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Background: Head and neck squamous cell carcinoma (HNSCC) is one of the

most prevalent malignant neoplasms worldwide. Despite advances in

conventional therapies such as surgery, radiotherapy, and chemotherapy,

many patients still have a poor prognosis due to drug resistance, recurrence,

and distant metastasis. In recent years, vasculogenic mimicry has become one of

the most studied mechanisms that promote cancer incidence and progression.

However, research on the association between vasculogenic mimicry-related

genes (VMRGs) and HNSCC is currently limited, and the impact of vasculogenic

mimicry on HNSCC requires further investigation.

Methods: Transcriptome and clinical data for HNSCC were obtained from The

Cancer Genome Atlas and Gene Expression Omnibus databases. We found that

VMRG expression differed between tumor and normal tissues. Cox and LASSO

regression analyses were employed to construct a prognostic risk model for

VMRG expression. The predictive ability of the prognostic model was assessed

using Kaplan–Meier and receiver operating characteristic (ROC) curves.

Additionally, we conducted a systematic assessment of the clinical association

between high- and low-risk cohorts, including gene set enrichment analysis

(GSEA), immunological landscape profiling, tumor mutational burden,

immunotherapy response, and drug sensitivity. Finally, we verified the

expression of all genes implicated in the construction of the prediction model

at both cellular and tissue levels using quantitative reverse transcription

polymerase chain reaction (RT-qPCR).

Results: A total of 39 VMRGs related to prognosis were screened, and five were

selected to build the predictive model. The results of the Kaplan–Meier analysis

indicated reduced overall survival in patients in the high-risk category. Cox

regression and ROC analyses showed that the risk model provided

independent and robust predictive value for the prospects of individuals with

HNSCC. Mechanistically, clinical correlation, GSEA, immunological landscape,

tumor mutational burden, immunotherapy response, and drug sensitivity

analyses demonstrated notable variations. RT-qPCR results revealed aberrant
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expression of model-related genes, and the expression trends were consistent

with the bioinformatic findings.

Conclusion: This study elucidated the impact of VMRGs on immunological

mechanisms in HNSCC. Our prognostic model of VMRGs highlighted their

predictive relevance in patients with HNSCC and revealed potential new

prospective treatment options.
KEYWORDS

head and neck squamous cell carcinoma, vasculogenic mimicry, immunotherapy,
prognostic model, tumor microenvironment
1 Introduction

Head and neck squamous cell carcinoma (HNSCC) is a serious

malignancy that contributes to high morbidity and mortality rates

globally, accounting for 90% of all head and neck cancer cases (1).

In 2018, over 890,000 new cases of HNSCC were reported

worldwide, with approximately 450,000 fatalities attributed to the

disease (2). The increased occurrence of HNSCC is significantly

linked to lifestyle factors, including alcohol consumption and

smoking, in addition to illnesses caused by human papillomavirus

and Epstein-Barr virus (3). Despite advancements in conventional

therapies for HNSCC, such as surgery; radiotherapy; and

chemotherapy, numerous patients still have poor prognoses

attributed to treatment resistance, recurrence, or distant

metastasis (4). Therefore, improving patient survival requires a

deeper understanding of the pathogenic mechanisms underlying

HNSCC and the development of innovative therapeutic approaches.

Tumor neovascularization plays an important role in sustaining

tumor growth and metastasis. It is generally accepted that tumor

angiogenesis primarily relies on endothelial cells; however, recent

studies have indicated that tumors can develop blood vessels

independently of endothelial cells, a process referred to as

vasculogenic mimicry (VM) (5–9). VM refers to the counter

differentiation of tumor cells into vascular endothelial-like cells,

which form functional vascular-like structures and directly

contribute to the tumor blood supply (8, 10–12). In contrast to

classical angiogenesis, VM occurs independently of endothelial

cells. Its mechanism of generation is more intricate and is
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significantly linked to unfavorable prognoses in various

malignant tumors.

VM has been found to be relevant in several malignancies, such

as melanoma, breast tumors, glioblastoma, ovarian tumors, and

lung cancer (8, 13–19). VM significantly contributes to tumor

progression by enhancing the tumor blood supply, facilitating

tumor invasion and metastasis, and modulating immune cell

function within the tumor microenvironment (TME) (5, 20–22).

Nevertheless, research on VM in HNSCC remains limited,

particularly regarding its specific regulation of the TME and

immune evasion, which is yet to be systematically clarified.

This study aimed to explore the potential role of VM in HNSCC

and systematically examine how VM-related genes (VMRGs)

influence HNSCC. Additionally, we investigated the mechanisms

by which VMRGs influence immunotherapy, offering a new

theoretical foundation and potential targets for the management

of HNSCC.
2 Materials and methods

2.1 Data collection

A total of 24 VMRGs were obtained from earlier reviews and are

provided in Supplementary Table 1 (23), along with RNA-Seq data

(HTSeq-FPKM), clinical information, and lifespan data for patients

with HNSCC downloaded from UCSC Xena (http://xena.ucsc.edu/).

In total, 494 HNSCC and 44 normal tissue samples were obtained.

The GSE65858 (n = 270 samples) dataset was obtained from the

Gene Express ion Omnibus (GEO) database (ht tp : / /

www.ncbi.nlm.nih.gov/geo/) for gene regulation profiling and

longevity analyses of the corresponding patients for validation

using outside sources. The ENSEMBL gene IDs were converted to

gene symbol IDs to maintain consistency. Genes with expression

levels < 50% in the samples were omitted from the analysis. The

human HNSCC scRNA sequencing dataset GSE139324 was sourced

from the GEO database. To reduce potential batch effects arising

from integrating data derived from different public databases, we
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applied batch correction to the expression matrix. All raw

expression values were first log2-transformed and normalized

(log2(x+1)). Subsequently, the ComBat function in the “sva” R

package was used to model batch variables and adjust for systematic

biases related to batch and platform differences. Then, the batch-

corrected data were used for downstream analyses, including

differential expression analysis, prognostic model construction,

and immune infiltration assessment. To evaluate the effectiveness

of the correction, we performed principal component analysis

(PCA), which demonstrated that the samples were no longer

clustered by batch after adjustment, indicating that batch-related

variability was substantially mitigated.
2.2 Consensus unsupervised clustering

We performed an unbiased cluster analysis of gene expression

utilizing the “ConsensusClusterPlus” program to find various VM-

related clusters. The “K-Means” algorithm was employed, utilizing

“Euclidean” distance as the metric, along with resampling of 80% of

the items and conducting 1000 replications. The ideal k value was

determined based on the ratio of unclear clusters. To investigate

differences in clinical features between clusters, we generated

heatmaps using the “pheatmap” R package. The PCA algorithm,

along with the “ggplot2” R package, was employed to assess and

visualize the sample distribution across different clusters.
2.3 Gene mutation analysis in HNSCC

The Wilcoxon rank-sum test was used to assess differences in

the expression status of VMRGs between healthy and HNSCC cells.

Subsequently, we plotted the copy number variation (CNV) of

different VMRGs using “ggplot” and analyzed patients with

different subtypes using the “gistic2” module of GenePattern.

Waterfall plots were generated using “maftools” to detect somatic

mutations of VMRGs and different subtypes in HNSCC.

Additionally, the tumor mutational burden of each sample was

calculated to determine the correlation between subtypes and tumor

mutational burden.
2.4 Functional enrichment of VMRGs and
their differential genes

For the VMRGs, the STRING database was used to construct a

protein–protein interaction network. Meanwhile, the “limma” R

package was used to examine differentially expressed genes (DEGs)

between clustered subtypes, with |log2 FC| > 1 and FDR < 0.05 as

cut-offs. Based on VM-related genes and DEGs between clustered

subtypes, bioconcentration entries were obtained using Gene

Ontology (GO) functional and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway enrichment analyses (p < 0.05). Gene

set variation analysis (GSVA) of the clustered subtypes was

conducted using the “GSVA” R program. The threshold for
Frontiers in Immunology 03
significantly enriched functions was set at p < 0.05. GSEA was

performed using the clusterprofile package (p < 0.05).
2.5 Evaluation of immune characteristics
based on clustered subtypes

Using the ESTIMATE approach and the CIBERSORT

algorithm, we determined that different molecular clusters

connected to the VM had significantly different immune

microenvironments and immune infiltrating cells. Furthermore,

we compared the differences in immune checkpoints and HLA-

related genes to evaluate the potential therapeutic efficacy of

immunotherapy in different molecular clusters. Hypoxia scores

were obtained from the cBioportal.
2.6 Establishment of the VM rating system

VM-related prognostic genes were identified from the clustered

subtype-related DEGs using univariate Cox proportional hazards

analysis with a cutoff of p < 0.05. To identify optimal prognostic

genes, we conducted LASSO using the glmnet package and utilized

stepwise selection based on the Akaike Information Criterion

(stepAIC) in conjunction with the MASS program to identify the

most significant subtype-related genes contributing to colon cancer

prognosis. A multivariate Cox proportional hazards regression

model was used to incorporate the prognostic genes with the

highest predictive value. To create the VM score system, the

coefficients of the multivariate Cox proportional hazards

regression model were multiplied by the normalized prognostic

gene expression levels:

Risk score =oN
i=1(Expi� Coei)

Two categories of patients with HNSCC were formed using the

median score from the VM scoring method: those who scored high

on the risk scale and those who scored low. Using Kaplan–Meier

survival analysis and log-rank statistical techniques, we identified

the disparate overall survival (OS) rates between the two risk

groups. Moreover, we conducted external validation of the cohort.
2.7 Development of a prognostic clinical
model for HNSCC

Nomograms are widely employed in clinical practice to

visualize prognostic models. In our study, a significance criterion

of p < 0.05 was used in the univariate and multivariate Cox

regression analyses to identify important risk factors. Then, these

identified risk factors were utilized as inputs for constructing a

nomogram using the “rms” package. This nomogram provides a

graphical representation in which cumulative points derived from

the input variables enable the estimation of 1-year, 3-year, and 5-

year mortality rates. Using the “ggplot2” software, the clinical

usefulness of the nomogram relative to other markers was
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evaluated via decision curve analysis (DCA). This approach allows

for a thorough assessment of the nomogram’s performance by

considering the trade-offs between the potential benefits and

drawbacks across different decision thresholds.
2.8 Analyzing scRNA-seq data

The “Seurat” R software was used to convert the 10× scRNA-seq

data to a Seurat object. Groups of cells containing fewer than three

mitochondrial genes were expressed at a rate greater than 10%, and

cells with fewer than 50 genes were eliminated. The top 1500 most

variable genes were used for PCA. Based on the top 15 main

components, a cell clustering analysis was conducted using the

“FindNeighbors” and “FindClusters” functions. The marker genes

of different cell clusters were located using the “FindAllMarkers”

tool, with the criteria being a |log2FC| > 1 and an FDR< 0.01

threshold. Additionally, cluster annotation was performed using

“CellMarker 2.0”, to identify various cell types. The activity of a

particular gene set in each cell was measured using the “ssGSEA”

tool included in the Seurat package.
2.9 Assessment of immunotherapy
response and drug sensitivity analysis

Each patient in the Cancer Genome Atlas (TCGA)-HNSCC

dataset had a TIDE score determined using the tumor Page

4immune system breakdown and exclusions (TIDE; http://

tide.dfci.atherard.edu/) to assess the immunotherapy response

between the high- and low-risk groups. Additionally, the

correlation between each patient’s immune-infiltrating cell levels

and the prognostic model was computed for the TCGA-HNSCC

cohort. The “oncoPredict” R package was used to determine the

half-maximal inhibitory concentration (IC50) of chemotherapeutic

drugs with data retrieved from the Genomics of Drug Sensitivity in

Cancer (https://www.cancerrxgene.org/) database. The Wilcoxon

signed-rank test was used to investigate the difference in IC50 values

between the high- and low-risk groups and analyze the correlation

between the risk score and drug sensitivity.
2.10 Cell culture with real-time
quantitative polymerase chain reaction

Human HNSCC cells (FADU, HSC-3 and SCC-25) were grown

in MEM and DMEM/F12 supplemented with 10% fetal bovine

serum, penicillin, and streptomycin. HaCat cells were grown in

DMEM as a control. All cells were cultivated in an incubator at 37°C

with 5% CO2. Total RNA was extracted from the cells using a

TRIzol RNA extraction kit, and reverse transcription was

performed to convert the extracted RNA into cDNA. RT-qPCR

was used to measure the expression quantity of VM-related genes,

and the 2-DDCt method was used to quantify the suppression effects.

All samples were analyzed in duplicates.
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2.11 Statistical analyses

All statistical analyses were performed using R software (v4.3.1).

The Wilcoxon test was used for pairwise comparisons between two

groups, whereas the Kruskal–Wallis test was used for multiple

group comparisons (* p < 0.05, ** p < 0.01, *** p < 0.001, **** p

< 0.0001). The Kaplan–Meier method and log-rank test were used

to analyze survival. Statistical significance was set at p < 0.05.
3 Results

3.1 Variant landscape of VM gene
expression in patients with HNSCC

Figure 1 presents a flow diagram of the study. Our analysis of

TCGA data revealed that most VM genes, including LAMC2,

LOXL2 , MAPK1 , MMP2 , MMP9 , and PIK3CA , showed

differential expression between HNSCC and normal tissues when

compared using a boxplot (Figure 2A). To clarify the complex

significance of VM-associated proteins, we built a network of

protein–protein interactions. We found that five putative hub

genes, MMP2, TGFB1, KDR, MMP9, and SNAI1, may play crucial

roles in the pathological process of HNSCC (Figure 2B). The

transcriptome relationships were investigated, and close

correlations were observed among VM-related genes (Figure 2C);

SNAI2 expression showed a strong positive correlation with

LAMC2 expression, while LOXL2 expression showed a strong

positive correlation with MMP2 expression, indicating that they

function together. Moreover, we investigated the molecular

alteration landscape of VMRGs in HNSCC and found that the

most frequent variants were nonsense mutations (Figure 2D). The

top five mutated genes were PIKK3CA, NOTCH1, EPHA2, ROCK1,

and KDR. Next, we investigated the prevalence of CNV mutations

and found that genes linked to VM exhibited notable changes in

their CNV (Figure 2E). Enrichment analysis revealed that VMRGs

were associated with proteoglycans in cancer, epithelial cell

migration, endothelial cell migration, tissue migration, cell-cell

junction organization, and epithelial cell proliferation

(Figures 2F, G).
3.2 Classification of molecular subgroups
using genes associated with VM

Subsequently, by increasing the clustering matrix (k) from 2 to

10, we analyzed VMRG expression in 494 samples using an

unsupervised clustering method to examine the HNSCC

categorization. When k = 2, consensus clustering demonstrated

optimal performance, and two molecular subtypes were found,

designated Clusters A and B (Figures 3A, B). Cluster A contained

283 samples, whereas Cluster B contained 211. The relationship

between these molecular subtypes and clinical variables, including

stage, grade, age, and survival status, are shown in a heatmap

(Figures 3C, D). We conducted GSEA and determined the most
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significantly enhanced signaling pathways to investigate possible

variations in biological activities among VM-related molecular

subtypes. Although Cluster A was richer in pathways related to

cancer-related proteoglycans and actin cytoskeleton regulation,

Cluster B was mostly linked to drug metabolism and DNA

replication-related pathways (Figures 3E, F). Additionally, GSVA

was used to generate a heatmap of differentially enriched biological

processes. Compared to Cluster B, Cluster A exhibited higher

enrichment of extracellular matrix and cancer-related

proteoglycans (Figure 3G).
3.3 Tumor immune microenvironment
analysis between VM-related subgroups

Additionally, we evaluated the variations in immune-infiltrating

cells, stromal scores, and immunological scores between the two

molecular subtypes. The immune infiltration analysis showed that

the Cluster A group exhibited a significant increase in the levels of

28 different types of immune cells (Figure 4A). Specifically, the

abundances of CD4 memory resting T cells, regulatory T cells,
Frontiers in Immunology 05
monocytes, M1 macrophages, dendritic cells, and neutrophils were

remarkably higher in Cluster A, whereas those of B cell memory,

plasma cells, CD8 T cells, CD4memory activated T cells, resting NK

cells, M2 macrophages, and dendritic cells were significantly higher

in Cluster B (Figure 4B). Additionally, Cluster A had considerably

higher immunological and stromal scores than Cluster B

(Figure 4C). Previous studies have shown that increased immune

checkpoint expression correlates with a better response to immune

checkpoint inhibitor therapy. Therefore, we investigated the

expression levels of immune checkpoints across different

molecular subtypes. As shown in Figure 4D, major immune

checkpoints, including CD40, CD276, CTLA-4, PDCD1LG2, and

NRP1, were overexpressed in the Cluster A subtype. Immune

evasion was positively correlated with the TIDE prediction score,

indicating immunotherapy resistance. In the TCGA-HNSCC

cohort, Cluster A had a significantly higher TIDE score than that

of Cluster B (Figure 4E). Additionally, hypoxia-responsive gene

expression analysis revealed that Cluster A had a higher hypoxia

score (Figure 4F). These findings suggest that the immunological

microenvironments of the two molecular subtypes are

significantly different.
FIGURE 1

Workflow of this study.
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3.4 Genomic differences between Cluster
A and Cluster B

We further investigated the link between the VM molecular

subtypes and genomic changes (including CNV alterations and

mutations). A higher non-synonymous tumor mutational burden

was found in the protein-coding regions of the genomes of Cluster B

patients (Figure 5A). The 20 genes with the highest mutation

frequency in both subtypes are presented in Figure 5B. Notably,

the mutation frequency of TP53 was higher in Cluster A (75%)

compared with that in Cluster B (58%) (Figure 5C). CNV analysis
Frontiers in Immunology 06
revealed a significant difference in CNV patterns between VM-

related subtypes (Figure 5D).
3.5 Building and verifying a prognostic
model related to vasculogenic mimicry

Based on the clustered subtype-related DEGs, 39 VM-related

prognostic genes were identified using univariate Cox regression

analysis (Supplementary Table 2). Nine potential genes were further

filtered out using LASSO Cox regression analysis to reduce the risk
FIGURE 2

Identification of VMRGs in HNSCC. (A) Differential expression analysis of VMRGs between HNSCC and normal tissues; (B) Expression profile of
VMRGs in HNSCC. (C) Correlation analysis of VMRGs expression in HNSCC; (D) Mutation landscape of VMRGs in HNSCC cohort; (E) CNV analysis of
VMRGs in HNSCC; (F) GO enrichment analysis of VMRGs in HNSCC; (G) KEGG pathway enrichment analysis of VMRGs.
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of overfitting and the range of candidate genes (Figure 6A). Finally,

stepAIC Cox regression analysis was used to select five genes

(CALML5, FMOD, PLAU, DEFB1, and CKM) for the VM-related

prognostic model (Figure 6B). The expression levels of these five

genes are shown in Supplementary Figure 1. Each patient’s risk
Frontiers in Immunology 07
score was computed using the formula below: The risk score was

calculated by adding the expressions of CALML5*(-0.0740),

FMOD*(-0.2117), PLAU*(0.1514), DEFB1*(-0.0583), and CKM*

(0.0581) (Figure 6C). Subsequently, patients were divided into low-

and high-risk groups based on the median risk score. In both the
FIGURE 3

TCGA-HNSCC classification based on VMRGs expression. (A) Consensus clustering at k = 2; (B) CDF from k = 2–10; (C) Heatmap depicting VMRGs
expression in relation to two clusters and clinical characteristics; (D) PCA of the two clusters; (E) Enrichment of proteoglycans in cancer pathways in
patients within Cluster A; (F) Drug metabolism and DNA replication related pathways are considerably enriched in patients within Cluster B; (G) GSVA
outcomes for the two subtypes.
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TCGA-HNSCC (Figure 6D; p < 0.0001) and GSE65858 cohorts, the

OS rate was higher for patients in the low-risk category compared

with that in the high-risk group (Figure 6G; p = 0.015). Time-

sensitive ROC curves were generated to assess the predictive ability

of the prognostic model. The 1-, 3-, and 5-year AUCs of the TCGA-

HNSCC cohort were 0.675, 0.705, and 0.63, respectively

(Figure 6E). Similarly, in the GSE65858 cohort, the 1-, 3-, and 5-

year AUCs were 0.687, 0.671, and 0.599, respectively (Figure 6H).

Figures 6F, I illustrate the danger score distribution and life

expectancy for the TCGA-HNSCC and GSE65858 cohorts,

respectively. These findings support the strong performance of
Frontiers in Immunology 08
the VM-related prognostic model in predicting the prognosis of

patients with HNSCC across several datasets.
3.6 Development and evaluation of the
survival model using a nomogram

Compared with other standard clinical features, risk scores

emerged as independent predictive indicators in patients with

HNSCC, as demonstrated by univariate and multivariate Cox

analyses (Figures 7A, B). Univariate and multivariate Cox analyses of
FIGURE 4

Immune profiles, hypoxia scores, and mutation analysis of VMRGs subtypes. (A) Comparison of immune cell infiltration levels of VMRGs subtypes; (B)
Comparison of immune cell composition in the tumor microenvironment of VMRGs subtypes; (C) Comparison of immune-related scores for VMRGs
subtypes; (D) Variations in the expression of immunological checkpoint genes among VMRGs subtypes; (E) TIDE analysis of VMRGs subtypes; (F)
Comparison of hypoxia scores for the VMRGs subtypes. *p<0.05, **p<0.01,***p<0.001,****p<0.0001.
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the TCGA-HNSCC cohort demonstrated that age, radiation exposure,

and risk score were independent predictors of disease outcome. To

determine the clinical significance of VM risk models, we developed a

nomogram incorporating radiation and age to predict OS in patients

with HNSCC based on the TCGA-HNSCC dataset (Figure 7C).

The nomogram model demonstrated superior prognostic

performance relative to the gene signature model. The prognoses of

the high- and low-risk groups significantly differed (p < 0.0001;

Figure 7D). The 1-, 3-, and 5-year survival rates had AUC values of

0.772, 0.726, and 0.682, respectively (Figure 7E). The calibration curves

demonstrated the accuracy of the model in forecasting survival rates at

1, 3, and 5 years (Figure 7F). Based on the DCA results the nomogram

model was the most effective predictor (Figure 7G). Our nomogram

exhibited a robust predictive capability and clinical relevance in

evaluating the prognosis of patients with HNSCC based on these

significant clinical characteristics.
3.7 Association between the VM-related
prognostic model and the immunological
microenvironment and immune traits

To assess the immune infiltration landscape in HNSCC, we used

the CIBERSORT algorithm to quantify the number of immune cells
Frontiers in Immunology 09
that infiltrated each sample (Figure 8A). The abundances of

monocytes, macrophages, resting NK cells, and resting mast cells

were higher in the high-risk group, whereas those of plasma cells,

regulatory T cells, gamma delta T cells, activated NK cells, and

activated mast cells were higher in the low-risk group. Additionally,

five genes in the prognostic model were strongly correlated with the

abundances of immune cells that infiltrate tumors, specifically

macrophages. M1 macrophage abundance was negatively associated

with DEFB1 and CALML5 and positively correlated with PLAU and

FMOD, whereas resting dendritic cell abundance exhibited a positive

correlation with both CKM and FMOD expression (Figure 8B). Next,

we examined the detailed distribution of model genes in patients with

HNSCC using single-cell RNA transcriptome data (GSE139324). The

single-cell annotation results are provided in Supplementary Figure 2.

The dot plot revealed that most model genes were significantly

expressed in the mast cells (Figures 8C–E). Additionally, analysis of

the TIDE scores of all patients with HNSCC showed that the high-

risk group had substantially higher scores, as evidenced by a positive

correlation (Figure 8F). These findings suggest that immunotherapy

may not be advantageous for patients with high-risk HNSCC.

Moreover, we determined whether there was a distinct correlation

between risk values and immune-related genes. The bar plot suggests

that low-risk patients may have more robust immune

activities (Figure 8G).
FIGURE 5

Genomic alterations between Cluster A and Cluster B. (A) Comparison of TMB between VM-related molecular subtypes of HNSCC; (B1-2) Somatic
mutation landscape of VM-related HNSCC subtypes; (C, D) Lollipop mutation map of the TP53 gene.
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3.8 Drug susceptibility analysis

By comparing the sensitivity of the two risk groups to those of

commonly used chemotherapeutic agents, we aimed to identify

effective pharmaceuticals for patients with HNSCC and use this

information to guide precision treatment. The half-lives of

paclitaxel, docetaxel, AZD, buparlisib, cisplatin, cyclophosphamide,

and docetaxel were lower in high-risk patients (Figures 9A–I),

suggesting enhanced sensitivity to these treatments.
Frontiers in Immunology 10
3.9 Validation of the expression of VM-
related genes in the risk model

We confirmed the expression of five genes involved in the

development of the prognostic model using RT-qPCR in four

different types of HNSCC cells and haplotypes. The results

revealed that FMOD and PLAU levels were significantly increased

in HNSCC cells, whereas CKM and DEFB1 levels were significantly

decreased (Figures 10A–E).
FIGURE 6

Risk scoring model and survival analysis results of LASSO regression-based screening of genes. (A) LASSO regression modeling genetic screening; (B)
Forest plot depicting the final five prognostic genes included in the risk model derived from stepAIC regression analysis; (C) Regression coefficients of
VMRGs associated with prognosis in HNSCC; (D, G) KM analysis of TCGA- HNSCC and GSE65858 in the high- and low-risk groups; (E, H) ROC analysis
of TCGA- HNSCC and GSE65858 in the two risk groups; (F, I) Distribution of risk scores and survival times across the TCGA- HNSCC and GSE65858
data in the two risk groups.
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4 Discussion

HNSCC is the sixth most prevalent type of cancer worldwide.

The primary locations of occurrence are the oral cavity, sinus cavity,

pharynx, and larynx. Although survival rates have improved in the

past decade with advancements in medical technology, its incidence

rate continues to increase annually because of difficulties facing

early diagnosis, high recurrence, and poor prognosis of the disease.

By 2030, this number is estimated to increase by 30% (24–26). The

current treatment methods include surgery, radiotherapy, and

chemotherapy. Although these methods have progressed in recent

years, survival rates have not increased significantly (26, 27).

Therefore, improving treatment, prognosis, and the long-term

survival rate remain critical issues to address.

VM is an innovative model of tumor microcirculation. Unlike

traditional angiogenesis in tumors, VM can generate adequate blood

flow for tumor proliferation, independent of endothelial cells (28).
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The presence of VM correlates with high-grade malignant tumors,

strong invasiveness, easy metastasis, and poor prognosis. It is mainly

induced by signaling pathway dysregulation within the TME. The

blood supply helps tumor cells obtain more nutrients and oxygen,

thereby promoting rapid tumor growth and metastasis (11, 29, 30).

In this study, we utilized data sourced from TCGA and GEO,

along with VMRG datasets, to conduct a series of analyses on

patients with HNSCC. Our results revealed that VMRGs showed

significant differences in expression between HNSCC and normal

tissues, and there was a strong correlation between VMRGs.

Evaluation of molecular mutations in VMRGs in HNSCC

revealed that PIK3A and NOTCH1 had the highest mutation

rates, both of which are important factors that promote VM. The

PI3K pathway promotes the formation of VM by activating MMP-

14 andMMP-2 and by processing laminin isoforms (31). The PI3K-

Akt-mTOR pathway is the most frequent oncogenic pathway

involved in HNSCC (32, 33) as well as the most important
FIGURE 7

Nomogram and assessment of its efficacy. (A) Univariate Cox regression analysis; (B) Multifactorial Cox regression analysis; (C) A nomogram
consolidating risk scores, age, and radiation; (D) Survival curves for patients classified into the high- and low-risk categories according to risk score;
(E) ROC curves assessing the effectiveness of risk score models in forecasting 1-, 3-, and 5-year survival rates; (F) Calibration plot for nomogram-
predicted survival probabilities in HNSCC. (G) DCA for the nomogram.
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signaling molecule related to VM, regulating signals related to

angiogenesis, permeability, tube formation, endothelial marker

expression, and vascular development (31). Notch 1 activates the

EMT pathway and forms VM channels in HCC (34).

Further, we used unsupervised clustering to analyze the

expression of VMRGs in the samples and divided the patients

with HNSCC into two groups, A and B, to reveal the different

biological and immune characteristics of VM between the two

groups. VM forms a duct structure in tumor tissues to provide

blood and nutrients to tumor cells, supports tumor growth and

development, and facilitates tumor dissemination by enhancing the

migratory and invasive properties of neoplastic cells (6, 35). GSEA

revealed that Cluster B was primarily associated with drug

metabolism and DNA replication-related pathways, whereas

Cluster A focused on proteoglycans and the actin cytoskeleton in
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cancer. These results indicate that VM, as a new TME model, may

also affect the remodeling and proliferation of tumor cells in

HNSCC and is crucial for tumor invasion and metastasis.

Moreover, we analyzed the immune properties of the two

subgroups and found that Cluster B had lower immune and

matrix scores along with increased tumor purity, signifying

reduced immune cell infiltration and a higher proportion of

tumor cells. In Cluster A, higher immune checkpoints were

expressed, indicating that it may be more vulnerable to

immunological escape, as also illustrated by the higher TIDE scores.

Using LASSO and Cox regression analyses, we developed a

prognostic model based on the identified VM-related prognostic

genes. Several VMRGs involved in constructing this model are

crucial for HNSCC progression. In the TME, PLAU can degrade

and remodel the ECM by binding to uPAR, converting
FIGURE 8

Analysis of the TME and immune-related genes based on risk scores. (A) Comparison of immune cell composition within the TME between the high-
and low-risk groups; (B) Correlation analysis of immune cells with PLAU, FMOD, DEFB1, CKM and CALML5 expression; (C) Single-cell transcriptomic
clustering of immune cell populations in HNSCC (GSE139324). (D, E) Expression patterns of VMRGs across immune cell types in single-cell
transcriptomic data (GSE139324); (F) Comparison of TIDE scores between the high- and low-risk patient groups; (G1-4) Differential expression of
immune-related genes between the high- and low-risk HNSCC groups. *p<0.05, **p<0.01,***p<0.001,****p<0.0001.
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FIGURE 9

Immunotherapy and drug sensitivity analysis. (A) AZD2014; (B) Buparlisib; (C) Cisplatin; (D) Cyclophosphamide; (E) Dactolisib; (F, G) Docetaxel; (H)
Paclitaxel; (I) Fludarabine.
FIGURE 10

Experimental verification of the expression of the five model genes in HNSCC. (A) Relative DEFB1 mRNA level (B) Relative CKM mRNA level (C) Relative
FMOD mRNA level (D) Relative PLAU mRNA level (E) Relative CALML5 mRNA level. (*p<0.05, **p<0.01,***p<0.001,****p<0.0001, ns: no significance).
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plasminogen, and activating MMP-related genes (36–38), creating

favorable conditions for VM formation. Currently, PLAU

upregulation is associated with unfavorable outcomes in HNSCC

(36). FMOD regulates the formation of collagen fibers by

interacting with extracellular matrix components such as collagen,

thereby changing the TME and facilitating VM development (39,

40). Additionally, it promotes tumor cell proliferation and

migration and enhances its stem cell-like properties by regulating

growth factor signals, such as TGF-b, which further promotes the

occurrence of VM (39, 41). Clinical studies have shown that high

FMOD expression is closely related to tumor mortality, metastasis,

and adverse events, and its expression level can be used as a

potential biomarker for the risk of metastasis and immune escape

ability in patients with cancer (42, 43). EMT significantly

contributes to VM development in tumor cells and facilitates

tumor invasion and metastasis via several pathways (44). VE-

cadherin, a biomarker of VM, is essential for the development of

VM (44, 45). Snai1 and Slug disrupt cell-cell adhesion by inhibiting

E-cadherin transcription, thereby regulating EMT, whereas reactive

oxygen species activate Snai1 to promote cancer progression (46).

Most solid tumor cells exist in hypoxic environments, and hypoxia

is a critical factor in VM development (47). CKM, an enzyme

present in the mitochondrial membrane space, can produce ATP by

catalyzing the decomposition of PCr. This process may help tumor

cells adapt to hypoxic conditions and promote tumor growth by

affecting the acidity and hypoxia of the TME (48). Recent research

has indicated that DEFB1 participates in the RTK/PI3K/AKT/

mTOR pathway, potentially influencing the adaptability and

invasion of tumor cells within the TME. Its inhibitor can induce

defb1 expression, thereby enhancing the antitumor effect,

suggesting that the upregulation of its expression may be

associated with better survival prognosis (49). Based on the

nomogram prognostic model, we divided patients into VMRG

high- and low-risk groups. The TIDE scores of patients in the

high-risk group were significantly higher than those of patients in

the low-risk group, suggesting a higher risk of immune evasion and

worse responsiveness to immunotherapy. Meanwhile, the survival

analysis results also showed that the OS of the low-risk group was

significantly better than that of the high-risk group. These results

support VMRG as a reliable prognostic indicator and provide a new

potential target for the treatment of HNSCC. In clinical practice,

patients can also be stratified by using this model combined with the

TIDE score: immunotherapy is given priority for patients in the

VMRG low-risk group, while other treatment strategies can be

explored for patients in the high-risk group to improve the

effectiveness and individualization of treatment, thereby

improving patient prognosis.

Immunotherapy has become an important treatment option for

HNSCC, particularly for metastatic and recurrent HNSCC (50, 51).

In this study, we evaluated the response of two risk groups to
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immunotherapy and found that the high-risk group (based on

VMRG expression) was more sensitive to drugs such as

buparlisib, cisplatin, dactolisib, and docetaxel, suggesting that

these chemotherapy drugs may be more effective for these

patients. Cisplatin is a chemotherapeutic agent frequently used

for HNSCC treatment (52). It mainly forms DNA adducts that

interfere with cell cycle arrest, while apoptosis is induced by

transcription and DNA replication (53–55). Cisplatin can act

synergistically with PD-1/PD-L1 inhibitors to enhance anti-tumor

effects (56). However, its clinical use is often limited by challenges

such as drug resistance, nephrotoxicity, ototoxicity, and neuropathy

(57). Docetaxel has shown good efficacy as a radiosensitizer in

HNSCC. A phase III clinical trial revealed that the combination of

docetaxel with radiotherapy can improve disease-free survival and

OS in patients with locally advanced HNSCC who are not suited for

cisplatin treatment (58). Additionally, PI3K/AKT/mTOR is the

most commonly mutated pathway in HNSCC (59). Various PI3K

inhibitors, such as buparlisib, BYL-719, and alpelisib, have been

studied in HNSCC clinical trials. Although the efficacy of the

individual drugs is limited, their combination with chemotherapy

or radiotherapy has shown therapeutic potential (60–62). Despite

recent advancements in immunotherapy, further research is

necessary to precisely target chemotherapeutic medications and

enhance patient prognosis.

However, this study had certain limitations. We only used a

single database to establish the nomogram prediction model, which

lacks external validation and may limit its clinical application value.

Therefore, in the future, multi-center databases and prospective

clinical data should be evaluated to verify the robustness and

accuracy of the model, in order to utilize its strong clinical

application value. Second, there is currently a dearth of research

on the mechanisms of action of the genes included in our HNSCC

model and how these genes influence tumor growth, metastasis, and

prognosis. In the future, we will conduct additional investigations to

explore the correlation between the genes incorporated into the

model and VM, as well as the influence of these genes on the onset

and progression of HNSCC.

In summary, we examined the mechanism of action of VMRGs

in HNSCC. Additionally, we constructed a prognostic model that

highlights the potential of VMRGs as prognostic markers and

potential therapeutic targets for HNSCC. However, the

association between the genes incorporated into the model and

HNSCC requires further investigation.
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