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Identification of tumor
associated neutrophils-related
genes in triple-negative
breast cancer for predicting
prognosis and therapeutic
response through integrated
single-cell analysis
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Jiangsu, China, 2Center of Clinical Research, The Affiliated Wuxi People’s Hospital of Nanjing Medical
University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China,
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Tumor-associated neutrophils (TANs) significantly influence tumor

development, immune system suppression, and the spread of cancer in triple-

negative breast cancer (TNBC). However, their molecular pathways and potential

for therapy are not completely understood. We utilized Seurat and Harmony to

perform quality control, batch correction, and cell annotation on single-cell

RNA-seq data from TNBC patients (GSE222854). Comprehensive bioinformatics

approaches—including immune infiltration analysis, GSEA, GSVA, drug sensitivity

profiling, and ligand-receptor interaction network analysis were combined with

functional validation (colony formation and Transwell assays) and clinical

correlation studies via polychromatic immunofluorescence. Four TAN-

associated genes (RASGRP4, TIMM10B, TNFRSF13C, and GRAP) with distinct

roles in TNBC progression were identified. Functional assays revealed pro-

tumorigenic effects of RASGRP4, TIMM10B, and GRAP, whereas TNFRSF13C

exhibited tumor-suppressive properties. Clinically, elevated RASGRP4 and

TIMM10B expression with reduced TNFRSF13C expression correlated with poor

survival and accelerated disease progression, underscoring their prognostic

significance. Our study revealed RASGRP4, TIMM10B, and TNFRSF13C as

promising therapeutic targets in TNBC. Targeting these TAN-associated genes

may disrupt pro-tumor immune responses, suggesting novel strategies to

improve patient outcomes.
KEYWORDS

triple-negative breast cancer, immuno-regulation, metastasis, single-cell
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Introduction

Triple-negative breast cancer (TNBC) is characterized by the

loss of estrogen receptor (ER), progesterone receptor (PR) and

epidermal growth factor receptor 2 (HER2) expression. This

represents approximately 10-20% of all cases of breast cancer (1),

and is associated with poor differentiation and a high recurrence

rate (2, 3). Compared with HER2-positive or hormone receptor-

positive breast cancers, TNBC shows a limited response to targeted

therapies and immunotherapies, with a median survival of only 13

months (4–6). Therefore, innovative approaches are urgently

needed to decipher the basic mechanisms underlying TNBC

progression and to create more effective treatment strategies.

Within the tumor microenvironment (TME), infiltrating immune

cells such as B cells, T cells, NK cells, macrophages, neutrophils, and

dendritic cells are recognized as critical determinants of progression

and prognosis in breast cancer patients (7–9). Among these immune

components, tumor-associated neutrophils (TANs) are notably

prevalent and are postulated to possess anti-tumor (N1) and pro-

tumor (N2) functions, thereby affecting patient outcomes (9–11). They

contribute to TNBC cell proliferation by increasing a proliferation-

inducing ligand (APRIL) and releasing neutrophil elastase (NE) (12,

13). In addition, TANs facilitate tumor angiogenesis through the

release of vascular endothelial growth factor (VEGF), chemokines,

and matrix metalloproteinase-9 (MMP-9) (14). They also contact

circulating tumor cells (CTCs), resulting in the formation of

neutrophil extracellular traps (NETs), which facilitate blood-borne

metastasis, particularly to the lungs (15–18). While inhibiting

neutrophil infiltration can suppress the growth and metastasis of

TNBC, neutrophils are the most abundant immune cells in the body,

and blocking them entirely may impair immune defense. Thus, the

selective targeting and elimination of N2 TANs is emerging as a

promising therapeutic strategy for TNBC, aiming to decrease tumor

progression without impairing overall immunity.

Understanding the heterogeneity and identifying the biomarkers of

TANs holds substantial potential for improving survival prediction and

guiding TAN-based therapeutic strategies for TNBC. Traditional bulk

RNA sequencing (RNA-seq) methods are inadequate for accurately

profiling the transcriptional characteristics of specific cell types (19, 20).

However, new advances in single-cell RNA sequencing (scRNA-seq)

have shed novel light on cell diversity at the single-cell level and

facilitated the classification of distinct cell types within an organ (15,

16). This technological innovation presents a unique opportunity to

bridge the knowledge gap by enabling detailed dissection of cellular

modeling. Numerous scRNA-seq studies have been conducted on breast

cancer, with some specifically targeting individual cell populations in

TNBC, such as B cells (21), exhausted T cells, M2macrophages (22, 23),

and fibroblasts (24). Other studies have characterized the general

features of immune cells (25) or provided a comprehensive depiction

of the tumor microenvironment by sequencing the total cell population

isolated from breast tumors (26, 27). Nevertheless, scRNA-seq

investigations explicitly aimed at elucidating the immunosuppressive

roles of TANs in TNBC have yet to be reported.

In this study, we integrated published single-cell datasets from

TNBC and identified neutrophil subsets and their marker genes.
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Combining functional analysis with clinical validation, we

pinpointed translocase of inner mitochondrial membrane 10B

(TIMM10B), Ras guanyl nucleotide-releasing protein 4

(RASGRP4), and transmembrane activator and calcium

modulator and cyclophilin ligand interactor (TNFRSF13C) as

potential genes involved in TAN-mediated tumorigenesis in TNBC.
Materials and methods

Data resources

The GEO database (28) supplied the single-cell dataset

GSE222854, which contains peripheral blood single-cell

expression profiles from two triple-negative breast cancer cases

for examination. This dataset specifically focuses on CD45+ Ter119-

cells, thereby excluding erythroid lineage cells. This selection

strategy facilitates targeted investigation of immune components,

particularly tumor-associated neutrophils, within the tumor

microenvironment. Additionally, bulk transcriptomic data from

115 triple-negative breast cancer samples were obtained from the

TCGA database for complementary analysis.
Quality control

Using the Seurat package, the scRNA-seq profile was initially

analyzed, with cells filtered according to several criteria, such as the

total unique molecular identifier (UMI) for each cell, the quantity of

expressed genes and the percentage of mitochondrial and ribosomal

gene expression per cell. Theproportion of mitochondrial and

ribosomal gene expression was defined as the percentage of the

total expression attributed to these genes relative to the overall gene

expression. Cells exhibiting elevated levels of mitochondrial and

ribosomal gene expression tend to have low RNA expression,

indicating that these cells are undergoing apoptotic processes. For

quality control, we employed the median absolute deviation (MAD)

method. Conventionally, any variable exceeding 3-MADs from the

median was classified as an outlier and was excluded from analysis.
Dimension reduction, clustering and cell
annotation

During analysis, dimension reduction, clustering, and cell

annotation were performed using established methodologies. The

‘LogNormalize’ method, recognized worldwide, was applied by

scaling the total expression in each cell to 10,000 using a

coefficient S0, followed by a logarithmic transformation for

standardization. Cell cycle scores were computed utilizing the

CellCycleScoring function. To identify highly variable genes, the

Find Variable Features function was applied. Furthermore, the

ScaleData function was utilized to mitigate gene expression

variability attributed to differing proportions of mitochondrial

gene expression, ribosomal gene expression, and cell cycle effects.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1613529
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2025.1613529
The expression matrix was subsequently subjected to linear

reduction via RunPCA, with principal components subsequently

selected for further analysis. To mitigate batch effects, Harmony was

applied, and nonlinear dimensionality reduction was achieved

through the RunUMAP Unified Manifold Approximation and

Projection (UMAP) approach. For cell annotation, cell types and

their marker genes in the tissues were identified mainly through the

CellMarker and PanglaoDB databases and relevant literature,

supplemented by automated annotation using the SingleR software.
Random survival forest method analysis

Using the randomForestSRC software package, we selected

features and evaluated the significance of prognosis-related genes

with the random survival forest algorithm, performing 1000

iterations in a Monte Carlo simulation. If the relative importance

of genes was above 0.2, they were categorized as final marker genes.
Immune cell infiltration analysis

To evaluate the types of immune cells in the microenvironment,

the CIBERSORT approach, which applies support vector regression to

deconvolute the expression matrix of immune cell subtypes, is

commonly utilized. This method includes 547 biomarkers that

distinguish 22 types of human immune cells, such as T cells, B cells,

plasma cells, and different myeloid cell subsets. The CIBERSORT

algorithm was used to analyze patient data and ascertain the relative

proportions of 22 infiltrating immune cell types. A correlation analysis

was performed to study the connections.
Drug sensitivity analysis

By accessing the Genomics of Drug Sensitivity in Cancer database

(GDSC), the most comprehensive repository of cancer drug sensitivity

information, available at https://www.cancerrxgene.org/, we used the

‘oncoPredict’ package in R to analyze the sensitivity of individual

tumor samples to chemotherapy. The half-maximal inhibitory

concentration (IC50) values for each chemotherapeutic agent

were derived through regression analysis. The accuracy of the

regression and prediction models was evaluated through tenfold

cross-validation on the GDSC training dataset. In the analysis,

default configurations were implemented, which included using

‘combat’ to address batch effects and averaging repeated gene

expression readings.
Gene set enrichment analysis

The classification of patients into high and low expression

categories was performed according to the levels of important

genes. Subsequent analysis of the differences in signaling

pathways between these two groups was conducted using GSEA.
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The gene sets used as a background were annotated from version 7.0

of the Molecular Signatures Database (MSigDB) and served as

annotation gene sets for subtype pathways. Pathways were

subjected to differential expression analysis by group, and gene

sets with significant enrichment (adjusted p-value under 0.05) were

ranked by consistency scores. GSEA is frequently employed to

investigate intricate associations within biological data.
Gene set variation analysis

GSVA is a nonparametric, unsupervised approach utilized for

assessing the enrichment of gene sets within a transcriptome. By

systematically scoring the gene set of interest, GSVA transforms

gene-level variations into pathway-level alterations, thereby

facilitating the evaluation of the biological functions of the

sample. In this research, gene sets from the Molecular Signatures

Database were utilized along with the GSVA algorithm to produce

detailed scores for each gene set, allowing for the evaluation of

possible biological functional variations across different samples.
Nomogram and correction curve of key
genes participating in the construction

By employing regression analysis, a nomogram was created on a

single plane with scaled linear segments that illustrate gene

expression and clinical symptoms, highlighting the relationships

between variables in the predictive model. Through the use of a

multifactor regression model, scores were given to each level of

influencing factors based on their contribution to the outcome

variable, as determined by the magnitude of the regression

coefficient. The total score was subsequently calculated to

determine the predicted value.
Ligand receptor interaction analysis

CellCall is an all-encompassing toolkit aimed at deducing

intercellular communication networks and internal regulatory

signals by merging intracellular and intercellular signals. It

assembles datasets of ligand–receptor–transcription factor (L-R-

TF) axes from KEGG pathway results. By utilizing established L-R-

TF interaction knowledge, CellCall infers intercellular

communication through the integration of ligand and receptor

expression data with the downstream activity of transcription

factors linked to specific L-R pairs.
Quasitemporal analysis

Studies conducted at the single-cell level have facilitated the

characterization of transcriptional regulation within complex

physiological processes and highly heterogeneous cell populations.

These investigations have been instrumental in identifying genes
frontiersin.org

https://www.cancerrxgene.org/
https://doi.org/10.3389/fimmu.2025.1613529
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2025.1613529
that are specific to particular cell subtypes, genes that serve as

markers for intermediate stages of biological processes, and genes

that mediate transitions between distinct cell fates. In numerous

studies focusing on single cells, gene expression is not synchronized,

with each cell serving as a distinct temporal snapshot of the

transcription process being examined. The Monocle algorithm

introduced a strategic approach to address this complexity.
Cell culture

MDA-MB-231 cel ls were obtained from Immocel l

Biotechnology (IM-H026, Xiamen, China). HL-60 cells were

obtained from Anweisci (AW-CH0142, Shanghai, China). MDA-

MB-231 cells were grown in DMEM (PYG0073, Boster Biotech,

Wuhan, China) supplemented with 10% FBS (40-001-1ACS, BI,

Israel) and 1% penicillin–streptomycin (BL505A, Biosharp, Hefei,

China). HL-60 cells were cultured in RPIM 1640 (PYG0122, Boster

Biotech, Wuhan, China) supplemented with 20% FBS and 1%

penicillin–streptomycin. To induce neutrophil-like differentiation

in HL-60 cells, 1% DMSO (1084ML500, BioFroxx, Germany) was

added to the culture media for a period of 6 days. For coculture

experiments, we employed 6-well transwell plates (703001, NEST,

China) featuring polyester membrane inserts (0.4 µm pores,

TCS001006, Jet, China), with dHL-60 cells in the upper

compartments and MDA-MB-231 cells in the lower compartment.
Transient overexpression and knockdown
of genes in dHL-60 cells

Full-length plasmids for overexpressing RASGRP4, TIMM10B,

TNFRSF13C, and GRAP were purchased from MiaoLing Plasmids

(Wuhan, China). An empty vector served as a negative control. The

plasmids were temporarily introduced into dHL60 cells using

Lipofectamine 3000 (L300015, Thermo Fisher, USA) following

the manufacturer’s instructions.
RNA extraction and quantitative real-time
polymerase chain reaction

TRIzol reagent (Invitrogen) was used to extract total RNA, and

reverse transcription was carried out using the M-MLV Reverse
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Transcriptase Kit from CWBIO, Beijing, China. Gene transcript

levels were measured relative to that of control gene (GAPDH)

using Real SYBR Mixture (Q711-02, Vazyme, China). The qRT-

PCR primers used are listed in Table 1.
Colony formation assay

A cell suspension of two milliliters, containing 1 × 103 MDA-

MB-231 cells, was placed in each well of 6-well plates and cultured

for 10 days with supernatants from control and RASGRP4/

TIMM10B/TNFRSF13C/GRAP overexpressing dHL-60 cells. The

colonies were fixed with 4% PFA (BL539A, Biosharp, Hefei, China)

for 15 minutes, followed by staining with 0.5% crystal violet

(E607309-0100, Sangon Biotech Co., Ltd, Shanghai, China) for

another 15 minutes. Colonies with more than 50 cells were counted.
Transwell migration assay

After co-culturing MDA-MB-231 cells with control or

RASGRP4-, TIMM10B-, TNFRSF13C-, or GRAP-overexpressing

dHL-60 cells at a ratio of 1:10 (dHL-60: MDA-MB-231) for three

days, the MDA-MB-231 cells were harvested, resuspended in

serum-free medium, and seeded into the upper chambers of

Transwell inserts (8 mm pore size; 3422, Corning, USA) at a

density of 1 × 104 cells in 100 mL per well. The lower chambers

were filled with 600 mL of complete medium containing 10% FBS as

a chemoattractant. Cells were allowed to migrate at 37 °C for 24

hours. After incubation, non-migrated cells on the upper side of the

membrane were gently removed, and the migrated cells on the

lower side were fixed with 4% paraformaldehyde and stained with

0.5% crystal violet. Migrated cells were counted under a light

microscope in five randomly selected fields.
Polychromatic immunofluorescence
staining

Tissue microarray slides were purchased from Superchip Outdo

Company, and the study was approved by the Ethics Committee of

Shanghai Outdo Biotech Company (HBreD120CS01). Next the tissue

samples were subjected to polychromatic immunofluorescence staining

using a six-color multiplex fluorescence immunohistochemical staining
TABLE 1 List of primers used for qRT-PCR.

Gene name Forward primer (5’-3’) Reverse primer (5’-3’)

GAPDH CTGGGCTACACTGAGCACC AAGTGGTCGTTGAGGGCAATG

TIMM10B GAGACGGGGTTTCACTGTAT TCCCATCCTCCTATCTTCTG

GRAP CTCCATCTCTGTCAGGCATGA TGTCCTGTAGTAGTCTACCAGC

TNFRSF13C GAACTCCTGACCTTGTGATC TTCCCATCCTCCTATCTTCTG

RASGRP4 GCACCGGAAAAATAGGAGGG CAGCACCATGTTGAGCATGT
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kit (Absin, abs50014). To prevent nonspecific binding, the slides were

first blocked using Tris-buffered saline with Tween 20 and 5% serum

before antibody incubation. The primary antibodies used in the

experiment included antibodies against MPO (ZSGB-Bio, ZA-0197,

diluted1:200), TIMM10B (Proteintech, 10907-1, diluted 1:200), GRAP

(Proteintech, 14505-1, diluted 1:200), and TNFRSF13C (Proteintech,

22582-1, diluted 1:200), RASGRP4 (Abcam, 96293, diluted 1:100).

Following incubation with the appropriate antibodies, nuclei were

counterstained with DAPI, and the slides were sealed and scanned

using a fluorescence scanner to capture high-resolution images. The

expression levels of MPO, TIMM10B, GRAP, TNFRSF13C, and

RASGRP4 were evaluated through semiquantitative analysis, and

IHC scores were assigned based on both the staining intensity and

the percentage of positively stained cells.
Statistical analysis

Statistical analyses were performed using R (version 4.3.0), with

the significance level set at P < 0.05. The data are shown as the mean

± standard deviation (SD) from at least three separate experiments.

Statistical significance was assessed using a one-way ANOVA, with

*P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001 regarded as

statistically significant in compared with the control group.
Results

Single cell transcriptome profiling of TNBC

To obtain high quality data across different samples, cells with

results capturing fewer than 50 genes were not included in the

analysis. The following criteria were used for filtering: the

mitochondrial content (mt) was required to be less than or equal

to the median plus three times the median absolute deviation

(3MAD); the number of detected genes (nFeature_RNA) was

required to be less than or equal to the median plus 3MAD; and

the total number of unique molecular identifiers (nCount_RNA)

was required to be less than or equal to the median plus 3MAD.

Additionally, cells whose nFeature_RNA was greater than 50 and

whose mitochondrial content (percent.mt) was less than or equal to

the median plus 3MAD were retained. Here, nFeature_RNA is the

measure of genes detected, nCount_RNA represents the total

number of unique molecular identifiers per cell, percent.mt

indicates the fraction of mitochondrial reads, and percent.ribo

represents the fraction of ribosomal reads. The filtered data are

presented in both a violin plot and a scatter plot (Supplementary

Figure S1A). In all, we discovered 2,000 highly variable genes

(Supplementary Figure S1B) were discovered after completing

data normalization, homogenization, PCA, and harmony

processing (Supplementary Figures S1C–F).

Furthermore, nine distinct cell subtypes were identified through

uniform manifold approximation and projection (UMAP) analysis

(Figure 1A). Each subtype underwent annotation, resulting in the

classification of all clusters into five major cell categories: B cells, T
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cells, NK cells, neutrophils, and monocytes (as illustrated in

Figures 1A, B). A bubble diagram depicting the classical markers

for these five cell types is presented in Figure 1C, while Figure 1D

provides a bar diagram illustrating the cell proportions across

various subsamples. The differential expression of the marker

genes of neutrophils, i.e., S100a9, S100a8, Ifitm1, Retnlg and

Wfdc17, was visualized (Figure 1C). Additionally, we conducted

an analysis of cell subtype differences at the single-cell level utilizing

the markerVocalno function from the scRNAtoolVis package. This

approach identified cluster-specific marker genes for each cell type,

aiding in precise cell annotation and deepening our understanding

of tumor microenvironment heterogeneity in triple-negative breast

cancer (Figure 1E).
Identification of candidate genes through
random survival forest analysis

To investigate the role of TANs in TNBC, we performed

deconvolution analysis using the InstaPrism (v1.0.0) tool on bulk

RNA-sequencing data from the TCGA-BRAC cohort. Patients were

stratified into high and low neutrophil infiltration groups based on

an optimal cutoff value determined by maximizing the survival

difference between groups. The results showed that greater

neutrophil infiltration was positively correlated with poorer

patient survival (Figure 2A). We then utilized 1,436 marker genes

from neutrophils for RSF analysis and identified those with a

relative importance score exceeding 0.2 as final markers, thereby

emphasizing the importance ranking of eight genes (Figures 2B, C).

Subsequent survival analysis of these eight highly significant genes

revealed that four genes, TIMM10B, GRAP, TNFRSF13C, and

RASGRP4, were significantly associated with survival outcomes

(p<0.05) (Figures 2D–G). Conversely, no significant differences

were detected for COX20, CD47, LY86, or ATP6V0D1

(Supplementary Figures S2A–D).
Immunoinfiltration patterns of the
candidate genes

Given that TANs are known to facilitate tumor progression and

metastasis mainly through immunosuppressive effects, we further

investigated the immune infiltration patterns associated with TAN-

related gene expression. We then compared the proportions of

immune cells between groups characterized by high or low

expression of each key gene in various forms (Figures 3A, C, E, G).

Significant differences in the proportions of naive B cells, activated

NK cells, resting memory CD4 T cells, and resting NK cells were

detected between groups with different TIMM10B expression levels

(Figure 3B). In addition, there were marked differences in the

proportions of resting mast cells, activated memory CD4 T cells,

regulatory T cells (Tregs), activated dendritic cells, and gamma delta

T cells between groups with high and low GRAP expression

(Figure 3D). When comparing the groups with high and low

TNFRSF13C expression, notable differences in the proportions of
frontiersin.org
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memory CD4 T cells, resting memory B cells, naive B cells, M1

macrophages, plasma cells, neutrophils, and T cells were detected

between the two groups (Figure 3F). Similarly, notable differences

between the groups with high and low RASGRP4 expression were

found in the proportions of resting dendritic cells, follicular helper T

cells, naive B cells, monocytes, activated memory CD4 T cells, and

neutrophils (Figure 3H).

We conducted a comprehensive analysis of the associations

between key genes and immune cell populations. Our findings

revealed that TIMM10B was significantly positively correlated with
Frontiers in Immunology 06
resting memory CD4 T cells. Additionally, GRAP was positively

correlated with naive B cells, resting mast cells, plasma cells, gamma

delta T cells, and regulatory T cells (Tregs) but significantly

negatively correlated with activated dendritic cells. Moreover,

TNFRSF13C was significantly positively correlated with memory

B cells, naive B cells, eosinophils, plasma cells, follicular helper T

cells, and regulatory T cells (Tregs) and negatively correlated with

resting dendritic cells, M0 macrophages, M2 macrophages, and

monocytes. Conversely, RASGRP4 was positively correlated with

M2macrophages, resting mast cells, monocytes, and gamma delta T
FIGURE 1

Single-cell transcriptome profiling of triple-negative breast cancer. (A) scRNA-seq data from 12,316 triple-negative breast cancer cells were
subjected to UMAP. (B) UMAP visualization of the scRNAseq data showing all the cells, with clusters indicated by colors and labeled based on
inferred cell types. (C) Dot plot showing the expression of known marker genes in these five clusters. Dot size reflects each gene’s expressing
percentage of each cluster’s cells; Dot color represents the expression level. (D) Proportions of B cells, T cells, NK cells, neutrophils, and monocytes.
(E) For each cell type, volcano plots display the fold change in gene expression (log2FC) against the percent difference in expression, highlighting
genes with significant differential expression.
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cells, and significantly negatively correlated with naive B cells and

follicular helper T cells (Figure 3I).

Furthermore, we analyzed the associations between key genes

and various immune factors, including immunosuppressors,
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immunostimulators, chemokines, and receptors. The results

suggest that key genes are intricately associated with the degree of

immune cell infiltration and play a significant role in modulating

the immune microenvironment (Supplementary Figures S3A–E).
FIGURE 2

Identification of candidate genes. (A) Differences in survival between the high and low neutrophil group. (B) RSF analysis and expression levels of
genes related to prognosis. (C) Expression levels and distributions of RASGRP4, COX20, CD47, TIMM10B, LY86, GRAP, TNFRSF13C and ATP6V0D1 in
different tumor subtypes. (D-G) Kaplan–Meier graphs displaying the survival potential of patients with TNBC, grouped by the expression levels of
significant genes.
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FIGURE 3

Differences in immune cell infiltration among the four different groups. (A, C, E, G) Heatmap illustrating the distributions of 22 immune cell subsets
via ssGSEA.(B, D, F, H) Proportions of various types of infiltrating immune cells in the high- and low-risk groups. (I) Relevance of the key genes and
immune cells. *p < 0.05 and **p < 0.01. ns, not significant.
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Identification of potential drugs for TNBC
patients

To further explore the clinical significance of the risk scores and

prognostic genes, we determined the IC50 values for different drugs

in TNBC patients. By leveraging drug sensitivity data from the

GDSC database and applying the oncoPredict R package, we

predicted the response of individual tumor samples to

chemotherapy, with a focus on the TIMM10B, GRAP,

TNFRSF13C, and RASGRP4 genes in relation to commonly used

chemotherapeutic agents. The analysis revealed that TIMM10B was

associated with sensitivity to AZD7762_1022 (Figure 4A). GRAP

was associated with sensitivity to camptothecin_1003,

o l apa r ib_1017 , ax i t in i b_1021 , AZD8055_1059 , and

PD0325901_1060 (Figure 4B). TNFRSF13C was associated with

sensitivity to olaparib_1017 and axitinib_1021 (Figure 4C).

RASGRP4 was associated with sensitivity to camptothecin_1003,

olaparib_1017, AZD8055_1059, and PD0325901_1060 (Figure 4D).
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These findings highlight the potential of these biomarkers in

predicting responsiveness to chemotherapy, thereby providing

valuable insights for the development of personalized treatment

strategies for patients with triple-negative breast cancer.
GSEA and GSVA analysis

We then investigated the specific signaling pathways involving

key genes and studied the molecular mechanisms through which

these genes impact disease progression. GSEA revealed that

TIMM10B was associated with the AMPK signaling pathway,

cGMP-PKG signaling pathway, glutamatergic synapse, and other

pathways (Figure 5A). GRAP was associated with the NF-kappa B

signaling pathway, the mRNA surveillance pathway, and oxidative

phosphorylation (Figure 5B). TNFRSF13C was strongly associated

with B-cell receptor signaling pathway, chemokine signaling

pathways, hematopoietic cell lineage pathways, and other
FIGURE 4

Correlations between TIMM10B, GRAP, TNFRSF13C and RASGRP4 and drug sensitivity. (A-D) Correlations between key genes and the IC50 of
chemotherapeutic agents.
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signaling pathways (Figure 5C). RASGRP4 was prominently

associated with signaling pathways, including the TNF signaling

pathway, platelet activation, and the T-cell receptor signaling

pathway (Figure 5D).

GSVA revealed that TIMM10B was associated with pathways

linked to adipogenesis, bile acid metabolism, and various other
Frontiers in Immunology 10
signaling pathways (Figure 5E). GRAP was associated with IL2/

STAT5 signaling, IL6/JAK/STAT3 signaling, and other signaling

pathways (Figure 5F). TNFRSF13C was associated with

angiogenesis, allograft rejection, and other signaling pathways

(Figure 5G). RASGRP4 was associated with the inflammatory

response and IL6/JAK/STAT3 signaling pathways (Figure 5H).
FIGURE 5

GSEA and GSVA of the four genes. (A-D). GSEA revealed the enriched signaling pathways associated with TIMM10B, GRAP, TNFRSF13C and
RASGRP4. (E-H). Analysis of key genes using GSVA. The x-axis illustrates the t value of the GSVA score, and the y-axis depicts KEGG pathways; blue
highlights upregulated pathways, whereas green highlights downregulated pathways. |NES| ≥ 1 and FDR < 0.25.
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These data suggest that these key genes could play a part in the

progression of triple-negative breast cancer through these pathways.
Assessment of the prognostic effect

Based on the multivariate Cox regression coefficients of the gene

signature and clinical traits (age and TNM stage) of patients in the

TCGA training dataset, we built a prognostic nomogram for clinicians

to quantitatively predict the 1-, 3- and 5-year OS probabilities of TNBC

patients. The outcomes of the regression analysis were presented in a

bar graph, reflecting the expression levels of pivotal genes. This analysis

demonstrated that the values of diverse clinical indicators and the

distribution of key gene expression among all samples contributed

variably to the overall scoring process (Figure 6A). Additionally, a

predictive analysis of overall survival (OS) data for one, three, and five

years was conducted (Figures 6B–D). The findings demonstrated that

the predicted OS was closely aligned with the observed OS data,

confirming the efficiency of the nomogram model.
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Cell communication and quasitemporal
analysis

To explore the interplay between neutrophils and other cells, we

analyzed the ligand–receptor relationships of features in the single–

cell expression profile of triple-negative breast cancer. We found

complex interaction pairs among these cell types (Figure 7A), and

demonstrated that ligands of neutrophils interact with other cell

types as well as with neutrophils themselves (Figure 7B). Next, a

quasitemporal analysis was conducted, where we initially

determined the similarity between cells and built cell

differentiation pathways. By visualizing the trajectory, a

pseudotime picture of cell differentiation was constructed to

illustrate the cell development process, which is useful for

studying cell differentiation and gene expression. Illustrations

showing cell coloring with pseudotime values, cell types, and

groups were produced individually (Figures 7C–E). The changes

in the expression of key genes from the start to the end of the

pseudotime process are shown in Figures 7F–H.
FIGURE 6

Establishment of the prognostic risk model. (A) Nomogram for predicting the survival of patients according to key genes. (B) A calibration curve of
the nomogram was used to assess accuracy over 1, 3, and 5 years. (C) Multivariate ROC curve and risk score. (D) Evaluation of model performance
using the concordance index. Abbreviations: T, tumor stage; M, metastasis stage; N, node stage; OS, overall survival; AUC, area under the curve.
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Overview of key genes in single cells

To analyze the expression of crucial genes in single cells, we

employed the FeaturePlot and Dotplot functions from the SeuratR

package (Figures 8A–D). The Results showed that RASGRP4 and

TIMM10B were highly expressed in neutrophils, while GRAP and

TNFRSF13C were down-regulated in neutrophils (Figures 8A–C). We

also checked the expression pattern of the four targeted genes in

tumor-free and TNBC-bearing mice. The results revealed that

RASGRP4 and TIMM10B were highly expressed in TNBC-bearing
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mice, while GRAP and TNFRSF13C were highly expressed in

tumor-free mice (Supplementary Figure S4). AUCell was used

to quantitatively score genes related to immune metabolism in

single cells, and bubble map was generated to visualize the

differences in the activity of key genes in immune metabolism-

related pathways. The results showed high activity of Tnfrsf13c in

interferon_gamma_response and other pathways; high activity of

Rasgrp4 is in il6_jak_stat3_signaling; and tnfa_signaling_via_nfkb

and other pathways; and high activity of Grap in allograft_rejection,

myc_target_v1 and other pathways (Figure 8D).
FIGURE 7

Cell communication and quasitemporal analysis. (A) Circus plot illustrating the greater total number of significantly interacting pairs between
neutrophils and immune cells as estimated by CellPhoneDB (P<0.05). (B) Bubble diagram of the cell communication network between ligands and
neutrophils and other cell subtypes as well as with neutrophil itself themselves. (C-E) Trajectory analysis of the potential relatedness between the
two groups according to pseudotime, cell type and group. (F-H) Changes in the expression of TIMM10B, GRAP, TNFRSF13C and RASGRP4 over
pseudotime.
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RASGRP4 and TIMM10B exhibit pro-tumor
activities

To evaluate the influence of the four candidate genes on the

pro-tumor functions of neutrophils, we overexpressed these genes
Frontiers in Immunology 13
in dHL-60 cells. The qRT-PCR results confirmed the significant

overexpression of all four genes (Supplementary Figure S4A). In the

colony formation assay, MDA-MB-231 cells cultured with

supernatants from RASGRP4- and TIMM10B-overexpressing

dHL-60 cell cultures presented increased colony formation ability.
FIGURE 8

Gene expression levels in cells. (A) Atlas showing the expression levels of the specified genes, with red denoting expression. (B) Bubble plot showing
the expression levels of the selected genes in different cell types. (C) Violin plots illustrating the expression levels of specific genes that define the
inferred cell types. (D) Bubble plot illustrating variations in the activity of key genes involved in immune metabolism pathways.
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In contrast, MDA-MB-231 cells cultured with supernatants from

TNFRSF13C-overexpressing dHL-60 cell cultures showed a

reduced colony formation capacity, whereas no significant

difference was observed in MDA-MB-231 cells cocultured with

GRAP-overexpressing dHL-60 cell culture supernatants

(Figures 9A, B). Additionally, Transwell migration assays revealed

that compared with control cells, MDA-MB-231 cells cocultured

with RASGRP4, TIMM10B, or GRAP-overexpressing dHL-60 cells

exhibited increased migration ability (Figures 9C, D). We also

cocultured dHL-60 cells with MDA-MB-231 cells and then

examined the mRNA levels of the four genes. The mRNA levels

of TIMM10B and RASGRP4 were significantly increased, whereas

the level of TNFRSC13C was decreased. There was no change in the

mRNA level of GRAP (Supplementary Figure S4B).

These findings imply that a neutrophil subpopulation with

upregulated RASGRP4 and TIMM10B expression and

downregulated TNFRSF13C may contribute to pro-tumor

activities within the tumor microenvironment.
Elevated RASGRP4 and TIMM10B
expression, alongside reduced TNFRSF13C
expression

To confirm the clinical importance of these newly identified

candidate genes, we utilized polychromatic immunofluorescence

staining to evaluate the expression levels of the neutrophil marker

MPO and the genes TIMM10B, GRAP, RASGRP4, and

TNFRSF13C in TNBC (Figure 10A). The results revealed that

MPO, TIMM10B, and RASGRP4 were expressed at significantly
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higher levels in grade III TNBC tumors than in both adjacent tissues

and grade I–II tumors, whereas TNFRSF13C expression was lower

in grade III tumors than in grade I–II tumors (Figure 10B). There

was no notable difference in GRAP expression between grade I–II

and grade III TNBC tumors (Figure 10B).

Next, we analyzed the correlation between MPO and these four

target genes. In grade I–II TNBC tumors, there was no correlation

between MPO and TIMM10B, GRAP, or TNFRSF13C, but MPO

was negatively correlated with RASGRP4 (Figure 10C). In contrast,

in grade III TNBC tumors, MPO was positively correlated with

TIMM10B and RASGRP4 but negatively correlated with

TNFRSF13C (Figure 10D). Moreover, neutrophils expressing

TIMM10B and RASGRP4 were more frequently observed in stage

III TNBC than in stage I–II TNBC and normal tissues, whereas

neutrophils expressing TNFRSF13C were less frequently observed

in stage III TNBC than in stage I–II TNBC (Figures 10E, F). Taken

together, these findings suggest that higher expression of TIMM10B

and RASGRP4 in grade III TNBC tumors is associated with MPO

expression and a poor prognosis, whereas lower TNFRSF13C

expression in grade III TNBC tumors is negatively correlated with

MPO expression.
Discussions

TANs are integral to the TME of TNBC, where they exhibit

both tumor-promoting and immune-modulating functions (29). In

our study, we performed a detailed single-cell transcriptomic

analysis of the TME in TNBC, which led to the identification of

crucial prognostic genes—TIMM10B, RASGRP4, and TNFRSF13C
FIGURE 9

RASGRP4, TIMM10B and TNFRSF13C exhibited protumorigenic activities. (A) Representative images of colonies of MDA-MB-231 cells treated with
control or gene-overexpressing neutrophils. (B) Relative quantified number of colonies. (C) Representative images of migrated cells after cocultured
with control or gene-overexpressing cells. (D) Quantification of the relative number of migrated cells.
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FIGURE 10

Clinical relevance of TIMM10B, GRAP, TNFRSF13C and RASGRP4. (A) Polychromatic immunofluorescence staining showing the distribution of MPO,
TIMM10B, GRAP, TNFRSF13C and RASGRP4 expression. Scale bar (upper panel), 200 µm. Scale bar (bottom panel), 50 µm. (B) IHC scores of MPO,
TIMM10B, GRAP, TNFRSF13C and RASGRP4 in adjacent tissue (AT), stage I-II (I-II) and III TNBC. (C) Correlations between MPO and the four
candidate genes in stage I-II (I-II) TNBC. (D) Correlations between MPO and the four candidate genes in stage III (III) TNBC. (E) Representative
images of coimmunostaining for MPO and four target genes in adjacent tissue from the stage I-II and III TNBC groups. Scale bar, 20 µm. (F)
Percentage of TIMM10B-, GRAP-, TNFRSF13C- and RASGRP4-positive cells in AT and stage I-II and III TNBC. *p < 0.05, **p < 0.01, ***p < 0.001,
****p < 0.0001. ns, not significant.
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—that demonstrate significant clinical relevance in TNBC patients.

The predictive accuracy of these genes was validated using a

nomogram model, underscoring their potential as biomarkers for

patient prognosis. These results align with those of previous studies

linking TANs to cancer aggressiveness through mechanisms such as

the formation of neutrophil extracellular traps (NETs) and the

inhibition of cytotoxic T lymphocytes (CTLs) (30–32).

The analysis of immune infiltration demonstrated that these genes

are intricately associated with various immune cell populations. For

example, GRAP was positively correlated with Tregs and negatively

correlated with activated dendritic cells, indicating its role in fostering

an immunosuppressive microenvironment. Similarly, TIMM10B and

RASGRP4 were significantly correlated with macrophages and T cells,

highlighting their involvement in modulating the immune response

within the TME. These interactions reflect mechanisms by which

neutrophils suppress cytotoxic T lymphocytes, thereby facilitating

tumor progression and metastasis. Notably, TIMM10B, RASGRP4,

and GRAP were linked to poorer survival outcomes, suggesting their

participation in tumor-promoting pathways, whereas TNFRSF13C

exhibited context-dependent roles that may influence immune

modulation within the TME. Although several studies have

investigated the inflammatory response and immunomodulatory

roles of GRAP, TNFRSF13C, and RASGRP4 (33–37), few

investigations have focused on the immunomodulatory functions of

these four genes in neutrophils specifically.

GSEA and GSVA revealed that the four candidate genes are

involved in diverse signaling pathways, suggesting their potential roles

in regulating TNBC progression through multiple biological

mechanisms. These pathway associations support the notion that

these genes may influence the tumor microenvironment via metabolic

regulation, inflammation, and immune cell interactions, further

reinforcing the multifaceted role of TANs in shaping the immune

landscape in TNBC. However, we acknowledge that these pathway

analyses are based on transcriptomic correlations and do not provide

direct mechanistic evidence. Functional validation experiments—such

as pathway inhibition assays, downstream target analysis, or reporter-

based readouts—were not performed in the current study. This remains

a key limitation. In future work, we aim to conduct mechanistic

investigations using immune-tumor coculture systems, phospho-

protein analysis, and pathway-specific perturbation models, to clarify

the causal relationships between these genes and their downstream

signaling effects in the tumor microenvironment of TNBC.

Furthermore, we assessed the sensitivity of these genes to

chemotherapeutic agents via the GDSC database. TIMM10B,

GRAP, TNFRSF13C and RASGRP4 were found to be associated

with sensitivity to specific chemotherapies, suggesting their

potential as biomarkers for predicting responsiveness to

chemotherapy. These findings underscore the possibility of

utilizing these genes to guide personalized treatment strategies for

TNBC patients. For example, pharmacological inhibition of

enzymes such as arachidonate 5-lipoxygenase (Alox5) has been

shown to effectively eliminate neutrophil prometastatic activity and

reduce metastasis (38). Similarly, targeting cathepsin C (CTSC)

with compounds such as AZD7986 suppresses neutrophil
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recruitment and lung metastasis in breast cancer models (16). Our

identification of TIMM10B, GRAP, TNFRSF13C and RASGRP4 as

key genes further expands the potential therapeutic targets within

TANs, offering promising avenues for disrupting protumorigenic

interactions within the TME. Targeting TANs has already shown

promise in preclinical models by reducing metastasis and

modulating neutrophil functions.

Functional assays demonstrated that TIMM10B, GRAP, and

RASGRP4 exerted protumorigenic effects, as their overexpression in

neutrophil-like cells significantly enhanced both the colony

formation and migration of TNBC cells. In contrast, the

overexpression of TNFRSF13C resulted in a reduction in colony

formation and migration, indicating its potential role as a tumor

suppressor under certain conditions. While GRAP and RASGRP4

have been previously implicated in oncogenesis (39–41),

TNFRSF13C has recently been identified as a new prognostic

biomarker for cervical cancer (42), and the role of TIMM10B in

cancer remains largely unexplored. These findings emphasize the

complex, context-dependent functions of these genes in the biology

of TNBC and highlight the necessity for therapeutic strategies that

meticulously consider the immune context of tumors.

We found that the expression of the neutrophil marker MPO

was positively correlated with TIMM10B and RASGRP4, indicating

that the expression levels of these genes are closely associated with

neutrophil infiltration, particularly in high-grade tumors. These

findings support the theory that neutrophils are pivotal in

determining the immune landscape in TNBC and accelerating

tumor advancement. Additionally, the negative correlation

between MPO expression and both GRAP and TNFRSF13C

suggests that reduced expression of these genes in neutrophils

may contribute to immune evasion in aggressive tumors. While

GRAP and TNFRSF13C are expressed at relatively high levels in B

cells and are not exclusively associated with neutrophils, it is

important to clarify that our identification of neutrophil-

associated marker genes was based on differential expression

patterns specifically from neutrophil subclusters. This approach

focused on genes that were either upregulated or downregulated

within distinct neutrophil populations. Both GRAP and

TNFRSF13C were selected because they were significantly

downregulated in a specific neutrophil subpopulation, making

them useful for identifying functionally distinct neutrophil states

rather than serving as universal neutrophil markers. We believe that

the prognostic associations observed for these genes reflect the

functional heterogeneity within the neutrophil compartment, rather

than simply the presence or abundance of neutrophils. Therefore,

despite its downregulation in aggressive tumors, TNFRSF13C could

serve as a valuable therapeutic target in settings where immune

responses are more pronounced or responsive.

This validation in tissue samples is in line with accumulating

clinical evidence showing that peripheral neutrophil characteristics

can reflect systemic and local inflammation in cancer. For example,

the neutrophil-to-lymphocyte ratio (NLR), a simple metric

calculated from routine peripheral blood tests, has been reported

to correlate with cancer-related inflammation and predict clinical
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outcomes across various malignancies (43, 44). These findings

suggest that neutrophil activation in the circulation may mirror

or even contribute to the inflammatory milieu within the tumor

microenvironment. However, due to the limited availability of high-

quality blood samples from TNBC patients—particularly those with

sufficient circulating neutrophils—we were unable to directly

validate the expression of these four genes in blood-derived

neutrophils. Future studies incorporating matched blood and

tumor tissue from the same patients will be critical to confirm the

consistency of neutrophil activation across compartments and

further elucidate its prognostic and mechanistic implications

in TNBC.

Despite its promising results, this study is limited by its

retrospective design and reliance on publicly available datasets,

which may introduce biases. We fully acknowledge the importance

of generalizability and actively sought additional publicly available

TNBC scRNA-seq datasets. However, high-quality datasets derived

from primary TNBC tumors with comparable tissue origins,

processing protocols, and sufficient neutrophil representations are

scarce. Integrating datasets with substantial batch effects or

inconsistent tissue handling could introduce unwanted noise—

particularly for neutrophil-related analyses, which are highly

sensitive to sample processing. Despite the small sample size,

GSE222854 comprises 12,316 high-quality single cells, enabling

robust clustering and downstream analyses. Importantly, this

dataset includes well-annotated tumor-associated neutrophils

(TANs), which are central to our study. We plan to perform

integrative validation as more suitable datasets become available.

While our functional validations provided initial insights, they

were performed exclusively in vitro and focused primarily on tumor

cell–intrinsic phenotypes such as proliferation, colony formation, and

migration. These assays, however, do not capture potential

immunoregulatory functions of the candidate genes within the

tumor microenvironment (TME). Given the observed associations

between gene expression and distinct immune infiltration patterns,

particularly involving neutrophils, it is critical to explore whether these

genes influence immune cell recruitment, activation, or suppression.

Future studies should incorporate immune–tumor coculture

systems, cytokine profiling, and immune cell functional assays to

assess the immunomodulatory roles of these genes. In addition, the

use of advanced in vivo models—such as humanized mouse models

or syngeneic tumor systems—will be essential to validate their

impact on tumor–immune interactions under physiologically

relevant conditions. Expanding the analysis to include more

diverse and clinically representative patient cohorts will also

increase the generalizability and translational value of our findings.

Our study specifically focused on CD45+ Ter119- immune cells

to investigate the roles of tumor-associated neutrophils and related

immune populations in the tumor microenvironment. While this

approach allows us to characterize immune cell-specific

transcriptional dynamics with high resolution, it inherently

excludes non-immune cellular components such as stromal cells,

endothelial cells, and erythroid lineage cells. These non-immune

cells are known to contribute significantly to tumor progression and

patient prognosis, and their interactions with immune cells may
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influence the tumor ecosystem in complex ways. We acknowledge

that restricting the analysis to CD45+ Ter119- cells may introduce

bias and limit the comprehensiveness of our findings. Future

studies incorporating a broader range of cellular compartments,

including non-immune cells, will be essential to fully elucidate

the intricate cellular crosstalk and heterogeneity within the

tumor microenvironment.
Conclusions

In conclusion, higher expression levels of TIMM10B and

RASGRP4 were associated with poorer patient survival and

protumor functions, while lower expression of TNFRSF13C also

correlated with worse prognosis and protumor activity. In contrast,

the clinical relevance and functional role of GRAP remained

ambiguous, as it was lowly expressed in neutrophils and showed

limited impact in functional assays. Therefore, TIMM10B,

RASGRP4, and TNFRSF13C may serve as valuable biomarkers

for risk stratification and personalized therapy in TNBC patients.

Their associations with immune infiltration, drug sensitivity, and

tumor progression provide a strong rationale for further

exploration as therapeutic targets.

Future research should focus on mechanistic studies to further

elucidate how these genes influence TNBC progression and

immune modulation, as well as clinical trials to validate their

utility as therapeutic targets. Given the complexity of the TME in

TNBC, incorporating both single-cell and bulk transcriptomic data

will be essential for developing effective biomarkers and

combination therapies targeting both cancer cells and the

supportive TME.
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SUPPLEMENTARY FIGURE 1

Single cell analysis of TNBC samples. (A, B) In total, 12,316 cells were
identified. (C) Diagram presenting the disparities in gene expression levels

among TNBC cells. Red dots indicate genes with high variability, and the black
dots indicate genes with stable expression. (D) The top 50 principal

components, with P-values less than 0.05, as determined by PCA. (E, F)
The batch effect was eliminated by integrating and correcting the scRNA-seq
data with the R package Harmony.

SUPPLEMENTARY FIGURE 2

Clinical relevance of COX20, CD47, LY86 and ATP6V0D1. (A-D) Kaplan-Meier
plots illustrating the survival rates of TNBC patients based on the expression

levels of crucial genes.

SUPPLEMENTARY FIGURE 3

The immune cell infiltration profiles of the four genes. (A-E) Bubble plot
showing the state of immune cell infiltration.

SUPPLEMENTARY FIGURE 4

Expression patterns of the four selected genes in tumor-free and TNBC-

bearing mice.

SUPPLEMENTARY FIGURE 5

The efficiency of RASGRP4, TIMM10B, TNFRSF13C and GRAP expression was

examined by qRT-PCR. (A). Quantified mRNA levels of TIMM10B, GRAP,
TNFRSF13C and RASGRP4 after overexpressing these targeted genes in dHL-60

cells. (B). Quantified mRNA levels of TIMM10B, GRAP, TNFRSF13C and RASGRP4

in dHL-60 cells after coculture with MDA-MB-231 cells for 3 days.
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