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Background and aims: Systemic lupus erythematosus (SLE) is one of the most 
prevalent systemic autoimmune diseases, characterized by aberrant activation of 
the immune system that leads to diverse clinical symptoms; periodontal disease 
(PD) is an inflammatory oral disorder caused by immune-mediated damage 
against subgingival microflora. Although clinical evidence suggests a potential 
association between SLE and PD, their shared pathogenic mechanisms remain 
unclear. This study aims to explore common genetic markers in SLE and PD that 
hold diagnostic and therapeutic implications. 

Methods: Microarray datasets for systemic lupus erythematosus (SLE) and 
periodontal disease (PD) were obtained from the Gene Expression Omnibus 
(GEO) database. Module genes between the two diseases were screened using 
Weighted Gene Co-expression Network Analysis (WGCNA), and module genes 
overlapping between the significant correlation modules of GSE61635 and 
GSE16134 were identified. Functional enrichment analyses of genes within 
overlapping modules and their significantly correlated associated modules 
were performed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway analysis. Overlapping module genes underwent 
differential expression analysis in GSE16134. A diagnostic model was constructed 
using the Random Forest (RF) machine learning technique under Receiver 
Operating Characteristic (ROC) curve assessment, which top 10 key genes 
were screened and analyzed for differential expression across three datasets 
(GSE61635, GSE10334, and GSE50772) to identify hub genes. Protein-protein 
interaction (PPI) network analysis was conducted to explore relationships 
between hub genes. CIBERSORT and Gene Set Variation Analysis (GSVA) were 
used to evaluate the correlation between shared hub genes and immune 
infiltration patterns as well as metabolic pathways. Finally, hub genes were 
validated using additional datasets, single-cell RNA sequencing (scRNA-seq) 
data, and immunohistochemistry (IHC) experiments. 

Results: Using WGCNA, we identified significant correlation modules and 
overlapping module genes, which were subjected to differential expression 
analysis in different datasets. Further, 4 hub genes were screened and 
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successfully used to build a prognostic model. Those shared hub genes were 
associated with immunological and metabolic processes in peripheral blood. The 
additional datasets, scRNA-seq and IHC results verified that LY96 and TMEM140, 
possessing the promising diagnostic and therapeutic performance. 

Conclusion: LY96 andTMEM140 can be used as new diagnostic and therapeutic 
markers for SLE and PD. 
KEYWORDS 

systemic lupus erythematosus (SLE), periodontal disease (PD), targeted drug, hub genes, 
single-cell sequencing, molecular docking 
Introduction 

Systemic lupus erythematosus (SLE) is a systemic autoimmune 
disease that is characterized by a breakdown in immune tolerance 
and an exaggerated autoimmune response. There has been a rise in 
the prevalence of atypical, early, or comorbid cases of SLE (1). The 
characteristic clinical manifestations of SLE encompass the 
presence of erythematous macules on the skin and the 
involvement of multiple organs, predominantly observed in 
young females (2, 3). The etiology of SLE is a complex 
phenomenon that has yet to be fully elucidated. It is believed to 
involve a combination of genetic predisposition, environmental 
exposure, gender, and endogenous triggers (4). 

Periodontitis is a chronic inflammatory noncommunicable 
disease that impacts the entire periodontium and leads to 
irreversible damage. The immune and inflammatory response to 
the presence of bacteria, specifically gram-negative bacteria, in the 
gingival sulcus results in the periodontal attachment loss (5). A 
multitude of factors, including genetic, metabolic, immunological, 
and inflammatory factors, are associated with the progression of 
periodontitis. Thus, it is imperative to establish dependable, 
unbiased, and replicable biomarkers for the timely detection of 
periodontitis (6). 

A substantial body of research has demonstrated a potential 
correlation between periodontal diseases and autoimmune 
conditions, including rheumatoid arthritis and SLE, such as IL­
1and IL-18, in the pathogenesis of both conditions, contributing to 
tissue destruction, SLE exhibits an enhanced ability to reduce the 
periodontal aKG levels, thereby promoting the inflammation and 
bone loss of periodontal disease (PD), and Periodontitis might 
induce the overactivation of the immune response in SLE by 
maintaining high expression of TLR, which would then lead to 
the accelerated occurrence and progression of the autoimmune 
response (7–10). Despite the increasing body of evidence indicating 
a close association between SLE and PD, previous studies primarily 
adopted a clinical perspective and failed to elucidate the underlying 
molecular mechanisms at the genetic level. Additionally, there is a 
02 
lack of research on targeted drugs and their mechanisms for 
patients with comorbidity. Therefore, it is necessary to conduct 
more studies that focus on common molecular mechanisms in 
order to enhance our understanding in this area. 

The objective of this study was to employ unbiased 
bioinformatics methodologies to systematically elucidate the 
molecular signatures associated with the pathogenesis of systemic 
lupus erythematosus (SLE) and periodontal disease (PD). This 
investigation specifically aimed to identify key dysregulated genes, 
immune cell profiles, and functional pathways and focuses on three 
mechanistic  dimensions— immune-metabolic  crosstalk,  
inflammatory signaling integration, and transcriptional 
dysregulation—to reveal shared pathological bases of SLE and PD 
via multi-omics integration, which including differential gene 
expression (DEG) profiling, immune infiltration assessment, gene 
set variation analysis (GSVA), and molecular-ligand docking—we 
endeavored to reveal both shared and distinct biological 
mechanisms underlying these two immune-related disorders. The 
findings were subsequently validated through additional datasets, 
single-cell RNA sequencing and immunohistochemistry (IHC) 
conducted on clinical specimens from SLE patients and healthy 
controls. Ultimately, the primary aim was to identify and validate 
novel biomarker candidates that could potentially serve as targets 
for enhancing the diagnosis and therapeutic approaches for SLE 
and PD. 
Materials and methods 

Data selection 

The search terms “lupus” or “SLE” and “Periodontal disease” or 
“periodontitis” were utilized to retrieve gene expression profiles 
from the GEO (http://www.ncbi.nlm.nih.gov/geo) database (11). 
The search was filtered to include only samples obtained from 
peripheral blood. The obtained dataset is filtered based on the 
following criteria: Firstly, the gene expression profiling must include 
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both cases and controls. Second, the organization used for 
sequencing should be peripheral blood mononuclear cells 
(PBMC) for SLE and PD. Thirdly, it is crucial to ensure the 
accuracy of the Weighted Gene Co-expression Network Analysis 
(WGCNA) by having a minimum sample size of 15 in each group. 
Fourth, these datasets must provide the processed data or raw data 
that could be used for reanalyzation. Finally, the GEO datasets 
GSE50772, GSE61635, GSE16134, GSE10334, GSE135779 and 
GSE174609 were chosen (Table 1). The Series Matrix Files 
provided by the contributors include the normalized data 
processed by MAS5 algorithm. We subsequently conducted log2 
transformation on the gene expression profiling data and associated 
the probes with their respective gene symbols based on the 
annotation document of the corresponding platforms. Lastly, the 
gene matrix with row names as sample names and column names as 
gene symbols were obtained for subsequent analyses. 
Construction of weighted gene co 
−expression network analysis 

WGCNA was conducted on the GSE61635 and GSE16134 
datasets to identify gene modules. The “pickSoftThreshold” 
function from the WGCNA package (http://www.genetics.ucla. 
edu/labs/horvath/CoexpressionNetwork/Rpackages/WGCNA) was 
utilized for this purpose. The genes ranking in the top 5000 of the 
median absolute deviation in the corresponding expression matrix 
were selected for WGCNA. After removing missing values and 
genes with zero variance, the remaining values were selected to 
construct an adjacency matrix using the scale-free topology 
criterion, the appropriate soft power parameter, denoted as b, was 
determined utilizing the “pickSoftThreshold” function within the 
WGCNA package to assess the range of threshold values (power = 1 
- 20), adhering to the criteria for establishing a scale-free network, 
these criteria are designed to achieve a balance between the scale-
free characteristics of the network and its biological relevance, 
thereby ensuring that the network accurately mirrors the 
attributes of the biological system while preserving an adequate 
level of gene interactions. It is important to note that setting the 
threshold too high may yield an excessively sparse network, while a 
threshold that is too low could lead to the incorporation of spurious 
connections, thus, the soft threshold b was set to 0.9 for the 
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WGCNA analysis (scale-free R2 = 0.9). Subsequently, the selected 
soft power value b, along with the gene correlation matrix derived 
from Pearson correlation analysis for all gene pairs, was employed 
to construct the adjacency matrix. This matrix was computed using 
formula. Following this, the topological overlap matrix (TOM) and 
its corresponding dissimilarity (1 - TOM) were derived from the 
adjacency matrix. A hierarchical clustering dendrogram was then 
generated, allowing for the categorization of genes with similar 
expression  patterns  into  distinct  modules.  Utilize  the  
cutreeDynamic function to perform dynamic tree cutting, 
configuring the parameters with minClusterSize set to 100 and 
deepSplit set to 2. Subsequently, compute the module eigengenes 
using the module Eigengenes function, which encapsulate the 
overall expression patterns of the identified modules. Following 
this, assess the correlation (moduleTraitCor) and significance 
(moduleTraitPvalue) between the module eigengenes and the 
phenotype variable (Treat). Identify the modules that exhibit high 
absolute correlation values alongside statistically significant p-
values (generally p < 0.05) as the primary modules of interest. 
The expression profiles of each module were subsequently 
summarized using the module eigengene (ME), and the 
correlation between the ME and clinical features was assessed. 
Consequently, modules exhibiting a high correlation coefficient 
with clinical features were prioritized, and the genes within these 
modules were selected for further analysis. In this investigation, to 
identify key modules, the minimum module size was determined at 
30, and the cut height was set at 0.25. 
GO and KEGG functional enrichment 
analysis 

Utilizing the R software package, Gene Ontology (GO) biological 
process (BP), cellular component (CC), molecular function (MF), 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 
enrichment analyses were performed on the positive module genes 
identified from the Weighted Gene Co-expression Network Analysis 
(WGCNA) of systemic lupus erythematosus (SLE) and periodontal 
disease (PD). Additionally, following the execution of GO/KEGG of 
Gene analyses on overlapping module genes, the primary functions of 
these gene sets were elucidated through GO and KEGG pathway 
enrichment analyses. 
TABLE 1 Summary of those six GEO datasets involving SLE and PD patients. 

ID GSE number Platform Samples Source types Disease Group 

1 GSE61635 GPL570 99 patients and 30 controls PBMC SLE Training cohort 

2 GSE16134 GPL570 241patients and 69 controls PBMC PD Training cohort 

3 GSE50772 GPL570 61 patients and 20 controls PBMC SLE Validation cohort 

4 GSE10334 GPL570 183patients and 64 controls PBMC PD Validation cohort 

5 GSE135779 GPL20301 40 patients and 16 controls PBMC SLE Validation cohort 

6 GSE174609 GPL20795 8 patients and 4 controls PBMC PD Validation cohort 
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Hub genes screening and validation based 
on the machine learning algorithm 

The SLE data set GSE61635 and PD data set GSE16334 were 
chosen as the training sets. We utilized an additional SLE dataset, 
GSE50772, and a PD dataset, GSE10334, for the purpose of gene 
expression level validation, and an additional SLE dataset, 
GSE135779, and a PD dataset, GSE174609, for the purpose of 
single cell level validation. The R packages RF, XGB, SVM, and 
GLM were employed to identify and validate hub genes (12–14), All 
algorithms were executed utilizing the train() function from the 
caret package, with parameter optimization conducted via five-fold 
repeated cross-validation (repeatedcv).To better comprehend the 
machine learning models, the R package “DALEX” is used to 
illustrate the residual distributions and feature significance among 
the four machine learning models. The prognostic efficiency of the 
algorithm was assessed using receiver operating characteristic 
(ROC) curves, and the AUC value demonstrates that the RF 
algorithm outperformed the other algorithms. 
 

PPI network construction 

A protein-protein interaction (PPI) network was established 
utilizing GENEMANIA (http://genemania.org/search/) for  hub
genes to evaluate the functions of these genes. 
Correlation analysis was conducted to 
examine the relationship between hub 
gene expression and immune infiltration 

CIBERSORT, a widely utilized deconvolution algorithm, is 
employed to annotate the genomes of various immune cell types 
within the microenvironment (15, 16). The objective of using the 
CIBERSORT algorithm is to analyze the proportion of 22 immune 
cells in the peripheral blood samples obtained from the GSE61635 
and GSE16134 datasets. A CIBERSORT p-value < 0.05 was 
considered statistically significant and included in the analysis. 
The Pearson correlation coefficient was used to ascertain the 
correlation between hub genes and immune-infiltrated cells. The 
visualization of the data was performed using the Boxplot and 
pheatmap R packages. 
 

Correlation analysis was conducted to 
examine the expression of overlapping 
module genes in relation to metabolic 
pathways 

Gene Set Variation Analysis (GSVA) is a non-parametric and 
unsupervised method for estimating the changes in specific gene 
sets (17, 18). The activities of the KEGG hallmark pathways were 
quantified with the GSVA R package to find the related metabolic 
pathways in SLE and PD. In this part, p < 0.05 was regarded as 
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statistically significant, and take veen intersection for the difference 
pathway. Pearson correlation coefficient was used to determine the 
correlation between overlapping module genes and metabolic 
pathways.  The  Pheatmap  R  package  was  uti l ized  for  
data visualization. 
Isolation and library preparation of human 
peripheral blood mononuclear cells 

GSE174609 
Peripheral blood samples derived from Homo sapiens were 

collected in plastic blood collection tubes containing EDTA. 
PBMCs for scRNA-seq were isolated using SepMate (Stemcell 
Technologies Inc.) within 30 min of collection according to the 
manufacturer’s instructions. Briefly, density gradient medium and 
diluted blood samples were added to a SepMate tube. After carefully 
mixing the medium and samples, the tubes were centrifuged at 1200 
× g for 10 min. The top layers were poured into a new tube and 
washed twice with phosphate-buffered saline containing 2% fetal 
bovine serum. The tubes were then centrifuged at 300 × g for 8 min 
at room temperature. Libraries were prepared using the chromium 
controller according to the 10× chromium Next GEM Single Cell 3′ 
v3.1 protocol. The cell suspension was mixed with the master mix 
and loaded with Single Cell 3′ v3.1 Gel Beads and Partitioning Oil 
into a chromium Next GEM chip G. RNA transcripts from single 
cells were uniquely barcoded and reverse-transcribed within 
droplets. cDNA molecules were pooled and then subjected to end 
repair, addition of a single ‘A’ base, and ligation of the adapters. 
Next, the products were purified and enriched using PCR to create a 
final cDNA library. Finally, the libraries were sequenced using the 
Illumina HiSeq platform according to the read length provided in 
the user guide. 

GSE135779 
Peripheral blood samples derived from Homo sapiens were 

collected in plastic blood collection tubes containing EDTA. The 
PBMCs were obtained after centrifugation and washing the density 
gradient medium and diluted blood samples. Viability was 
determined using trypan blue staining and measured on a 
Countess FLII. Flow Cytometry Cells were stained with 
fluorochrome-labeled antibodies to the following surface markers: 
CD3 (UCHT1, 1:100, BD Biosciences), CD8a (RPA-T8, 1:100, 
BioLegend), and CD14 (MSE2; 1:100, BD Biosciences). 
Subsequent to surface staining and staining with live/dead fixable 
dye (Aqua, 1:1000, Thermo-Fisher), cells were fixed and 
permeabilized according to the manufacturer’s instructions

(Cytofix/Cytoperm and Perm/Wash Buffer; BD Biosciences), and 
stained for 30 min on ice for Granzyme A (GB9, 1:50, BioLegend), 
Granzyme B (GB11, 1:50, BioLegend), Perforin (B-D48, 1:50, BD 
Biosciences), and ISG15 (IC8044P, 1:50, R&D Systems). The 
stained cells were acquired with LSR Fortessa X-20 (BD) and 
analyzed with FlowJo software (BD). Briefly, 12,000 cells were 
loaded for capture onto the Chromium System using the v2 single 
cell reagent kit (10X Genomics). Following capture and lysis, cDNA 
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was synthesized and amplified (12 cycles) as per manufacturer’s 
protocol (10X Genomics). The amplified cDNA was used to 
construct an Illumina sequencing library and sequenced on a 
single lane of a HiSeq 4000. 
Dataset download 

Samples  were  downloaded  from  the  GEO  (https://  
www.ncbi.nlm.nih.gov/geo/) database using the GEO query. The 
samples in the expression profiling dataset GSE135779 and 
GSE174609 dataset are all derived from Homo sapiens. 
GSE135779 dataset contains 56 blood samples, including 16 
whole blood samples from healthy donors and 40 whole blood 
samples from SLE patients. GSE174609 dataset contains 12 blood 
samples, including 4 whole blood samples from healthy donors and 
8 whole blood samples from PD patients. Datasets are standardized 
with annotated probes and other data cleaning operations, the data 
processing was performed using the Seurat package (version 4.3.0) 
in R Studio (19). 
Analysis of scRNA-seq data 

Single-cell sequencing technology is a robust method for 
profiling individual cells and gaining insights into cellular-level 
biological processes (20, 21). Single cell sequencing data quality 
control was performed as a necessary step. A cell-by-gene count 
matrix was constructed for analysis. To enhance data quality, cells 
exhibiting fewer than 500 unique molecular identifiers (UMIs) or 
exceeding 20,000 UMIs, as well as those with more than 20% of 
their gene expression attributed to mitochondrial genes, were 
excluded from the dataset. Furthermore, cells that expressed fewer 
than 250 genes or more than 5,000 genes were also removed. 
Additionally, cells demonstrating less than 80% complexity, 
defined as the ratio of the number of genes detected per UMI 
after log transformation, were filtered out, as these may represent 
specific cell types, artifacts, or contaminants. Based on the variance 
stabilization transformation (VST), the analysis focused on the first 
2000 highly variable genes from each sample after normalization. 
The initial 2000 genes with high variability were subjected to scaling 
using the ScaleData function, and the dimensionality of the 
principal component analysis (PCA) was reduced using the 
RunPCA function. We selected a dimension of 50 and employed 
the FindNeighbors and FindClusters functions to cluster the cells 
into 22 distinct cell populations. Then the function of RunUMAP 
was performed for the visualization. For the annotation of cell 
populations, we utilized signatures of T, B, NK, m-DC, p-DC, 
Mono, and PCs cell annotation. Additionally, the VlnPlot function 
was employed to validate the spatial distribution and expression 
patterns of potential biomarkers across various cell types. 

The Seurat R package (version 4.3.0) was used for data 
integration, scaling, clustering, and visualization. The remaining 
count data was normalized using the SCTransform function. To 
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integrate with the largest dataset in the samples, the FindIntegration 
Anchors and Integrate Data functions were applied, with this 
dataset serving as the reference dataset. Subsequently, scaling and 
principal component analysis (PCA) were performed using the 
ScaleData and RunPCA functions, respectively. The first 30 
components were used to construct UMAP dimensionality 
reduction and shared nearest neighbor (SNN) graphs through the 
RunUMAP and FindNeighbors functions. Community detection 
was performed using a graph-based modular optimization 
algorithm based on the Louvain method to identify cell clusters, 
with a resolution set to 0.6, effectively distinguishing cell types and 
detecting subtle molecular signals. Cell identity markers were 
determined using the “FindAllMarkers” function, where genes 
with a log fold change threshold greater than 0.5 and a minimum 
percentage greater than 0.25 were classified as significant 
differentially expressed genes (DEGs). Cell types were annotated 
based on an established set of marker genes for human 
immune cells. 
IHC analysis 

Patient and sample collection 
All tissue samples for immunohistochemistry (IHC) staining 

were collected from 40 patients with SLE (20 lupus nephritis and 20 
lupus skin diseases) and 40 control individuals (20 chronic nephritis 
and 20 general dermatitis) between January 2013 and December 
2023 at the Affiliated Hospital of Qingdao University. We received 
the written informed consent from participants in this study. The 
clinical diagnosis of patients with lupus nephritis (LN) was 
confirmed through renal biopsy, also with a specific index called 
SLEDAI. All patients included in the study met the 1997 American 
College of Rheumatology revised classification criteria for systemic 
lupus erythematosus (SLE) and were confirmed to have lupus 
nephritis (LN) through pathological examination using light 
microscopy, immunofluorescence, and transmission electron 
microscopy. Our research complied with the ethical principles 
outlined in the Declaration of Helsinki, Patient informed consents 
were obtained and approval of the internal review and ethics boards 
of the Affiliated Hospital of Qingdao University was also acquired. 

Tissue preparation and immunohistochemical 
staining 

The specimens underwent fixation in 10% neutral buffered 
formalin for a duration of 24 hours, followed by dehydration 
using a series of graded ethanol solutions. Subsequently, they 
were stained with xylene and embedded in paraffin. The resulting 
sections were prepared at a thickness of 4mm. These sections were 
then affixed to poly-L-lysine coated glass slides and subjected to a 
baking process at 60°C for a period of 2 hours. 

The tissue sections were subjected to de-waxing using xylene 
and subsequently rehydrated through a gradient of ethanol and 
water. The antigen retrieval solution, consisting of a citrate buffer at 
pH 6.0, was heated for a duration of 15 minutes and allowed to cool 
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to room temperature for 20 minutes. Following this, the sections 
were incubated with a 3% hydrogen peroxide solution at room 
temperature for 10 minutes, after which they were rinsed three 
times with phosphate-buffered saline (PBS), with each rinse lasting 
5 minutes. 

We used H2O2 to block endogenous peroxides and conducted 
antigenic thermal repair. The slices were blocked with fetal bovine 
serum (FBS) at 37°C for 30 minutes, then, the sections were probed 
with primary antibodies against TMEM140 (rabbit, 1:100, CSB­
PA023710LA01HU, CUSABIO) and LY96 (rabbit, 1:500, 822065, 
zeobio) overnight at 4 °C. Next, the sections were re-probed with 
secondary antibodies to goat anti-rabbit IgG (1:5000, CSB­
PA992375, CUSABIO) for 1 h at room temperature. Finally, DAB 
H2O2 was applied to the slices to color the sites of the antibody 
binding for approximately 10 minutes. Subsequently, the slices were 
counterstained with hematoxylin, followed by the conventional 
slide-sealing process. A minimum of five distinct images, which 
do not overlap within the field of view, were acquired using an 
optical microscope (Olympus, Japan) at a magnification of 400×, all 
parameters related to image acquisition, including exposure time 
and gain, are maintained consistently to ensure comparability 
across groups. The analysis was performed utilizing the Image J 
software. Initially, the image was transformed into an 8-bit 
grayscale format, followed by the application of a uniform 
threshold to eliminate the background. Subsequently, the “Color 
Segmentation” tool was employed to differentiate between the DAB 
positive signal, represented in brown, and the hematoxylin 
counterstain, depicted in blue. The grade of staining intensity and 
immunohistochemical staining results (IRS) were analyzed by three 
pathologists with intermediate professional titles. The staining 
intensity is divided into different grades according to the depth of 
color of cytoplasmic staining in sections (Dyeing intensity: 0 
(negative), 1+ (weak), 2+ (medium), 3+ (strong)). 
 

Small molecule agent screening and 
analysis of molecular-ligand docking 

The CTD database (https://ctdbase.org) is a database that 
integrates data on interactions between a large number of 
chemicals, genes, functional phenotypes, and diseases, facilitating 
the study of disease-related environmental exposures and potential 
mechanisms of drug action (22). Its primary purpose is to 
investigate the functional associations between genes, small 
molecule compounds and diseases. The 3D structure of the drug 
core component was obtained from the PubChem database (https:// 
pubchem.ncbi.nlm.nih.gov) (23). The primary protein structures of 
the target genes were acquired from The Protein Data Bank (PDB) 
(http://www.rcsb.org). AutoDock Tools software (version 4.2) was 
employed for the molecular docking of the primary targets with 
small molecule compounds (24, 25). The visualization of the 
binding activities between small molecule compounds and targets 
was conducted by analyzing the docking models using Pymol 
software (http://www.pymol.org) (26). 
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Results 

Weighted gene co-expression network 
analysis of SLE and PD 

The overall study design is shown in Figure 1. WGCNA was 
conducted to investigate the association between clinical traits and 
genes. All samples from the GSE61635 and GSE16134 datasets were 
clustered, and no samples were excluded (Figures 2A, B). A total of 
nine modules were identified in the GSE61635 dataset, while eight 
modules were identified in the GSE16134 dataset. Subsequently, the 
correlations between the module and clinical traits were computed. 
The MEpink module had the strongest positive relation with SLE (r 
= 0.74), followed by brown module (r = 0.6), while the MEred 
module had the strongest negative relation (r = 0.86) in the 
GSE61635 database (Figures 2C, E). For PD, the MEturquoise 
module showed the strongest positive correlation (r = 0.68) in the 
GSE16134 database, while the MEblue module had the strongest 
negative relation (r = 0.27), followed by grey module (r = 0.21) 
(Figures 2D, F). A total of 21 module genes that overlapped between 
GSE61635 and GSE16134 were identified (Figure 3). 
Enrichment analysis 

For SLE modules, The results of GO/KEGG pathway revealed 
that module genes were mainly enriched in defense response to 
symbiont, defense response to virus, response to virus, actin 
binding, spectrin binding and double-stranded RNA binding 
(Figure 4A). For PD modules, the module genes were mainly 
enriched in leukocyte migration, leukocyt cell-cell adhesion, 
regulation of T cell activation, collagen-containing extracellular 
matrix, endoplasmic reticulum lumen, extracellular matrix 
structural constituent and viral protein interaction with cytokine 
and cytokine receptor (Figure 4B). For overlapping module genes, 
we found those feature genes were mainly enriched in malaria and 
some cell cortex and cell-substrate junction terms (Figure 4C). 
Hub gene identification and validation 
using machine learning algorithms 

The 21 module genes that overlapped were conducted for 
difference in the GSE16134 datasets to obtain differentially 
expressed genes (GSE16134DiffExps), which were then utilized 
for subsequent analyses. Although each shared hub gene can 
serve as an auxiliary diagnostic or predictive biomarker, our 
preference is to develop a comprehensive prognostic model in 
order to enhance the effectiveness of disease diagnosis and 
prediction. To further identify the hub genes with the greatest 
diagnostic value, we selected the most prominent characteristics 
using machine-learning algorithms.  We  incorporated  the
GSE16134DiffExps into four machine learning algorithms (RF, 
XGB, GLM, and SVM) and obtained the top 10 important genes 
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for each algorithm. The accuracy of the RF algorithm was found to 
be the highest, as verified by the ROC analysis (Figure 5). 
Consequently, The top 10 genes obtained from the RF algorithm 
were analyzed for differences in the three datasets (GSE61635, 
GSE10334, and GSE50772). Ultimately, four hub genes (LY96, 
EXPH5, RIMS3, and TNEM140) were identified based on their 
consistent expression patterns across all four datasets. 
PPI network analysis 

We constructed a gene–gene interaction network for hub genes 
to analyze the function of these genes using the GeneMANIA 
database. The hub node representing hub genes were surrounded 
by 20 nodes representing genes that were significantly correlated 
with hub genes (Figure 6). 
Frontiers in Immunology 07 
Identification and validation of the hub 
genes through additional datasets 

To validate the accuracy of our findings, we conducted wilcoxon 
analysis using additional validation datasets for SLE and PD 
(GSE50772 and GSE10334, respectively). Given that LY96, EXPH5, 
RIMS3 and TNEM140 have been identified as hub genes, we have 
chosen these genes for further investigation in order to evaluate their 
expression from individuals with SLE, PD, and healthy control 
samples. The expression levels of LY96 and TMEM140 were found 
to be elevated in the Disease groups, as shown in Figures 7A–H. 
Conversely, Figures 8A–H indicate that the expression levels of 
EXPH5 and RIMS3 were reduced in the Disease groups compared 
to the control groups. The diagnostic efficacy  of  each  hub gene was  
further certificated, the 4 genes all exerted a better diagnostic 
performance through AUC in the four datasets (Figures 9A–D). 
FIGURE 1 

Flowchart of Investigation. 
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Immune cell infiltration and its correlation 
with hub genes 

We conducted an investigation to determine if it was possible to 
identify different patterns of immune infiltration using the 
CIBERSORT method, based on the presence of 22 types of 
immune cells. Firstly, we conducted an evaluation of the immune 
cell infiltrate composition in the peripheral blood of two datasets: 
Frontiers in Immunology 08
SLE dataset (GSE61635) and the PD dataset (GSE16134). The 
boxplot analysis revealed significant differences in the levels of T 
cells CD8, T cells gamma delta, activated dendritic cells, and 
neutrophils between the SLE and control samples (Figure 10A). 
CIBERSORT analysis was also conducted on the Periodontal 
disease data set (GSE16134), The results revealed significant 
differences between PD and control samples in all cell types, with 
the exception of T cells CD4 memory resting, NK cells resting, 
FIGURE 2 

Weighted gene co-expression network analysis (WGCNA). (A) Clustering according to the expression level of SLE patients in GSE61635. 
(B) Clustering according to the expression level of PD patients in GSE16134. Each branch represents a sample in the data sets, and there is no outlier 
sample in each data set. (C) Origin and merged modules displaying under the clustering tree for GSE61635. (D) Origin and merged modules 
displaying under the clustering tree for GSE16134. Cluster dendrograms showed the clustering process of the gene modules. (E) Heatmap of the 
correlation between module eigengenes and the occurrence of SLE. (F) Heatmap of the correlation between module eigengenes and the 
occurrence of PD. 
FIGURE 3 

Identification of shared genes between SLE and PD datasets through WGCNA. Veen diagrams indicate that GSE16134 module and GSE61635 module 
share 21 overlapping DEGs. 
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Monocytes, Macrophages M0, Mast cells activated, and Eosinophils 
(Figure 10B). However, the variations in the ratios of immune cell 
composition are merely one facet of the shared pathogenesis 
between SLE and PD. We still need to confirm whether these four 
hub genes are associated with immune infiltration in the peripheral 
Frontiers in Immunology 09
blood. Additionally, it is necessary to determine specifically which 
immune cells they are associated with and to identify any 
commonalities among them. Therefore, Pearson correlation 
analysis was employed to examine the associations between hub 
genes and immune cells in SLE and PD (Figures 10C, D). The 
FIGURE 4 

GO and KEGG enrichment analysis of module genes. (A) Enriched items of SLE module genes in GO and KEGG analysis. (B) Enriched items of PD 
module genes in GO and KEGG analysis. (C) Enriched items of overlapping module genes in GO and KEGG analysis. GO, Gene Ontology; BP, 
biological process; CC, cellular component; MF, molecular function; KEGG, Kyoto Encyclopedia of Genes and Genomes. p.adjust-value ranking are 
listed. 
FIGURE 5 

The evaluation of machine learning model performance utilizing the ROC curve. AUC values of the four machine-learning algorithms. RF, Random 
Forest; SVM, Support Vector Machine; XGB, eXtreme Gradient Boosting; GLM, Generalized Linear Model. 
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results revealed that Neutrophils and Plasma cells exhibited a 
significant positive correlation with LY96 and TMEM140, while 
they displayed a negative correlation with EXPH5 and RIMS3 in the 
GSE61635 and GSE16134 datasets, respectively. Additionally, T 
cells CD8 and Dendritic cells resting were found to be positively 
correlated with EXPH5 and RIMS3, but negatively correlated with 
LY96  and  TMEM140  in  the  GSE61635  and  GSE16134  
dataset, respectively. 
Metabolic pathway involvement and its 
correlation with overlapping module genes 

To investigate the functional annotation of the overlapping 
module genes, the KEGG pathways were obtained via GSVA using 
microarray expression profiles of the training datasets, and we 
obtained the cross-pathway using VENNY to obtain the fifty-one 
core pathways between GSE61635 and GSE16134 in the differential 
metabolic process (Figure 11), From these, the top 5 pathways were 
selected for further investigation. The GSVA result of the relevant 
metabolic pathway was visualized in a heatmap. Additionally, a 
Pearson correlation analysis was conducted to examine the 
relationship between the overlapping module genes and the top 
five metabolic pathways. Overall, the findings from the SLE dataset 
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indicate that the chemokine signaling pathway, complement and 
coagulation cascades and leukocyte transendothelial migration have 
strong and consistent correlations with overlapping module genes 
(Figure 12A). In the PD dataset, it was observed that the chemokine 
signaling pathway, intestinal immune network for IGA production 
and natural killer cell mediated cytotoxicity exhibited strong and 
consistent  correlations  with  overlapping  module  genes  
(Figure 12B). Additionally, these pathways exhibited a positive 
correlation with up-regulated hub genes and a negative 
correlation with down-regulated hub genes. In other words, the 
activation of these pathways may occur in SLE and PD. 
Single-cell analysis for the identification of 
hub genes’ spatial distribution 

In addition to conducting transcriptomics analysis, we assessed 
the immune microenvironment of peripheral blood by utilizing 
scRNA-seq data from GSE135779 and GSE174609. After quality 
control (QC) procedures, we successfully clustered 343,618 and 
115,309 cell populations into a total of 22 distinct clusters, we 
identified cell populations, Among the identified populations were 
T cells, monocytes, NK cells, B cells, m-DC, p-DC, PCs and some 
other cell clusters in the two datasets (Figures 13A, B). The findings 
FIGURE 6 

The gene-gene interaction network for hub genes were analyzed using GeneMANIA database. Analysis of hub genes related to the function of LY96, 
EXPH5, RIMS3 and TMEM140. The 20 most frequently changed neighboring genes are shown. Each node represents a gene. The node color 
represents the possible functions of the respective gene. 
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indicated that there were no neutrophil and plasma cell clusters in 
samples from individuals with SLE, PD and the control group, This 
suggests that the subpopulations of these cells may vary. As LY96, 
TMEM140, RIMS3 and EXPH5 are hub genes, we selected them for 
further study to assess their expression and localization in PBMC 
among SLE, PD and normal samples. The expression level of RIMS3 
and EXPH5 were both descended in GSE61635 and GSE16134, but 
no statistical significance in the two scRNA-seq datas. The 
expression level of LY96 and TMEM140 were both elevated in 
GSE61635 and GSE16134, which were verified in scRNA-seq datas 
GSE135779 and GSE174609 (Figures 14A, B). Although the two 
genes are not significantly different in the GSE174609 dataset. In the 
single-cell datasets of SLE, the analysis revealed that the gene LY96 
was predominantly expressed in monocyte, T cell, and dendritic cell 
clusters, while TMEM140 was primarily expressed in T cell clusters 
(Figures 14C, D). In the single-cell datasets of PD, LY96 was mainly 
expressed in monocyte and T cell clusters, and TMEM140 was 
predominantly expressed in T cell clusters (Figures 14E, F). This 
suggests that the differential expression of LY96 and TMEM140 
may co-cause SLE and PD through T cell clusters. 
Protein expression of identified hub genes 
in systemic lupus erythematosus lesions 

To verify the expression levels of LY96 and TMEM140 in 
individuals with SLE and healthy controls, we conducted an 
analysis of their staining using immunohistochemistry. 
Histological examination through hematoxylin and eosin (HE) 
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staining of the skin and kidneys revealed notable differences 
between systemic lupus erythematosus (SLE) affected tissues and 
normal controls. In SLE skin samples, the epidermal papillae 
exhibited elongation, the basal layer cells of the epidermis 
demonstrated increased proliferation, and there was a marked 
increase in inflammatory cell infiltration within the dermis. 
Similarly, in SLE kidney tissues, the glomerular mesangium 
showed signs of proliferation and thickening, while the renal 
tubules were observed to be dilated when compared to control 
tissues. Immunohistochemical analysis of skin and kidney tissues 
revealed that, in comparison to the control group, the SLE group 
exhibited a marked increase in staining intensity. Additionally, 
there was a greater accumulation of LY96 and TMEM140 in the 
cased tissues (Figure 15). The assessments of histological images 
clearly demonstrated higher expression levels of LY96 and 
TMEM140 proteins in tissues from patients with SLE, consistent 
with the integrative analysis results. This suggests that the positive 
of LY96 and TMEM140 may be correlated with genes related to 
diagnosis. Since patients with periodontal disease are rarely 
examined by pathological sections, we have not verified these two 
genes in periodontal disease tissues. 
Prediction of potential therapeutic drugs 
for patients with SLE and PD 

Based on the above analysis, LY96 and TMEM140 were possible 
key genes associated with SLE and PD, Drugs targeting these genes 
may have a greater impact on the occurrence and progression of the 
FIGURE 7
 

Expression levels of the hub genes in training and Validation datasets. (A–D) Violin diagrams of LY96 expression levels in GSE61635, GSE16134,
 
GSE50772, GSE10334; Comparison was conducted by Wilcoxon rank-sum test. (E–H) Violin diagrams of TMEM140 expression levels in GSE61635,
 
GSE16134, GSE50772, GSE10334; Comparison was conducted by Wilcoxon rank-sum test. ***p<0.001.
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diseases, To confirm their mechanism as molecular drugs for 
treating patients with SLE and PD, We submitted the two genes 
(LY96 and TMEN140) to the CTD database to screen for promising 
small molecule compounds that could be used for SLE and PD 
management. Using this approach, we identified four potential 
small-molecule drugs: acetaminophen, benzo(a)pyreneand, tert­
butylhydroperoxide and cyclosporine (PubChem number: 1983, 
2336, 6410, and 5284373). The structures of these compounds 
were retrieved from the PubChem database and are displayed in 
Figures 16A–D. Based on the correlation scores between drugs and 
genes, cyclosporine was selected for subsequent analysis. 
Molecular docking 

Molecular docking was employed to assess the binding 
capability of the core targets with their respective compounds. 
The binding energy between molecules plays a crucial role in 
determining the effectiveness of molecular docking. A lower 
binding energy in molecular docking indicates a stronger binding 
force, a binding energy below -5 kcal/mol suggests favorable 
binding properties between the receptor and ligand. The docking 
results (3D structures) are shown in Figures 17A, B, and the binding 
energy is ≤−5 kcal/mol. Based on the aforementioned findings, it 
can be inferred that the anticipated core targets and their associated 
active ingredients exhibit a significant or even robust binding 
capability. the docking score with the genes indicating that the 
cyclosporine compound had the ability to bind to the active site of 
genes and potentially exert a positive influence on diseases. 
Frontiers in Immunology 12 
Discussion 

Systemic lupus erythematosus (SLE) is one of the most 
prevalent systemic autoimmune diseases, which can lead to 
decreased functional capacity, increased morbidity and mortality. 
Periodontal disease (PD) is one of the most common oral diseases, 
characterized by inflamed gums, bleeding and loose teeth. SLE and 
PD are chronic autoimmune diseases predominantly exhibiting 
overlapping clinical and serologic characteristics. In a subset of 
patients with SLE, the disease may advance to exhibit clinical 
manifestations,  serologic  profi les ,  and  immunological  
characteristics that are similar to those observed in PD. As a 
result, these patients meet the classification criteria for both 
diseases, giving rise to a condition commonly known as PD/SLE 
overlap. Despite the presence of clinical evidence indicating 
potential connections between SLE and PD, the increasing 
knowledge regarding environmental triggers and epigenetic 
mechanisms, the genetic factors underlying SLE and PD remain 
elusive, the precise mechanisms underlying their pathogenesis 
remain unclear. In this study, we aimed to investigate common 
target genes, relevant target drugs and action mechanism in SLE 
and  PD  through  in tegra t i ve  bio in format ic  ana lyses  
of transcriptomes. 

We performed integrative bioinformatics analysis in 
combination with machine learning algorithms to identify hub 
genes, pathways and moluler in SLE and PD. Firstly, we 
conducted an analysis of coexpression modules in SLE and PD. 
We then identified the intersection of the relevant modules, 
resulting in the discovery of 21 shared candidate genes. Finally, 4 
FIGURE 8
 

Expression levels of the hub genes in training and Validation datasets. (A–D) Boxplots of EXPH5 expression levels in GSE61635, GSE16134, GSE50772,
 
GSE10334; Comparison was conducted by Wilcoxon rank-sum test. (E–H) Boxplots of RIMS3 expression levels in GSE61635, GSE16134, GSE50772,
 
GSE10334; Comparison was conducted by Wilcoxon rank-sum test. *p<0.05; **p<0.01; ***p<0.001.
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hub genes (LY96, TMEM140, EXPH5 and RIMS3) were screened, 
which have consistent expression trends in training and 
validation datasets. 

Inflammation can stimulate leukocyte transendothelial 
migration via their display of cytokines, chemokines, complement 
and angiogenesis factors, and Cell adhesion, migration, and 
immunity are key steps for pathogenicity in disease progression 
(27–31). The immune responses not only Involved in the 
pathological mechanism of SLE but also affect bone remodeling 
through impact on osteoblastlineage cells, periodontal ligament, 
fibroblasts and osteoclasts, which impact bone resorption and bone 
coupling in PD. In SLE, complement can serve as an important 
source of molecules to signal ‘danger’ and form pathogenic immune 
complexes (32). In PD, Osteoclast precursors are recruited to sites 
of inflammation by chemokines, Some chemokines support the 
proliferation of precursors or their differentiation to osteoclasts 
(33).  Osteoclasts  also  produce  chemokines  to  amplify  
osteoclastogenesis and bone resorption (34). Consistent with 
GSVA of the our study, the Metabolic pathway are mainly 
Immune-related and inflammatory-related, we found that these 
data provided useful information explaining how shared genes 
implicated in disease progression, especially the 4 hub genes, 
although more in-depth studies are necessary. 
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CIBERSORT is an inverse convolution analysis algorithm based 
on linear support vector regression that estimates the relative 
abundance of immune cells in a mixed cell population by 
analyzing gene expression data (35). Using this algorithm, we 
found that there was increased infiltration of Neutrophils, 
Dendritic cells activated in SLE samples, and decreased 
infiltration of T cells CD8 and T cells gamma delta, there was 
increased infiltration of T cells CD4 memory activated, there was 
increased infiltration of Plasma cells, T cells CD4 naive and B cells 
naive in PD samples, and decreased infiltration of B cells memory, T 
cells CD8, T cells follicular helper, T cells regulatory, NK cells 
activated, Dendritic cells resting, Macrophages M1, Macrophages 
M2 and Mast cells resting. Many studies have indicated that SLE 
may lead to a higher risk of periodontitis, as SLE is characterized by 
immune system dysregulation, with overactive phagocyte cells and 
elevated production of pro-inflammatory cytokines, such as 
interleukin (IL)-1b and IL-18, which may have pathogenetic roles 
in periodontitis (36–38). Moreover, oral infection is also a common 
side effect of the use of cortisol and immunosuppressants in the 
treatment of SLE (39). In contrast, periodontitis could also promote 
the occurrence and development of SLE, and several theories have 
been proposed as potential explanations for this association, Like 
our immune infiltration results, in patients with periodontitis, 
FIGURE 9 

ROC curve analysis of the hub genes in training and validation datasets. (A, B) The AUC values of hub genes in training datasets (GSE61635 and 
GSE16134). (C, D) The AUC values of hub genes in validation datasets (GSE50772 and GSE10334). 
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FIGURE 11 

Analysis of GSE61635_KEGG and GSE16134 KEGG. Veen diagrams indicate that GSE16134 KEGG pathway and GSE61635 KEGG pathway share 51 
overlapping core pathways. 
FIGURE 10
 

Results of immune infiltration analysis. (A) Boxplots of the expression of each immune cell between SLE and control in the GSE61635 dataset.
 
(B) Boxplots of the expression of each immune cell between PD and control in the GSE16134 dataset. (C) the correlation between hub genes and 
immune cells by immune infiltration analysis in the GSE61635 dataset. (D) the correlation between hub genes and immune cells by immune 
infiltration analysis in the GSE16134 dataset. Significant difference, *p<0.05, **p<0.01, and ***p <0.001. 
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plasma cells are increased and represent almost half of infiltrated 
immune cells in periodontal lesions, which are considered to play a 
crucial role in SLE pathogenesis (40). Thus, we speculate that 
immune environment generates an inflammatory environment, 
Released pro-inflammatory cytokines promote the infiltration of 
some immune cells, regulate hub gene expression, maintain the 
inflammatory microenvironment, and ultimately exacerbate SLE 
and PD. 

Since there was no significant difference expression in RIMS3 
and EXPH5, we only studied LY96 and TMEM140 further, in our 
study, LY96 mainly distributed in monocytes, DC and T 
lymphocytes and TMEM140 was mainly expressed in T 
lymphocytes cluster in SLE samples, and The expression level of 
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LY96 and TMEM140 were both elevated Compared with control 
group, which is consistent with our research above. We did the 
same analysis on periodontal samples, LY96 was highly expressed in 
monocytes and T lymphocytes clusters, TMEM140 was mainly 
expressed in T lymphocytes clusters, Although the expression levels 
of the two genes were not significantly different from those of the 
control group. Accumulating evidence suggests that T cells and 
cytokines play a crucial role in the pathogenesis of SLE, The balance 
among T cell subpopulations is of utmost importance, An 
imbalance of T cell subsets has been implicated in the 
development of SLE (41, 42). in addition, T cells are central in 
regulating immune-mediated mechanisms and in the pathogenesis 
of PD. Our single-cell sequencing findings revealed an increased 
FIGURE 13 

UMAP visualization of SLE and PD single-cell RNA seq datasets. (A) UMAP visualization of the 343,618 cells in the single-cell RNA seq dataset 
GSE135779. (B) UMAP visualization of the 115,309 cells in the single-cell RNA seq dataset GSE174609. Different colors indicate distinct clusters; T, B, 
NK, Mono, m-DC: p-DC and PCs cells. 
FIGURE 12 

Correlation matrix between metabolic pathways and overlapping module genes in SLE and PD. (A) Correlation matrix between metabolic pathways 
and overlapping module genes in SLE. (B) Correlation matrix between metabolic pathways and shared hub genes in PD. The left part showed those 
overlapping module genes, and the down part showed the metabolic pathways. Red represents for positive correlation, while blue for negative 
correlation. Asterisks represent levels of signifificance (*p<0.05, **p <0.01, ***p <0.001). 
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FIGURE 15 

Representative findings on immunohistochemical staining of skin and renal specimens from patients with SLE. LY96 and TMEM140 are upregulated 
in SLE skin and SLE nephritis tissue. Dotted lines indicate boundaries of dermal-epidermal. The arrows pointed to the regions of pathological 
alteration. Scale bars = 50 um. 
FIGURE 14 

Expression levels of hub genes in GSE135779 dataset and the expression analysis of hub genes in different cell types within GSE135779 and 
GSE174609. (A, B) The expression level of LY96 and TMEM140 in controls and SLE patients in GSE135779. (C, D) The expression level of LY96 and 
TMEM140 in 8 clusters of cells in GSE135779. (E, F) The expression level of LY96 and TMEM140 in 8 clusters of cells in GSE174609. 
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abundance of T lymphocytes. Consequently, we hypothesized that 
LY96, TMEM140 and T lymphocytes may serve as the shared 
pivotal genes and immune cells in both SLE and PD. 
Conclusion 

We identified central genes through multiple bioinformatics 
methods and established effective diagnostic models for SLE and 
PD. By comparing with external gene sets, four genes, LY96, 
TMEM140, RIMS3 and EXPH5, were identified as hub genes. 
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Immunohistochemical (IHC) techniques and single-cell 
sequencing further confirmed the increased protein expression 
levels of LY96 and TMEM140 in human SLE lesions compared 
with normal control tissues. We further analyzed the drugs that are 
sensitive for the treatment of these two genes. Our study shows that 
LY96 and TMEM140 genes are expected to be shared key 
biomarkers for the diagnosis and treatment of SLE and PD, 
which not only provides clinical basis for the diagnosis and 
treatment of single systemic lupus erythematosus or periodontal 
disease, but also an ideal diagnosis and treatment indicator for 
overlapping diseases of the two. 
FIGURE 17 

Molecular docking pattern of cyclosporine complexed with the two genes (LY96 and TMEM140). (A) LY96. (B) TMEM140. 
FIGURE 16 

3D structures of small molecule drugs predicted using the PubChem open chemical database, including (A) acetaminophen. (B) benzo(a)pyreneand. 
(C) tert-Butylhydroperoxide. (D) cyclosporine. 
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