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The battle between bacterial
infection and autophagy in
aquatic animals
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Centre for Infection Research, Braunschweig, Germany
Autophagy is a conserved cellular degradative pathway that has been

demonstrated to play a crucial role in the innate immune response to combat

infection with a range of pathogenic bacteria via xenophagy. Although this

process has been well-described in terrestrial animals, the extent to which

autophagy contributes to aquatic animal-bacteria interactions remains poorly

understood. Autophagy can directly eliminate intracellular pathogens by acting

as a conduit for their lysosomes delivery. Consequently, bacteria have evolved a

variety of tactics to evade autophagy. This is accomplished by interfering with

autophagy signaling or the autophagy machinery itself. In certain instances,

bacteria even utilize autophagy as a means of promoting their growth. This

review discusses canonical and non-canonical autophagy pathways and current

knowledge of autophagy in aquatic animals. This review illuminates the intricate

relationship between autophagy components and intracellular bacteria. It

explores how the autophagic machinery senses these bacteria directly or

indirectly, the interaction between autophagy and effectors/toxins secreted by

bacteria, and how some of these bacterial pathogens evade autophagy.
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1 Introduction

Autophagy constitutes a highly conserved “clean-up” process in eukaryotic organisms,

essential for maintaining intracellular homeostasis through the break down and recycle

unnecessary or damaged materials like long-lived proteins, aggregated cellular components,

and superfluous or dysfunctional organelles, including mitochondria and peroxisomes.

This process is categorized into three primary subtypes: macroautophagy (where the cell

wraps debris in a membrane-bound sac), microautophagy (where the lysosome directly

engulfs material), and chaperone-mediated autophagy (which uses helper proteins to

shuttle specific cargo to the lysosome). Furthermore, emerging evidence highlights

autophagy as an integral component of innate immunity, particularly through

xenophagy, a specialized form of selective autophagy, which enabling the recognition,
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encapsulation, and lysosomal degradation of harmful bacteria,

viruses, or other invaders inside the cell, thereby limiting their

proliferation and mitigating infection. This interplay underscores

autophagy’s dual role in cellular maintenance and protect

organisms by preventing pathogens from hijacking cellular

resources (1, 2). Growing evidence has elucidated that bacterial

pathogens have evolved sophisticated counterstrategies to subvert

autophagy (3) (as shown in Figure 1).

For example, some bacteria block the signals that trigger

autophagy by inhibiting upstream signaling cascades (e.g., mTOR

or AMPK pathways) (4, 5), disguise their surface antigens using the

host’s own proteins to evade being flagged for destruction, or mess

with the proteins (e.g., ATG5, LC3) responsible for autophagy to

dodge capture (6–8). Additionally, certain species obstruct

autophagosome-lysosome fusion, thereby preventing pathogen

degradation (9). Shockingly, a few bacteria hijack parts of the

autophagy system to establish replicative niches, enhancing

intracellular survival (10). While extensive research has illuminated

the interplay between autophagy and bacterial pathogens in

mammalian systems, this topic hasn’t gotten nearly as much

attention in aquatic organisms. Notably, review addressing

autophagy-pathogen interactions in aquatic species are scarce,

reflecting a critical gap in the field. This review dives into the

molecular interplay between autophagy and intracellular pathogens,

elucidating the mechanisms by which xenophagic pathways target

invasive bacteria and the sneaky tactics pathogens employ to evade

detection, avoid autophagic capture, or inhibit lysosomal
Frontiers in Immunology 02
degradation. This review compiles publications from 1997 to 2025,

focusing on bacterial interactions with host autophagy and their

evasion strategies in teleost. Additionally, some bacteria known to

infect mammals are included to provide broader insights into

bacterial evasion mechanisms. By piecing together emerging

evidence, this work sheds light on the evolutionary adaptations of

pathogens, offering insights into potential therapeutic avenues for

aquatic disease management.
2 Autophagy

2.1 Autophagy classification

Canonical autophagy, mediated by a conserved suite of autophagy-

related proteins, involves double-membrane autophagosome

formation. A hallmark of this process is the recruitment of

microtubule-associated protein 1 light chain 3 (LC3), a canonical

autophagosome marker. Phagosomes—vesicles mediating

extracellular particle engulfment—recruit LC3 via LC3-associated

phagocytosis (LAP) (11), a distinct pathway sharing lysosomal

degradation aims but diverging in structure and origin. While

autophagosomes sequester cytoplasmic cargo within double

membranes, LAP involves LC3 conjugation to single-membrane

phagosomes (12). Notably, Rubicon, essential for LAP, is dispensable

in canonical autophagy targeting intracellular pathogens, highlighting

the functional plasticity of autophagy machinery in homeostasis and
FIGURE 1

Bacterial Strategies to Evade Autophagy. (1) The core autophagy pathway in teleost species. (2) Bacteria disguise their surface antigens by coating
them with the host’s own proteins. (3) Bacteria subvert host autophagy by inhibiting upstream signaling cascades. (4) Bacteria interfere with
autophagic proteins to evade capture. (5) Bacteria inhibit autophagosome-lysosome fusion. (6) Bacteria exploit autophagy machinery to create
intracellular replicative niches.
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immunity (13). Autophagy operates via non-selective and selective

modalities. Non-selective autophagy indiscriminately engulfs

cytoplasmic components en masse for energy recycling. In contrast,

selective autophagy employs molecular tagging (e.g., ubiquitination)

and adaptor-mediated cargo recognition to precision-target substrates

—including mitochondria (mitophagy), ribosomes (ribophagy),

peroxisomes (pexophagy), and pathogens (xenophagy)—for

lysosomal degradation (14) (as shown in Table 1). This review

focuses on xenophagy, delineating its antimicrobial mechanisms and

bacterial evasion tactics.
2.2 Xenophagy targeting mechanisms

Host cells deploy cytosolic surveillance systems to detect invasive

pathogens via pathogen- and damage-associated molecular patterns

(PAMPs/DAMPs), which activate pattern recognition receptors

(PRRs) such as NOD-like receptors. These receptors trigger innate

immune responses, enabling detection of both microbial presence and

infection-induced cellular stress (15, 16). And then, xenophagy, a

selective autophagy pathway, targets intracellular pathogens for

lysosomal degradation, serving as a key antimicrobial mechanism

(17, 18). Pathogens are categorized by their intracellular niches: those

confined within vesicles or replicating freely in the cytosol (19).

Typically, Rapid bacterial clearance occurs unless pathogens evolve

evasion strategies (20). Among autophagy-mediated targeting

mechanisms, those involving protein ubiquitination remain the most

extensively characterized. Ubiquitin chains play a pivotal role in

autophagy, functioning as molecular signals that direct bacterial

clearance. During infection, ubiquitin orchestrates the autophagic

sequestration of invasive bacteria by mediating interactions between

pathogen-containing endosomes and the autophagic machinery

upstream of LC3 recruitment. Ubiquitination is central to autophagy,

with E3 ligases (e.g., PRKN, SMURF1) depositing ubiquitin chains on

pathogens to recruit autophagy adaptors (SQSTM1/p62, NDP52,

optineurin), which bridge cargo to nascent autophagosomes. These

adaptors bridge ubiquitinated cargo to LC3-decorated autophagosomes

via ubiquitin-binding and LC3-interacting domains (21, 22). TBK1-

mediated phosphorylation of autophagy receptors enhances their

recruitment to bacteria and autophagosome formation during

autophagy (23). Emerging evidence underscores ubiquitin’s direct

interaction with Atg16L1, bypassing LC3 to streamline pathogen

recognition and degradation, reinforcing ubiquitin’s pivotal role in

autophagy (24–26).
3 Evasion of xenophagy by
intracellular bacteria

Xenophagy primarily functions to eliminate intracellular

pathogens by detecting and tag them within autophagosomes,

which subsequently fuse with lysosomes to mediate pathogen

degradation. However, numerous bacterial pathogens have

developed counterstrategies to subvert xenophagic clearance,

enabling their survival and replication within host cells.
Frontiers in Immunology 03
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3.1 Avoidance of autophagy recognition

Xenophagy targets cytosolic bacteria via host ubiquitin

machinery, which deposits polyubiquitin coats on pathogens,

enabling recognition by autophagy receptors (e.g., p62, NDP52)

(27). Autophagosome formation is initiated by BECLIN 1, with LC3

lipidation via the ATG5–12–16L1 complex enabling bacterial

capture (28, 29). Subsequent lysosomal fusion mediates

degradation. During infection, intracellular bacteria prompt the

formation of ubiquitinated aggregates (e.g., vacuolar remnants,

bacterial debris, aggresome-like structures), which recognized by

ubiquitin-binding proteins (30). But, a hallmark of many

intracellular pathogens, including Salmonella enterica, who

replicates within a membrane-bound compartment, the

Salmonella-containing vacuole (SCV), that counteracts this by

deploying the SPI-2 type III secretion system (T3SS) effector SseL,

a deubiquitinase, reducing autophagic marker recruitment and

enhancing bacterial replication within SCVs (31, 32).

The Gram-positive bacterium Listeria monocytogenes (L.

monocytogenes) is a facultative intracellular pathogen capable of

invading and replicating within mammalian or teleost cells (33).

Upon entering the cytosol, it employs the surface protein ActA to

evade autophagic recognition. ActA’s amino-terminal domain

binds and activates the host Arp2/3 complex to drive actin

nucleation, while its central proline-rich region recruits Ena/

VASP proteins to enhance bacterial motility (34). By recruits host

cytoskeletal components (e.g., Arp2/3, VASP, Actin), ActA

orchestrates actin polymerization, disguising the bacterium as a

host organelle and preventing detection by autophagy markers such

as polyubiquitin, p62, and LC3 (35). Additionally, the protein InlK

further shields L. monocytogenes by interacting with the host major

vault protein, blocking ubiquitin tagging by E3 ligases and

autophagy receptor recruitment (36).

Shigella flexneri (S. flexneri), a Gram-negative bacterium

causing shigellosis, evades xenophagy via its T3SS effector IcsB

and surface protein IcsA. Autophagy protein ATG5 binds IcsA,

which normally targets pathogens for degradation, and promotes

actin polymerization. This indirectly supports the formation of

septin cages—cytoskeletal structures that, alongside autophagy

proteins, trap Shigella to limit spread (37). Ubiquitin binding

adaptor proteins p62 and NDP52 then direct the bacteria to

septin- and actin-dependent autophagy pathways (38). However,

IcsB competitively blocks ATG5 binding to IcsA by occupying the

same IcsA domain (amino acids 320–433) in a dose-dependent

manner, preventing autophagosome recognition (39).

Rickettsia species are Gram-negative, obligate intracellular

bacteria that infect vascular endothelial cells, dendritic cells, and

macrophages. R. parkeri evades xenophagy recognition primarily

via its outer membrane protein B (OmpB), which blocks

polyubiquitylation of bacterial surface proteins. Unlike pathogens

that manipulate host actin to avoid ubiquitylation, OmpB acts

locally to protect OmpA—a common target of host ubiquitin

machinery—from autophagic recognition (35). Potential

mechanisms include OmpB ’s deubiquitylase activity, its

abundance (over 10% of bacterial protein mass) enabling surface
Frontiers in Immunology 04
camouflage, recruitment of host proteins to cleave ubiquitin chains,

or enzymatic modification of the bacterial surface required for

recognition by the host ubiquitin machinery (40).
3.2 Interference with autophagy initiation

Autophagy, marked by autophagosome formation, is regulated

by the ULK1 complex (ULK1, FIP200, ATG101), controlled by

mTORC1 and AMPK (41). While AMPK activates ULK1,

mTORC1 suppresses it via phosphorylation of Ser757 (41).

Salmonella enterica, a facultative intracellular pathogen, employs

its T3SS to inject effectors like SopB into host cells (42). In B cells,

SopB’s phosphatase activity elevates PIP3 levels, activating the

PI3K/AKT pathway (43). This triggers mTORC1, which inhibits

ULK1 and blocks autophagosome formation. By suppressing

autophagy initiation via this PI3K/AKT/mTORC1 axis, enabling

S. enterica prolonged survival within B cells (44).

Tuberculosis, caused by Mycobacterium tuberculosis (Mtb),

remains a global health threat, particularly in low- and middle-

income countries (45). Mtb could evades xenophagy to survive in

macrophages. Autophagy initiation relies on the ULK1 complex

(ULK1, FIP200, ATG13, ATG101), which recruits the VPS34

complex (VPS34, BECLIN-1, VPS15, and ATG14L) to generate

phosphatidylinositol 3-phosphate (PI3P), driving autophagosome

formation. The produced PI3P then binds with PI3P-binding

proteins such as WIPI2B and DFCP1, together with other

proteins, leads to the formation and expansion of the

autophagosome, eventually forming the complete autophagosome

(46). AMPK activates ULK1 (via phosphorylation of Ser317/

Ser777), while mTORC1 suppresses it by phosphorylating ULK1

Ser757, blocking the interaction between ULK1 and AMPK. This

coordinated phosphorylation is important for ULK1 in autophagy

induction (41). Mtb disrupts this balance using secreted acid

phosphatase SapM (Rv3310). SapM enhances mTORC1 activity

by dephosphorylating Raptor (a key mTORC1 component) at

Ser792, countering AMPK’s inhibitory effect (47, 48). This

sustains mTORC1 activation, preventing autophagy initiation and

aiding bacterial survival (45).
3.3 Manipulation of autophagy machinery

Staphylococcus aureus, an opportunistic pathogen colonizing

human skin and nares, subverts xenophagy to persist intracellularly

(49). Its cell wall components can be detected as PAMPs and trigger

autophagy via ubiquitination and receptor recruitment (e.g., p62,

NDP52) in non-phagocytic cells (50, 51), while Galectin-8 targets

damaged endosomes for autophagic clearance (52). In phagocytes, S.

aureus initially resides in vesicles before lysosomal fusion (53), but

certain strains block autophagy flux—disrupting LC3-II and p62—and

alkalinise autolysosomes to create replication niches (54). Central to

this evasion is the accessory gene regulatory (AGR) quorum-sensing

system, which regulates toxins like a-toxin and phenol-soluble

modulins (PSMa) (55). S. aureus secreted a-toxin to inhibit
frontiersin.org
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autophagosome-lysosome fusion, while PSMa aids phagosomal escape

(56). AGR also dysregulates S. aureus-containing phagosomes

maturation, preventing autophagosome acidification and LAMP-2

acquisition (57). In polymorphonuclear neutrophils, AGR-driven p53

accumulation driving transcriptional activation of pro-autophagic

membrane protein damage-regulated autophagy monitor (DRAM),

inducing autophagosome buildup to sustain survival niche for S. aureus

(58). Additionally, S. aureus phosphorylates mitogen-activated protein

kinase 14 (MAPK14) and ATG5, further blocking autophagosome

maturation (50). By manipulating autophagy through AGR-dependent

and -independent mechanisms, S. aureus evades lysosomal

degradation, ensuring intracellular persistence.

Salmonella enterica serovar Typhimurium (S. Typhimurium), a

Gram-negative intracellular pathogen, employs two virulence gene

clusters—Salmonella Pathogenicity Island 1 (SPI1) and SPI2—to

invade host cells and survive intracellularly (59). SPI1’s T3SS

enables entry into nonphagocytic cells, while SPI2’s T3SS facilitates

survival within SCVs by secreting effectors that block lysosomal

fusion (60). These SPI2 effectors manipulate host signalling

pathways, including sustained activation of AKT and mTOR,

which suppress autophagy—a cellular recycling process controlled

by mTOR, a nutrient-sensing kinase, activation of which forms two

multiprotein complexes, mTORC1 and mTORC2 (61). Notably, the

SPI2 effector SopB activate AKT at Ser473 via mTORC2 early in

infection (62). Additionally, S. Typhimurium disrupts AMPK, a key

energy sensor activated during ATP depletion. Although infection

initially triggers AMPK activity due to low ATP levels, SPI2 targets

the AMPK-activation complex (including Sirtuin-1 [SIRT1] and liver

kinase B1) for lysosomal degradation, blunting AMPK’s role in

autophagy. AMPK normally promotes autophagy by inhibiting

mTOR or directly phosphorylating autophagy-related proteins like

ULK1 (41). SIRT1 further regulates autophagy by deacetylating

components of the autophagic machinery (e.g., ATG5, LC3) and

interacting with AMPK in a feedback loop (63, 64). By hijacking these

pathways—activating AKT/mTOR, degrading AMPK components,

and disrupting SIRT1—SPI2-dependent mechanisms reduce

autophagic flux in macrophages (65). This allows S. Typhimurium

to evade host defenses, replicate within SCVs, and propagate

systemic infection.

Listeria monocytogenes (L. monocytogenes), a Gram-positive

intracellular pathogen, causes listeriosis—a severe foodborne illness.

It enters the host via the gastrointestinal epithelium, either throughM

cells in Peyer’s patches or alternative routes. Once inside, dendritic

cells and macrophages transport the bacteria to mesenteric lymph

nodes and tissues, enabling systemic spread (66). To survive, L.

monocytogenes rapidly escapes phagosomes using listeriolysin O

(LLO), a pore-forming toxin, aided by phospholipases C enzymes

PLCA and PLCB (67). LLO punctures the phagosomal membrane,

creating pores that expand over time, allowing bacterial release into

the cytosol (68, 69). These enzymes also disrupt autophagy by

depleting PI3P, a key molecule for autophagosome formation (70,

71). Host factors like GILT (activating LLO via thiol reduction) and

CFTR (altering phagosomal chloride levels) aid bacterial escape (72).

Inefficient LLO activity leads to Spacious Listeria-containing

Phagosomes (SLAPs)—enlarged, non-maturing compartments
Frontiers in Immunology 05
where bacteria persist and replicate slowly. By subverting

xenophagy and hijacking host pathways, L. monocytogenes evades

degradation, ensuring intracellular survival and systemic

infection (73).

Burkholderia pseudomallei (B. pseudomallei), a Gram-negative

intracellular pathogen, invades both phagocytic and non-

phagocytic cells. Within 15 minutes of entry, it escapes endocytic

vesicles via its TTSS3 and effector protein BOPA, avoiding

lysosomal degradation (74, 75). BOPA contains two functional

domains: a Rho GTPase inactivation domain and a cholesterol-

binding domain (76, 77). The latter may disrupt lysosomal fusion by

accumulating cholesterol on phagosomal membranes, akin to

mechanisms seen in Mycobacterium avium infections (78). TTSS

structural genes like BSAZ and effector BIPD are critical for timely

vesicle escape, as mutants show delayed evasion of LAMP-1-

positive vacuoles (79). Metabolic genes (PURM, PURN, HISF,

PABB) and BPSL1528 further support intracellular replication

(80). To survive, B. pseudomallei subverts xenophagy by

upregulating miR-146a, which inhibits lysosomal acid lipase A,

blocking autophagosome-lysosome fusion (81). It also suppresses

ATG10 (essential for autophagy) via miRNAs (MIR4458, MIR4667-

5p, MIR4668-5p), dampening autophagic activity. These strategies

enable the pathogen to persist and thrive within host cells (82).

Brucella, a Gram-negative intracellular pathogen, comprises six

species (B. melitensis, B. abortus, B. suis, B. ovis, B. canis, B.

neotoma) with genetic similarity but varying host preferences and

virulence (83). It survives within macrophages and non-phagocytic

cells by hijacking xenophagy, forming Brucella-containing vacuoles

(BCVs) that mature into endoplasmic reticulum-derived replicative

niches (84). The T4SS secretion system delivers effectors (e.g.,

RICA, VCEA, BtpB) to manipulate host processes. VCEA and

BTPB directly regulate autophagy, while host proteins like WIPI,

ATG9, BECLIN1, and ATG14L aid BCV formation (85, 86).

However, how Brucella precisely exploits autophagy machinery—

or which bacterial factors control intracellular trafficking—remains

unclear. By subverting lysosomal fusion and leveraging

autophagosome-like structures, the pathogen ensures survival and

proliferation within host cells.
3.4 Hijacking autophagy for replication

Francisella species thrive in the cytosol of diverse host cells and

organisms. After internalization, the bacteria transiently occupy a

vacuole marked by early and late endosome markers before

escaping into the cytosol—a critical step for rapid replication,

mediated by genes in the Francisella pathogenicity island

(homologous to TVISS) (87). Autophagy, triggered by infection

via an ATG5-independent pathway, supplies amino acids and

carbon for bacterial metabolism. Inhibiting autophagy stalls

Francisella growth, but adding non-essential amino acids or

pyruvate restores replication, confirming their role as nutrients

(88). During infection, bacteria localize near autophagosomes in

host cells, suggesting exploitation of autophagy for resources.

Interestingly, late-stage infection in murine macrophages reveals
frontiersin.org
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large autophagic Francisella-containing vacuoles (FCVs),

dependent on bacterial protein synthesis (89). However, FCVs

form only in mouse cells, not human macrophages, leaving their

biological relevance uncertain (90). Identifying bacterial factors that

manipulate autophagy could clarify how Francisella hijacks this

process for nutrition.

Brucella spp. persist within membrane-bound BCVs, hijacking

the host secretory pathway to transform their initial endosomal

BCV into an ER-derived replicative BCV. Critical to this process is

the VIRB T4SS, which injects bacterial effectors to manipulate host

functions (91, 92). Following internalization, BCVs acquire early

and late endosomal markers (e.g., LAMP-1) and transiently interact

with lysosomes via RAB7 (93). However, the BCV eventually diverts

to ER exit sites (ERES), excluding endosomal markers. This shift

relies on Sar1 and Rab2 GTPases, which regulate ERES integrity and

Golgi-ER transport (94, 95). Brucella infection also activates the

unfolded protein response (UPR), a stress pathway restoring ER

homeostasis (96). While B. melitensis triggers all three UPR arms

(IRE1a, protein kinase RNA-like ER kinase, and activating

transcription factor 6-dependent pathways) via effector TCPB. B.

abortus and B. suis primarily activate IRE1a, linked to host

detection of T4SS activity (97, 98). IRE1a activation—dependent

on host protein YIP1A—upregulates Sar1 and COPII components,

enhancing ERES function and ER membrane acquisition for BCV

biogenesis (99). This process intersects with autophagy:

IRE1a-driven UPR stimulates ATG9- and WIPI-dependent

autophagosome formation, which Brucella exploits to establish its

replicative BCV (99). Despite progress, the exact interplay between

UPR, autophagy, and BCV formation remains unclear, particularly

how ER stress benefits Brucella’s intracellular survival.

The Chlamydiaceae family comprises Gram-negative, obligate

intracellular bacteria that infect humans and animals (100). Among

these, Chlamydia trachomatis (C. trachomatis) primarily targets the

human female genital tract. During infection, the pathogen

establishes a protective vacuole called the inclusion, where it

replicates (101). Evidence suggests C. trachomatis hijacks

autophagosomes—either as nutrient sources or transport vehicles

—to support its survival (102). A key player here is LC3, a protein

central to autophagy. Normally, LC3-I (cytosolic) converts to lipid-

bound LC3-II, marking autophagosomal membranes. However, C.

trachomatis repurposes LC3 in an autophagy-independent manner:

the protein stabilizes the host cell’s microtubule network, which is

critical for bacterial inclusion stability and movement. Depleting

LC3—even in autophagy-deficient cells—severely hampers C.

trachomatis growth, underscoring its exploitation of LC3 beyond

conventional autophagy pathways. Essentially, the pathogen co-

opts LC3’s structural role to anchor inclusions to the cytoskeleton,

ensuring its replication niche remains intact (103).

Coxiella burnetii, the Gram-negative bacterium behind Q fever,

thrives by hijacking host xenophagy to form its replication niche,

the Coxiella-containing vacuole (CCV) (104). Stimulating

autophagy—via nutrient deprivation or rapamycin—boosts

bacterial replication and enlarges the CCV, while blocking

autophagy disrupts CCV development (105). Key autophagy
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genes (TFEB/TFE3, ATG proteins, STX17) enable homotypic

vacuole fusion, forming expansive CCVs (106). The pathogen

delays lysosomal protease delivery (e.g., cathepsin D) and exploits

autophagy machinery, increasing lipidated LC3B-II and stabilizing

p62—a cargo receptor degraded during normal autophagy (107,

108). This manipulation relies on bacterial effectors secreted via the

T4SS (109). Critical effectors like CVPB (CIG2) label CCVs, recruit

autophagosomal LC3, and sustain phosphatidylinositol 3-

phosphate to maintain autolysosomal maturation (110, 111).

CVPB, alongside CVPC-E, ensures CCV-LAMP1 vesicle fusion,

vital for replication (112). Similarly, CVPF interacts with RAB26—a

GTPase regulating autophagy—by binding its inactive form,

possibly acting as a GEF/GDF to recruit RAB26 to CCVs. Active

RAB26 collaborates with ATG16L1 to stimulate LC3 lipidation,

enhancing autophagosome-CCV fusion (113). Depleting RAB26

reduces LC3 recruitment and CCV size, impairing bacterial growth.

Another effector, CIG57, recruits clathrin to CCVs, indirectly

supporting LC3B association (108). Together, these effectors

orchestrate RAB GTPase activity and autophagy flux, diverting

host membranes and nutrients to expand CCVs (112). In short, C.

burnetii’s T4SS effectors co-opt autophagy regulators (e.g., RAB26,

clathrin) to stabilize its niche, illustrating how intracellular

pathogens rewire vesicular trafficking for survival.

Bacteria of the genus Yersinia cause illnesses ranging from

enteritis to plague. Y. enterocolitica, a species with diverse strains

classified by biochemical profiles and O-antigen serotyping,

manipulates autophagy to create a protective niche. After invading

host cells, it occupies vacuoles resembling autophagosomes but

actively blocks lysosomal fusion and acidification, enabling survival

and replication (114, 115). Studies show Yersinia persists in intestinal

macrophages during early infection and replicates within

autophagosomes in macrophages by halting maturation (116, 117).

Disrupting autophagy forces bacteria into acidic compartments

for degradation, confirming autophagy’s role in sustaining their

niche (116). Similarly, Y. pseudotuberculosis exploits arrested

autophagosomes, likely fueling replication via nutrient-rich

autophagosomal membranes. Staphylococcus aureus also hijacks

xenophagy. In HeLa cells, it replicates within LC3-positive

autophagosomes for 3–12 hours before escaping into the cytosol to

trigger apoptosis. Autophagy-deficient cells (e.g., ATG5 knockouts)

prevent bacterial replication, as phagosome-lysosome fusion resumes.

Notably, AGR mutants—which lack virulence gene expression—fail

to induce autophagy and cannot survive intracellularly (57).
4 Xenophagy in aquaculture

Xenophagy, a selective form of autophagy targeting intracellular

pathogens, is particularly critical in combating bacterial infections

prevalent in aquatic animals, such as those caused by Aeromonas

hydrophila, Edwardsiella, Mycobacterium, and so on (as shown

in Table 2).

In teleosts, xenophagy is integral to innate immunity. For

instance, zebrafish macrophages utilize xenophagic pathways to
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degrade intracellular pathogens like Shigella flexneri and Salmonella

Typhimurium, with autophagy-related genes (ATG5, p62, DRAM1)

being essential for bacterial clearance (126). However, certain

pathogens subvert these mechanisms (127). Edwardsiella piscicida,

a Gram-negative bacterium, induces mitophagy in fish monocytes/

macrophages, promoting its intracellular survival by degrading

damaged mitochondria and evading antimicrobial ROS (128). This

pathogen downregulates host autophagy regulators (e.g., ATG16L1)

and PRRs such as NOD1, impairing immune detection and

facilitating replication (129, 130). Similarly, Legionella pneumophila

manipulates autophagosome maturation, exploiting endoplasmic

reticulum (ER)-derived vacuoles to avoid lysosomal degradation,

while Mycobacterium marinum recruits autophagy proteins (e.g.,

LC3) via its ESX-1 secretion system to create replication-permissive

compartments (131–133). Pathogen effector proteins further

illustrate this subversion. Vibrio parahaemolyticus secretes VopQ,

which blocks autophagic flux, impairing inflammasome activation

and enabling immune evasion (134). Conversely, Vibrio harveyi

exploits host eukaryotic translation initiation factor 3k to degrade

MyD88, a key mediator of NF-kB signalling, thereby suppressing

inflammatory responses (135, 136). Such strategies highlight the

complex interplay between xenophagy and bacterial survival, where

pathogens either inhibit autophagic degradation or co-opt its

machinery to establish infection niches. Notably, the role of

xenophagy varies contextually. While it restricts pathogens like

Edwardsiella tarda via the pol-miR-3p-2-p53-BECLIN1 axis in

Japanese flounder (137), it paradoxically aids Staphylococcus aureus

replication in zebrafish neutrophils by forming non-acidified LC3-

positive phagosomes (138). These findings underscore the dual

nature of xenophagy in aquatic immunity and pathogenicity.

Advancing disease management in aquaculture requires elucidating

molecular mechanisms underlying xenophagy-pathogen interactions,

including effector protein functions, PRR modulation, and organelle-

specific autophagy (e.g., mitophagy). Targeted therapeutic strategies,

such as enhancing autophagic flux or blocking pathogen-mediated

subversion, hold promise for mitigating infections. Advancing

autophagy research in aquatic species requires specialized tools.
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While DNA, RNA, and protein-based assays adapted from

mammalian systems exist, most are only validated in

zebrafish. Key RNA techniques include CRISPR/Cas9, TALENs,

and morpholino knockdowns, while transcript analysis uses

qRT-PCR and sequencing, and protein studies employ WB and

TEM (139–141). However, species-specific reagents and protocols

for non-model teleosts are lacking, and dynamic autophagy studies

face financial and technical hurdles. Developing standardized assays

for diverse teleosts remains a critical need. Future research should

prioritize in vivomodels andmulti-omics approaches to unravel these

complexities, ultimately informing sustainable aquaculture practices.
5 Conclusion and future perspectives

Xenophagy, a conserved eukaryotic mechanism, functions

dually in host defense and pathogen exploitation. While it

typically degrades intracellular microbes, certain bacteria subvert

xenophagy via effector proteins to inhibit lysosomal fusion,

hijacking autophagosomes as replicative niches. This interplay is

pathogen- and cell type-dependent, highlighting xenophagy’s

complex role in infection dynamics—critical for developing

targeted therapies amid rising antibiotic resistance. In teleost,

autophagy regulates physiological and pathological processes

through pathways analogous to mammals, offering potential as a

biomolecular marker or therapeutic target in teleosts. Although

research on autophagy in teleost remains limited, progress has been

made in identifying autophagy-inducing conditions, genes, and

pathogen-triggered autophagic responses. Transgenic zebrafish

and cell lines have been instrumental in studying autophagy

regulation and its role in anti-pathogen defense. With advancing

genetic and imaging tools, zebrafish will continue to enhance our

understanding of autophagy in bacterial immunity. Additionally,

due to their aquatic environment, teleost lysosome-autophagy

systems serve as sensitive biomarkers for ecosystem health

monitoring (142). Beyond theoretical significance, autophagy

research in teleost holds practical value, offering insights
TABLE 2 Bacteria regulated autophagy genes/proteins in teleost species.

Species Bacteria Autophagy-related
genes/Proteins

Zebrafish (118, 119) Mycobacterium, Shigella flexneri, Mycobacterium marinum, Staphylococcus aureus,
Salmonella Typhimurium

atg5, atg7, lc3, p62/sqstm1, dram1,

Common Carp (120) Aeromonas hydrophila atg12, atg5,mtor,lc3, beclin1

Grass Carp (Ctenopharyngodon idella)
(121, 122)

Escherichia coli, Edwardsiella piscicida Atg5, Atg16l1,lc3

Yellow catfish (Pelteobagrus
fulvidraco) (123)

Aeromonas hydrophila, Edwardsiella tarda Atg5,Atg7

Japanese flounder (Paralichthys
olivaceus) (124)

Edwardsiella tarda Atg7

fathead minnow (Pimephales
promelas) (125)

Vibrio parahaemolyticus Lc3
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into disease mechanisms and potential applications for

aquaculture benefits.
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ActA Actin assembly-inducing protein
Frontiers in Immunol
Agr accessory gene regulatory
AMPK adenosine monophosphate-activated protein kinase
AKT serine/threonine protein kinase B
Arp2/3 complex Actin-related protein 2/3 complex
ATG5 autophagy related 5
Atg16L1 Autophagy related 16 like 1
BCVs Brucella-containing vacuoles
BORC BLOC-one-related complex
B. pseudomallei Burkholderia pseudomallei
CCV Coxiella-containing vacuole
CFTR cystic fibrosis transmembrane conductance regulator
CRISPR/Cas9 Clustered regularly interspaced palindromic repeats

associated protein 9;C. trachomatis, Chlamydia trachomatis
CvpB Coxiella vacuolar protein B
DAMPs damage-associated molecular patterns
DFCP1 Double FYVE containing protein 1
DRAM damage-regulated autophagy monitor
ERES ER exit sites
ERK extracellular signal-regulated kinase
ESAT-6 early secretory antigenic target 6
ESX-1 ESAT-6 system 1
ESPB ESX-1 secretion-associated protein B
FCVs Francisella-containing vacuoles
FIP200 focal adhesion kinase family interacting protein of 200 kD
GAS Group A Streptococcus
GILT Gamma-interferon-inducible lysosomal thiol reductase
IcsB N-epsilon-fatty acyltransferase IcsB
IFN-gR1 IFN-g receptor 1
InlK Internalin K
IRE1a Inositol-requiring transmembrane kinase/endonuclease-1
LAP LC3-associated phagocytosis
LAMP-2 Lysosome-associated membrane protein-2
LC3 microtubule-associated protein 1 light chain 3
L. monocytogenes Listeria monocytogenes
LLO listeriolysin O
L. monocytogenes Listeria monocytogenes
MAPK14 mitogen-activated protein kinase 14
Mitophagy mitochondria autophagy
Mtb Mycobacterium tuberculosis
mTOR mechanistic target of rapamycin kinase
ogy 12
mTORC1 mechanistic target of rapamycin complex 1
NBR1 neighbor of BRCA1 gene 1
NDP52 nuclear dot protein, 52 kDa
OmpB outer membrane protein B
PAMPs pathogen-associated molecular patterns
Pexophagy peroxisomes autophagy
PI3P phosphatidylinositol 3-phosphate
PIP3 Phosphatidylinositol (3,4,5)-trisphosphate
PSMa phenol-soluble modulins a
PRRs pattern recognition receptors
PRKN parkin RBR E3 ubiquitin protein ligase
PTPA Protein phosphatase 2A phosphatase activator
R. parkeri Rickettsia parkeri
Ribophagy ribophagy autophagy
SapM Secretion of an Acid Phosphatase of M. tuberculosis
SCV Salmonella -containing vacuole
S. flexneri Shigella flexneri
SLAPs Spacious Listeria-containing Phagosomes
SMURF1 SMAD specific E3 ubiquitin protein ligase 1
SpeB Streptococcal pyrogenic exotoxin B
S. Typhimurium Salmonella enterica serovar Typhimurium
SPI1 Salmonella Pathogenicity Island 1
SIRT1 Sirtuin-1
SQSTM1 sequestosome 1
STAT1 signal transducer and activator of transcription 1
STX17 syntaxin 17
TALENs transcription activator-like effector nucleases
TBK1 TANK-binding kinase 1
TEM Transmission electron microscopy
TFEB transcription factor EB
T3SS type III secretion system
TLR2 Toll-like receptors 2
ULK1 Unc-51-like kinase 1
UPR unfolded protein response
VASP vasodilator-stimulated phosphoprotein
VPS34 vacuolar protein sorting 34
WB western blot
WIPI WD-repeat protein interacting with phosphoinositides
Xenophagy pathogens autophagy.
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