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Introduction: Programmed cell death ligand-1 (PD-L1) combined positive score

(CPS) evaluation plays a pivotal role in predicting immunotherapy efficacy for

gastric cancer. However, manual CPS assessment suffers from significant inter-

observer variability among pathologists, leading to clinical inconsistencies. To

address this limitation, we developed a deep learning-based artificial intelligence

(AI) system that automates PD-L1 CPS quantification for patients with gastric

cancer (GC) using whole slide images (WSIs).

Methods: We developed a deep learning-based artificial intelligence (AI) system

that automates PD-L1 CPS quantification for patients with gastric cancer (GC)

using whole slide images (WSIs). Our pipeline firstly employs a dual-network

architecture for tumor region detection: MobileNet for patch-level classification

and U-Net for pixel-level segmentation. Followed by a YOLO-based cell

detection model to compute PD-L1 expression on different cells for CPS

calculation. A total of 308 GC WSIs were included, including 210 in the internal

cohort and 98 in the external cohort. Within the internal cohort, 100 WSIs were

utilized for the model development, while the remaining 110 WSIs served as an

internal testing set for comparative analysis between AI-derived CPS values and

pathologist-derived reference standards.

Results: The AI-derived CPS demonstrated strong concordance with expert

pathologists’ consensus in internal cohort (Cohen’s kappa = 0.782). Furthermore,

the AI-based CPS prediction pipeline was evaluated for its performance in the

external cohort, and showed robust performance (Cohen’s kappa = 0.737).

Discussion: Our system provides a standardized decision-support tool for

immunotherapy stratification in GC management, demonstrating potential to

improve CPS assessment reproducibility.
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1 Introduction

According to 2022 Global Cancer Statistics (1, 2), gastric cancer

is the world’s fifth-most prevalent cancer and a major cause of

cancer-related death. It is characterized by high heterogeneity and

poor prognosis. In recent research, immune checkpoint inhibitors

(ICIs), particularly programmed death - ligand 1 (PD-L1)

inhibitors, have garnered substantial attention. Immunotherapy,

with ICIs at its core, has emerged as a widely adopted approach in

treating a spectrum of cancers, including lung cancer, colorectal

cancer, liver cancer, and gastric cancer. Multiple prospective,

multicenter clinical randomized controlled trials have confirmed

that the combination of chemotherapy and ICIs can significantly

improve the prognosis of advanced gastric cancer compared with

chemotherapy alone. Studies such as Checkmate-649 (3), ORIENT-

16 (4), and RATIONALE 305 (5) have established the important

role of combined ICI therapy in advanced gastric cancer, which can

bring significant survival benefits to some patients.

Despite significant advancements in immunotherapy, its

efficacy remains limited to a subset of patients (6). Identifying

potential responders who could benefit from this treatment and

achieve prolonged survival is therefore of paramount importance in

clinical practice. Currently, the CPS system serves as a primary

evaluation metric, quantifying the expression level of PD-L1 protein

on tumor and immune cell surfaces as a percentage value. Clinically,

a higher CPS score likely correlates with increased tumor sensitivity

to immunotherapy and predicts better therapeutic outcomes,

making it a crucial indicator for clinical decision-making in

immunotherapy administration (7, 8). The 2024 CSCO guidelines

have made significant updates to the immunotherapy section for

gastric cancer, introducing refined stratification based on PD-L1

CPS for the first-line immunotherapy of HER2-positive gastric

cancer. However, the current practice of manual CPS calculation

for PD-L1 expression assessment presents substantial challenges,

primarily due to issues with reproducibility and consistency among

pathologists’ evaluations (9).

The integration of artificial intelligence (AI) with digital

pathology has catalyzed transformative innovations in diagnostic

medicine. Advanced deep learning architectures, including

convolutional neural networks (CNNs) and vision transformers,

have been engineered to revolutionize pathological workflows by

enabling precise tissue segmentation (10), automated metastasis

detection (11), and AI-driven prognostic prediction (12). These

innovations demonstrate remarkable diagnostic concordance with

human pathologists across multiple clinical scenarios (13). Several

AI solutions have been developed to assist pathologists in accurately

scoring the PD - L1 (Dako 22C3) TPS in non-small cell lung cancer

(14, 15), and these solutions demonstrate clinical-grade diagnostic

reliability in supporting pathological evaluations. Even when it

comes to the more complex interpretation of the (Dako 22C3)
Abbreviations: ICI, immune checkpoint inhibitor; CPS, combined positive score;

WSI, whole slide images; PD-L1, programmed death ligand-1; DL, deep learning;

IHC, immunohistochemistry; CNN, convolutional neural network; H&E,

hematoxylin and eosin.
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CPS, studies suggest that AI models can help reduce discrepancies

among pathologists in the context of breast cancer and urothelial

carcinoma (16, 17). These AI systems have been shown to enhance

both consistency and reproducibility in clinical practice, thereby

improving the overall reliability of pathological assessments.

However, the first step in most of these AI-based methods for

quantifying tumor markers typically requires segmenting the tumor

region using a semantic segmentation model, which is relatively

time-consuming. Additionally, for some tumor samples,

distinguishing between tumor regions and non-tumor areas (such

as normal epithelial tissue, glands, etc.) based solely on

immunohistochemistry (IHC) images presents certain challenges.

Achieving higher accuracy often requires the integration of multi-

dimensional AI algorithms (18).

In this study, to automatically calculate the CPS in gastric

cancer, and to improve the efficiency of analysis, we propose an

AI-based whole-slide analysis pipeline. The proposed pipeline

integrates a pixel-level segmentation model for tumor region

delineation with a patch-level classification model for enhanced

tumor recognition. Subsequently, a YOLO algorithm was employed

to identify target cells for PD-L1 quantification. The primary

objective of this study was to develop and evaluate an integrated

pipeline to support standardized CPS assessment in gastric cancer

diagnostics, with the goal of establishing a framework for

automated, AI-assisted clinical CPS evaluation. This framework

aims to assist pathologists in CPS calculation and provide a

foundation for screening patients who may be suitable

for immunotherapy.
2 Materials and methods

2.1 Materials

A total of 210 formalin-fixed, paraffin-embedded, anonymized

samples from patients diagnosed with gastric cancer were collected

from 3DMed Clinical Laboratory (accredited by CAP and CLIA) as

model development and internal test cohort in this study. Among

these, 100 samples were used to develop the deep learning (DL)

models, while the remaining 110 samples constituted a held-out

internal test set to evaluate the AI-based CPS prediction pipeline

performance. Besides, 98 external samples were obtained from

Shanghai Renji Hospital and used as external cohort to test the

generalization ability of the AI-based pipeline. All the samples were

prepared and stained using the PD-L1 IHC 22C3 pharmDx assay

(Dako, Carpenteria, CA, USA) on the Dako Autostainer Link 48

platform, according to the manufacturer’s protocol. After the

completion of section staining, all the tissues on the stained

sections were scanned and digitized at 20× magnification (0.475

mm/pixel) as WSIs using a KFBIO FK-Pro-120 slide scanner. The

exclusion criteria for samples include severe tissue folds/tears,

strong nonspecific staining, the presence of large bubble issues,

among others. The interpretations of CPS values were performed by

two trained pathologists (PD-L1 22C3 assay certified) under

double-blinded conditions. To ensure the precision and reliability
frontiersin.org
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of the DL model, only WSI samples with concordant diagnoses

from two pathologists were retained as ground truth for subsequent

comparison with DL model outputs.
2.2 Overall workflow of CPS prediction

To achieve automated prediction of PD-L1 expression in gastric

cancer, we constructed an AI algorithm-based prediction pipeline.

This pipeline integrates sequential deep learning models operating

without manual intervention during testing. Each model was

individually trained and validated with corresponding annotated

data. All data annotations were performed by pathologists using an

in-house developed software (APTime, developed by 3D Medicines

Inc.). The fully automated pipeline for CPS prediction, as illustrated

in Figure 1C, initiates with tissue localization. It was performed on

WSIs using Otsu thresholding on grayscale-converted slides at

0.625 × magnification (Figure 1A). Otsu preprocessing

significantly enhanced computational efficiency by eliminating

redundant patch classification across non-informative background

regions. During the subsequent model prediction phase, all

processing was conducted at a magnification of 20 × (0.475 mm/

pixel). Identified tissue regions were then partitioned into non-

overlapping patches with 256 × 256 pixel size. A trained MobileNet-

v2 patch classifier then categorized these patches as either tumor-

containing or non-tumor-containing. To refine tumor regions

identification, patches classified as tumor by the MobileNet-v2

were then processed by a trained U-Net model for pixel-level

segmentation of tumor versus non-tumor regions. Only patches

exhibiting consensus tumor regions (those classified as tumor by

MobileNet-v2 and simultaneously segmented as tumor by U-Net)

were retained for subsequent tumor cell analysis. At last, the trained

YOLO-based detector performed triple-task recognition: detection

of (1) PD-L1+ tumor cells, (2) PD-L1− tumor cells in the tumor

regions, and detection of (3) PD-L1+ immune cells in tumor-

containing patches associated non-tumor regions. The final CPS

was calculated based on the cellular counts derived from YOLO

detection outputs.
2.3 The development of patch
classification model

To prepare the training dataset of the patch classification model,

the 100 WSIs used for model development cohort were divided into

256 × 256 pixel patches. For samples with extensive tumor regions,

pathologists selected those representative tumor patches. For

samples containing limited tumor regions, we retained as many

tumor-containing patches as possible to incorporate into the

training data set. These patches were labeled as either tumor-

containing patches or non-tumor patches based on the presence

or absence of tumor cells. To maintain class balance and enhance

model performance during training, we selected a comparable

number of non-tumor patches to tumor-containing patches from

each sample, resulting in a final dataset comprising 118,715 tumor-
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containing patches and 119,476 non-tumor patches (including

necrotic areas, normal epithelial regions, stromal regions, etc.).

The dataset was partitioned into training, validation, and test

subsets at a 6:2:2 ratio, and to enhance model robustness, we use

random flip, rotation, and blur to augment the data during training.

We employed the MobileNet-v2 architecture, a lightweight

convolut iona l neura l network (CNN) opt imized for

computational efficiency, as the backbone for patch classification

(19). The model leveraged transfer learning through ImageNet pre-

trained weights, with strategic fine-tuning: only the final seven

layers were unfrozen to adapt domain-specific histopathological

features while preserving generic pattern recognition capabilities

from pre-training. Following the convolutional layers, the

architecture includes a flatten layer and a dense layer (Figure 1B).
2.4 The development of tumor
segmentation model

To prepare the training dataset of the tumor segmentation

model, representative patches with 1024 × 1024 pixels size from the

100 WSIs in the model development dataset were selected for pixel-

level annotation. We constructed a dataset comprising 3,923 image

patches. Among these, 1,929 tumor-containing patches were

annotated with pixel-level tumor region labels by pathologists,

while 1,994 additional patches containing normal tissues or

adjacent non-tumorous tissues were incorporated into the

training set, serving as background to enhance the model’s ability

to distinguish tumor boundaries.

The datasets were randomly split into training, validation and

test set in a ratio of 7:2:1. Data augmentation including random

flipping and rotation, and hue, saturation and value change were

used during training to avoid overfitting and improve accuracy and

generalization ability of the model. Tumor segmentation model was

built based on a U-Net structure, with Xception-style block, which

consists of separable convolution layer to reduce the number of

parameters and accelerate inference (20). The model is a symmetric

encoder-decoder architecture with skip connection. In the training

procedure, labeled patches were further cropped to 512 × 512 size

during training. The DL model was trained to simultaneously

segment the tumor area and classify the input region as auxiliary

loss. Only the output of the tumor area segmentation task was used

to predict the tumor region (Figure 1B).
2.5 The development of cell detection
model

To prepare the training dataset of the cell detection model,

representative patches (256 × 256 pixel size) containing PD-L1+ and

PD-L1− tumor cells, or PD-L1+ immune cells, were selected from

the 100 cropped WSIs used for model development. We finally

constructed a dataset comprising 4604 image patches. On these

patches, cells were annotated by experienced pathologists using

spots with cell tags and were grouped into PD-L1+ tumor cells
frontiersin.org
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FIGURE 1

AI pipeline for CPS evaluation. Overview of the proposed AI pipeline in this study. (A) Preprocessing: prior to DL models prediction, tissue regions
within WSIs were automatically localized through Otsu’s thresholding, followed by dividing into non-overlapping 256×256 pixel patches at 20×
magnification. (B) Model training. The patch classification model (MobileNet v2), tumor segmentation model (U-Net) and cell detection model
(YOLOX) were trained on the corresponding annotation datasets. (C) The fully automated pipeline for CPS prediction. After preprocessing, the
patches were input into the patch classification model to identify tumor-containing patches. These tumor-containing patches were also fed into the
tumor segmentation model to obtain the segmented tumor regions. By combining the results from the above two models, the output patches were
input into the cell detection model. The resulting cells were used for CPS calculation.
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https://doi.org/10.3389/fimmu.2025.1614099
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Han et al. 10.3389/fimmu.2025.1614099
(85,659), PD-L1+ immune cells (19,434), and PD-L1− tumors cells

(130,512). When annotating PD-L1-positive cells, we labeled cells

exhibiting diverse expression intensity levels (including strong,

moderate, and weak). For immune cells, we also labeled various

morphological forms of both lymphocytes and macrophages.

We built the cell detection model based on the YOLOX (21),

which can directly classify, locate, and count the objects on the

input patches (Figure 1B). In the data augmentation step, the same

strategies as U-Net and mosaic and mixup were applied.
2.6 CPS algorithm

CPS is generally calculated by dividing the number of PD-L1

stained cells (including tumor cells, lymphocytes and macrophages)

by the total number of viable tumor cells, multiplied by 100. The

total formula is shown below:

CPS =  

Number   of   PD − L1   stained   cells

(tumor   cells,   lymphocytes,   and  macrophages)
Total   number   of   viable   tumor   cells

� 100

To ensure precise calculation of the CPS, the following criteria

must be rigorously applied: 1) PD-L1-positive tumor cells are

defined as tumor cells exhibiting partial or complete linear

membrane staining within tumor nests, excluding cells in necrotic

areas. 2) PD-L1-positive immune cells should be quantified only if

they are located within tumor nests or adjacent supporting stroma

and maintain direct spatial proximity to tumor cells (within a 0.5

mm radius).

As cells were grouped into PD-L1+ tumor cells, PD-L1+

immune cells, and PD-L1− tumors cells by cell detection model,

the final formula is shown below:

CPS =  
PD − L1+ tumor cells + PD − L1+ immune cells
PD − L1+ tumor cells +  PD − L1− tumors cells

� 100

In clinical diagnosis, pathologists approximately distinguish the

tumor cell region from other regions firstly at the lower

magnification scale and then zoom into the higher magnification

for accurate cell counting, and ultimately render a definitive CPS

positive/negative assessment. In this study, the final CPS was

calculated using counts of PD-L1+ tumor cells, PD-L1+ immune

cells, and PD-L1− tumor cells detected by YOLOX.

The CPS threshold for PD-L1 positivity is defined as ≥ 1. Based

on this cutoff, samples were stratified into two distinct subgroups:

PD-L1− samples: CPS < 1; PD-L1+ samples: CPS ≥ 1.
2.7 Evaluation metrics and statistical
analyses

This study employed a comprehensive set of evaluation metrics

to assess AI model performance, including: Classification metrics

(accuracy, precision, recall, specificity, and F1 score); Segmentation

metrics (dice coefficient and pixel accuracy); Target detection

metrics (Intersection over Union (IoU), Average Precision (AP)).
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Consistency between AI-calculated CPS values and pathologist

assessments was analyzed using confusion matrices and Cohen’s

kappa coefficient. The kappa statistic (range: 0 - 1) was interpreted

using established clinical benchmarks: slight agreement (0 - 0.2);

fair agreement (0.2 - 0.4); moderate agreement (0.4 - 0.6);

substantial agreement (0.6 - 0.8); near-perfect agreement (0.8 - 1.0).

All statistical analyses and graphical visualizations were

conducted using Microsoft Excel and Python (version 3.9.12),

implemented through the PyCharm 2021.3.3 integrated

development environment.
3 Results

3.1 Clinicopathological characteristics of
patients

For the 210 specimens utilized in model development and

internal validation. As detailed in Table 1, both cohorts

demonstrated comparable clinicopathological characteristics. The

majority of the samples were surgical resection 79% (166/210), and

a minority were needle biopsy and others 21% (44/210). All tumor

samples were exclusively collected from the stomach. No

statistically significant differences were observed between the two

groups (all p-values > 0.05).
3.2 Performance of patch classification
model

To evaluate the PD-L1 expression in the tumor region of a

sample, it is essential to accurately localize the tumor area.

Considering that patch-level classification models are more

efficient in analysis compared to pixel-level segmentation models,

and the annotations required for training patch classification

models are relatively easier to obtain, we first trained a patch

classification model to localize the tumor region. We divided the

annotated patches into a training set, a validation set, and an

independent test set. The trained model demonstrated high

performance on both the validation (Figure 2A) and test sets

(Figure 2B), with accuracy, specificity, and sensitivity all

exceeding 97% (Table 2). The trained classification model also

effectively distinguished stained necrotic regions from tumor

regions (Figure 2C), thereby eliminating the impact of necrotic

regions on PD-L1 evaluation.
3.3 Performance of tumor segmentation
model

The tumor patches identified by the patch classification model

not only encompass tumor regions but also contain partial stroma

areas. Therefore, a segmentation model is further required to

distinguish between tumor and stroma.

In this study, we trained a segmentation model that can distinguish

tumor regions from non-tumor regions, which include necrosis and
frontiersin.org
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TABLE 1 Clinicopathological characteristics of gastric cancer samples.

Characteristics

Internal data

X2 P-valueTraining set
(N =100)

Test set
(N =110)

Gender

Male 57 76 3.298 0.069

Female 43 34

Age (years)

≤ 65 64 61 1.588 0.208

> 65 36 49

Sampling methods

Surgical Operation 79 87 1.411 0.494

Needle Biopsy 8 5

Others 13 18
F
rontiers in Immunology
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FIGURE 2

Performance evaluation of classification model. Patch classification results of the MobileNet v2 based on confusion matrix in (A) validation set and
(B) test set. (C) Example diagram of the patch classification model results, with two zoomed-in sections demonstrating the model’s ability to exclude
necrotic regions and recognize Tumor regions. The blue-tinted regions denote algorithm-identified tumor areas.
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normal epithelium. The model’s performance was evaluated using dice

coefficient and pixel accuracy metrics. On both the validation and test

sets, the model demonstrated high segmentation performance.

Notably, it effectively identified non-tumor regions, with all metrics

exceeding 97% (Figures 3A, B). Additionally, the segmentation model

can accurately distinguished tumor regions from necrotic areas and

normal glandular structures (Figure 3C).
Frontiers in Immunology 07
3.4 Performance of model on cell
detection

Within our PD-L1 expression evaluation pipeline, precise

tumor region localization is followed by quantification of PD-L1+

tumor cells, PD-L1− tumor cells, and PD-L1+ immune cells within

tumor-associated regions. To accomplish this, we developed a deep

learning-based cell detection model utilizing the YOLO framework

for identification of these three cellular phenotypes. Since immune

cells can infiltrate into the tumor region, the calculation of the CPS

requires integration with the output of tumor segmentation model.

This allows us to distinguish PD-L1+ tumor cells, PD-L1− tumor

cells, PD-L1+ immune cells within the tumor regions, and PD-L1+

immune cells within the non-tumor regions for final CPS

calculation (Supplementary Figure S1).

We evaluated the model’s performance using IoU and AP, with

an IoU threshold set at 0.5. The trained cell detection model

demonstrated strong performance on both the validation and test
FIGURE 3

Performance evaluation of tumor segmentation model. The analysis of pixel accuracy and dice coefficient in (A) validation set and (B) test set. (C) An
example diagram of the segmentation model result, with the comparison between the segmentation results and the corresponding original patch
demonstrating the model’s ability to exclude necrotic regions and normal glandular structures. Green curves delineate manually annotated normal
glands and necrotic regions; red contours indicate AI-predicted tumor regions.
TABLE 2 Performance evaluation of classification model.

Statistics Validation set Test set

Accuracy 0.975 [0.974, 0.977] 0.973 [0.972, 0.974]

Precision 0.978 [0.977, 0.980] 0.977 [0.976, 0.978]

Recall 0.972 [0.971, 0.974] 0.970 [0.967, 0.971]

Specificity 0.978 [0.977, 0.980] 0.977 [0.976, 0.978]

F1 score 0.975 [0.974, 0.977] 0.973 [0.972, 0.974]
Data was presented as score [95% confidence interval (CI)].
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sets, achieving AP scores close to 0.900 for true positives (0.889 on

the validation set and 0.888 on the test set) (Table 3).
3.5 Comparison of consistency between AI
pipeline and pathologists

To validate the accuracy of our AI-based pipeline, we assessed

the agreement between CPS-AI (AI-derived CPS) and CPS-Doc

(pathologist-evaluated CPS) using Cohen’s kappa coefficient in

internal and external cohorts. First, we evaluated our pipeline on

a held-out internal test cohort (n = 110), which was excluded from

model training. To further test generalizability, an independent

external cohort (n = 98) was introduced. As shown in Figure 4, the

internal dataset achieved a kappa value of 0.782, demonstrating

substantial agreement between model predictions and pathologist-

evaluated scores. While the external dataset exhibited a slightly

lower value of 0.737, the kappa value remained clinically

meaningful, confirming the model ’s robustness across

diverse datasets.

To further quantify performance, confusion matrices were

generated to compare CPS-AI against CPS-Doc. Using CPS-Doc

as the reference standard, we evaluated the CPS prediction accuracy
Frontiers in Immunology 08
of the AI-based pipeline across multiple metrics. In the internal test

cohort, AI-based pipeline achieved an accuracy of 0.882 [95% CI =

0.822 - 0.942], sensitivity of 0.964 [95% CI = 0.929 - 0.999], and

specificity of 0.800 [95% CI = 0.725 - 0.875], highlighting its strong

discriminative capability (Figures 5A, C). Performance remained

robust in the external cohort, with retained accuracy and high

sensitivity (Figures 5B, C). These results collectively underscore the

reliability and generalizability of the AI pipeline.
3.6 Evaluating combined effectiveness of
classification model and segmentation
model

In this study, we combined a patch classification model with a

region segmentation model to localize tumor areas, where only

tumor regions simultaneously identified by both models would

proceed to subsequent cell detection. This design offers dual

advantages: On one hand, integrating results from both models

may enhance the accuracy of tumor region identification. On the

other hand, leveraging the higher efficiency of the patch

classification model to first roughly localize tumor regions,

followed by region segmentation on these pre-selected patches,

significantly improves the overall analysis efficiency. Our findings

demonstrate that the integrated pipeline incorporating the patch

classification model achieved slightly improved consistency with the

pathologists compared to the pipeline using only region

segmentation with cell detection (Figure 4, Supplementary Figure

S2). Regarding efficiency, the integrated workflow showed 25 - 30%

improvement in average processing time per sample (Table 4).

Particularly for samples with small tumor areas relative to the whole

tissue section, a more than twofold enhancement in processing

efficiency was achieved (Supplementary Figure S3).
4 Discussion

Immunotherapy with ICIs has now become a new and

important treatment option for gastric cancer. Accurate

assessment of PD-L1 by pathologists provides essential guidance

for selecting gastric cancer patients suitable for ICI therapy.

However, current evaluations of PD-L1 by pathologists still lack

satisfactory consistency and reproducibility (22). Particularly for

assessing the CPS, challenges arise not only from evaluating PD-L1

expression on tumor cells but also on immune cells. Given the vast

morphological differences between immune cells and tumor cells,

objective CPS quantification poses significant difficulties (23).

With the rapid advancement of image analysis technology, AI-

based digital pathology tools are playing an increasingly critical role in

pathological diagnosis (24). In clinical practice, pathologists are skilled

at qualitative tasks such as localizing tumor regions or excluding

nonspecific staining regions, but they are less precise in quantitative

counting compared to computational methods. Recent studies have

applied deep learning algorithms to develop AI models for assisting

various quantitative biomarker assessments, including HER2, Ki67 in
TABLE 3 Performance of model on cell detection.

Cell type
AP

Validation Test

TN 0.857 0.866

TP 0.899 0.888

IP 0.869 0.864
TN, tumor negative cells; TP, tumor positive cells; IP, immune positive cells; AP,
average precision.
FIGURE 4

Consistency evaluation between AI pipeline and pathologists.
Measures of concordance of combined positive score (CPS)
interpretation results between AI pipelines (with and without
classification model) and pathologists using Kappa values, all
p<0.001. Statistical comparison revealed no significant difference in
predictive performance between models with and without the
classification module (Internal cohort: p=0.832; External cohort:
p=0.683, two-sided Mann-Whitney U test).
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breast cancer (25–27), and PD-L1 in lung cancer (14, 28), aiming to

improve accuracy and reproducibility. Currently, most PD-L1

expression evaluation AI models focus on evaluating tumor cell

expression in lung cancer, with limited research on CPS scoring.
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However, PD-L1 assessment is clinically relevant across various

cancer types and requires consideration of immune cell PD-L1

expression. The AI-assisted CPS diagnostic model for gastric cancer

developed in this study effectively addresses this gap.
FIGURE 5

Performance evaluation of the AI pipeline for combined positive score (CPS) prediction. Comparison between CPS predicted by the AI pipeline (CPS-
AI) and by doctors (CPS-Doc) in (A) the internal validation cohort and (B) the external test cohort. (C) Histograms of AI models performance in the
internal cohort and the external cohort.
TABLE 4 Compare the efficiency of different pipelines in image processing.

Process Metric Pipeline with classification Pipeline without classification

Internal Cohort

Avg Time (s) 136.473 183.761

Avg Time per Tumor Patch (s) 0.119 0.174

Avg Time per Unit Area (s/cm2) 166.386 210.471

External Cohort

Average Time (s) 176.762 263.655

Avg Time per Tumor Patch (s) 0.182 0.059

Avg Time per Unit Area (s/cm2) 67.722 101.991
Avg, average.
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Most previous AI workflows for biomarker quantification

typically involve a segmentation model to identify tumor regions,

followed by a nuclues segmentation model, and another model for

cell types classification (15–17). These workflows could be time-

consuming. Moreover, distinguishing tumor regions solely based on

IHC images can be challenging in some cases, leading to suboptimal

segmentation accuracy (29). To mitigate this, some studies align

corresponding hematoxylin and eosin (H&E) stained WSIs with

IHC images, leveraging the richer structural information in H&E

images to map tumor regions onto IHC images (30). In this study,

our AI model innovatively combines a patch classification model

and a tumor segmentation model to localize tumor regions,

enhancing both performance and processing efficiency. Only

regions simultaneously identified by both models are included in

subsequent calculations - akin to pathologists prioritizing consensus

regions for biomarker assessment in clinical practice.

The integration of patch classification and region segmentation

also improves computational efficiency, particularly for samples with

small tumor-to-tissue ratios. Since segmentation models process

images at the pixel level and are computationally intensive,

restricting segmentation to tumor-containing patches (pre-

identified by the classification model) significantly reduces

processing time. Moreover, if the classification model achieves high

accuracy, the segmentation model can focus solely on distinguishing

tumor and stromal regions within these patches, bypassing

morphologically ambiguous structures like benign lesions or

normal epithelium. While this dual-model approach requires

training two tumor localization models, patch-level annotations are

relatively easier to obtain, potentially reducing overall labeling efforts.

The study still has some limitations: 1) The study included data

from only two institutions, with limited sample size (100 samples for

model development) and uniform scanner use. This may lead to

decreased model performance when deployed across different

hospitals. Future efforts should diversify sample sizes and data

sources to enhance the model’s generalizability. 2) Given potential

staining variations across different PD-L1 antibody assays, which may

reduce model performance or compromise generalizability, application

to other PD-L1 antibodies requires model retraining with expanded

samples. 3) Although the AI-based CPS prediction pipeline developed

in this study is fully automated and demonstrates close concordance

with pathologist assessments, inconsistencies persist, highlighting the

need for further optimization. These discrepancies are mainly

attributable to two factors: Firstly, weakly stained tumor cells were

confirmed as a primary source of inconsistency, as faint or incomplete

membranous PD-L1 staining occasionally led to their missed detection

by the AI system, whereas pathologists successfully identified them

through careful microscopic evaluation. Secondly, background

interference caused by necrotic debris, mucin deposits, or staining

artifacts occasionally generated false-positive signals in the cell

detection algorithm, particularly in challenging histological subtypes.

Consequently, this pipeline should currently serve as an adjunct tool to

assist pathologists in interpretation. 4) The dual-model for tumor

localization strategy has room for refinement. Future studies could

train models on distinct datasets to simulate pathologists with varying

experience, improving localization accuracy.
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In summary, the AI pipeline developed in this study

demonstrated high consistency with pathologists in internal and

external test cohorts, along with efficient image processing. By

enabling precise cell quantification and tumor region delineation

on WSIs, these AI pipelines enhance model interpretability and

assist pathologists in reviewing and verifying results, minimizing

oversights or misjudgments, meanwhile enhancing pathologists’

trust in the AI model. This approach holds significant potential

for clinical adoption in PD-L1 CPS assessment for gastric cancer

and beyond.
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