherapies, suggesting their
potential as biomarkers for predicting responsiveness to
chemotherapy. These findings underscore the possibility of
utilizing these genes to guide personalized treatment strategies for
TNBC patients. For example, pharmacological inhibition of
enzymes such as arachidonate 5-lipoxygenase (Alox5) has been
shown to effectively eliminate neutrophil prometastatic activity and
reduce metastasis (38). Similarly, targeting cathepsin C (CTSC)
with compounds such as AZD7986 suppresses neutrophil
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recruitment and lung metastasis in breast cancer models (16). Our
identification of TIMM10B, GRAP, TNFRSF13C and RASGRP4 as
key genes further expands the potential therapeutic targets within
TANS, offering promising avenues for disrupting protumorigenic
interactions within the TME. Targeting TANs has already shown
promise in preclinical models by reducing metastasis and
modulating neutrophil functions.

Functional assays demonstrated that TIMM10B, GRAP, and
RASGRP4 exerted protumorigenic effects, as their overexpression in
neutrophil-like cells significantly enhanced both the colony
formation and migration of TNBC cells. In contrast, the
overexpression of TNFRSF13C resulted in a reduction in colony
formation and migration, indicating its potential role as a tumor
suppressor under certain conditions. While GRAP and RASGRP4
have been previously implicated in oncogenesis (39-41),
TNFRSFI13C has recently been identified as a new prognostic
biomarker for cervical cancer (42), and the role of TIMMI10B in
cancer remains largely unexplored. These findings emphasize the
complex, context-dependent functions of these genes in the biology
of TNBC and highlight the necessity for therapeutic strategies that
meticulously consider the immune context of tumors.

We found that the expression of the neutrophil marker MPO
was positively correlated with TIMM10B and RASGRP4, indicating
that the expression levels of these genes are closely associated with
neutrophil infiltration, particularly in high-grade tumors. These
findings support the theory that neutrophils are pivotal in
determining the immune landscape in TNBC and accelerating
tumor advancement. Additionally, the negative correlation
between MPO expression and both GRAP and TNFRSF13C
suggests that reduced expression of these genes in neutrophils
may contribute to immune evasion in aggressive tumors. While
GRAP and TNFRSF13C are expressed at relatively high levels in B
cells and are not exclusively associated with neutrophils, it is
important to clarify that our identification of neutrophil-
associated marker genes was based on differential expression
patterns specifically from neutrophil subclusters. This approach
focused on genes that were either upregulated or downregulated
within distinct neutrophil populations. Both GRAP and
TNFRSF13C were selected because they were significantly
downregulated in a specific neutrophil subpopulation, making
them useful for identifying functionally distinct neutrophil states
rather than serving as universal neutrophil markers. We believe that
the prognostic associations observed for these genes reflect the
functional heterogeneity within the neutrophil compartment, rather
than simply the presence or abundance of neutrophils. Therefore,
despite its downregulation in aggressive tumors, TNFRSF13C could
serve as a valuable therapeutic target in settings where immune
responses are more pronounced or responsive.

This validation in tissue samples is in line with accumulating
clinical evidence showing that peripheral neutrophil characteristics
can reflect systemic and local inflammation in cancer. For example,
the neutrophil-to-lymphocyte ratio (NLR), a simple metric
calculated from routine peripheral blood tests, has been reported
to correlate with cancer-related inflammation and predict clinical
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outcomes across various malignancies (43, 44). These findings
suggest that neutrophil activation in the circulation may mirror
or even contribute to the inflammatory milieu within the tumor
microenvironment. However, due to the limited availability of high-
quality blood samples from TNBC patients—particularly those with
sufficient circulating neutrophils—we were unable to directly
validate the expression of these four genes in blood-derived
neutrophils. Future studies incorporating matched blood and
tumor tissue from the same patients will be critical to confirm the
consistency of neutrophil activation across compartments and
further elucidate its prognostic and mechanistic implications
in TNBC.

Despite its promising results, this study is limited by its
retrospective design and reliance on publicly available datasets,
which may introduce biases. We fully acknowledge the importance
of generalizability and actively sought additional publicly available
TNBC scRNA-seq datasets. However, high-quality datasets derived
from primary TNBC tumors with comparable tissue origins,
processing protocols, and sufficient neutrophil representations are
scarce. Integrating datasets with substantial batch effects or
inconsistent tissue handling could introduce unwanted noise—
particularly for neutrophil-related analyses, which are highly
sensitive to sample processing. Despite the small sample size,
GSE222854 comprises 12,316 high-quality single cells, enabling
robust clustering and downstream analyses. Importantly, this
dataset includes well-annotated tumor-associated neutrophils
(TANs), which are central to our study. We plan to perform
integrative validation as more suitable datasets become available.

While our functional validations provided initial insights, they
were performed exclusively in vitro and focused primarily on tumor
cell-intrinsic phenotypes such as proliferation, colony formation, and
migration. These assays, however, do not capture potential
immunoregulatory functions of the candidate genes within the
tumor microenvironment (TME). Given the observed associations
between gene expression and distinct immune infiltration patterns,
particularly involving neutrophils, it is critical to explore whether these
genes influence immune cell recruitment, activation, or suppression.

Future studies should incorporate immune-tumor coculture
systems, cytokine profiling, and immune cell functional assays to
assess the immunomodulatory roles of these genes. In addition, the
use of advanced in vivo models—such as humanized mouse models
or syngeneic tumor systems—will be essential to validate their
impact on tumor-immune interactions under physiologically
relevant conditions. Expanding the analysis to include more
diverse and clinically representative patient cohorts will also
increase the generalizability and translational value of our findings.

Our study specifically focused on CD45" Ter119” immune cells
to investigate the roles of tumor-associated neutrophils and related
immune populations in the tumor microenvironment. While this
approach allows us to characterize immune cell-specific
transcriptional dynamics with high resolution, it inherently
excludes non-immune cellular components such as stromal cells,
endothelial cells, and erythroid lineage cells. These non-immune
cells are known to contribute significantly to tumor progression and
patient prognosis, and their interactions with immune cells may
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influence the tumor ecosystem in complex ways. We acknowledge
that restricting the analysis to CD45" Ter119 cells may introduce
bias and limit the comprehensiveness of our findings. Future
studies incorporating a broader range of cellular compartments,
including non-immune cells, will be essential to fully elucidate
the intricate cellular crosstalk and heterogeneity within the
tumor microenvironment.

Conclusions

In conclusion, higher expression levels of TIMMI10B and
RASGRP4 were associated with poorer patient survival and
protumor functions, while lower expression of TNFRSF13C also
correlated with worse prognosis and protumor activity. In contrast,
the clinical relevance and functional role of GRAP remained
ambiguous, as it was lowly expressed in neutrophils and showed
limited impact in functional assays. Therefore, TIMMIO0B,
RASGRP4, and TNFRSF13C may serve as valuable biomarkers
for risk stratification and personalized therapy in TNBC patients.
Their associations with immune infiltration, drug sensitivity, and
tumor progression provide a strong rationale for further
exploration as therapeutic targets.

Future research should focus on mechanistic studies to further
elucidate how these genes influence TNBC progression and
immune modulation, as well as clinical trials to validate their
utility as therapeutic targets. Given the complexity of the TME in
TNBC, incorporating both single-cell and bulk transcriptomic data
will be essential for developing effective biomarkers and
combination therapies targeting both cancer cells and the
supportive TME.
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