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The cancer genomic instability drives the generation of neoantigens, making

them ideal targets for immunotherapy. Neoantigen-specific tumor-infiltrating

lymphocytes achieve precise tumor cell killing by recognizing neoantigens on

the tumor surface, but their efficacy is limited by complex physical barriers within

the tumor microenvironment. These barriers not only directly impede TIL

migration and infiltration but also synergize with immunosuppressive signals to

weaken antitumor immune responses. The tumor extracellular matrix forms a

dense fibrous network due to enhanced collagen crosslinking, pathological

hyaluronic acid deposition, and increased stiffness, hindering TIL mobility.

Aberrant tumor vasculature, characterized by hyperpermeability and elevated

interstitial fluid pressure, collaborates with pro-fibrotic factors, such as VEGF,

TGF-b secreted by cancer-associated fibroblasts and regulatory T cells to create

mechanical compression barriers. This review systematically explores the

composition, molecular mechanisms, and therapeutic strategies targeting

these physical barriers, providing novel insights for neoantigen-based

therapies. Future efforts should integrate biomechanical interventions with

immunotherapy, elucidate the interplay between mechanical signaling and

immunometabolism, and optimize multi-target combinatorial approaches to

enhance the clinical translation potential of neoantigen therapies.
KEYWORDS

neoantigen, tumor-infiltrating lymphocytes, extracellular matrix, interstitial fluid
pressure, cancer-associated fibroblasts
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2025.1614228/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1614228/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1614228/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1614228/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1614228/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2025.1614228&domain=pdf&date_stamp=2025-06-12
mailto:zhangdk8616@126.com
mailto:2846831096@qq.com
https://doi.org/10.3389/fimmu.2025.1614228
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2025.1614228
https://www.frontiersin.org/journals/immunology


Chen et al. 10.3389/fimmu.2025.1614228
1 Introduction

Cancer is a leading cause of death worldwide. The genetic

instability of tumor cells not only correlates with metastasis,

therapy resistance, and immune evasion, but also accelerates

tumor evolution through the accumulation of mutations. This

process enhances the genetic diversity of tumor cells, ultimately

resulting in the formation of highly heterogeneous cell populations

(1, 2). It is noteworthy that the genetic instability of tumor cells can

also lead to a high burden of mutations. Proteins or peptide

sequences derived from nonsynonymous mutations, which are

exploited in cancer therapy, are termed neoantigens (3).

Neoantigens are antigens derived from mutated proteins and can

also be generated through mechanisms such as viral infection,

alternative splicing, and gene rearrangement. These antigens are

predominantly overexpressed in tumor cells, exhibiting high

immunogenicity and significant tumor heterogeneity (4).

Neoantigen vaccines have demonstrated significant efficacy in

clinical trials for cancer treatment. Tumor neoantigens serve as

ideal targets for lymphocyte recognition, and their application can

stimulate robust anti-tumor immune responses by promoting the

generation of tumor-infiltrating lymphocytes (TILs) (4).

Current systemic therapeutic approaches for cancer include

chemotherapy, hormone therapy, targeted therapy, and

immunotherapy. Patients with higher levels of TILs generally

demonstrate improved therapeutic efficacy and prognosis with

these treatments (5). Beyond their role as prognostic biomarkers,

the presence of TILs has also been shown to predict sensitivity to

immunotherapy, chemotherapy, and other targeted therapies (6, 7).

In therapeutic applications, TIL-based therapy represents a cutting-

edge approach in personalized cancer treatment. The TIL therapy

protocol—involving surgical resection of tumor specimens,

isolation of infiltrating lymphocytes, ex vivo expansion, and

reinfusion into patients—has demonstrated promising clinical

outcomes in solid malignancies such as melanoma and cervical

cancer (8, 9).

Neoantigen-specific TILs have garnered significant attention in

cancer immunotherapy. The “neoantigen-targeting specificity” refers

to the ability of these TILs to directly recognize neoantigens presented

on tumor cell surfaces, enabling precise tumor cell elimination while

minimizing off-target damage to healthy tissues (10). Neoantigen-

specific TILs mediate anti-tumor immune responses through four

critical steps: (1) neoantigen generation and presentation, (2) T-cell

activation and clonal expansion, (3) T-cell trafficking to tumor sites,

and (4) target recognition and tumor cell killing (11–14). However, the

efficacy of such therapies is highly dependent on the immune status of

the tumor microenvironment (TME). Based on immune cell

infiltration patterns, tumors can be classified into three major

phenotypes: immune-desert phenotype, immune-excluded

phenotype, and inflamed phenotype (2). Clinically termed “cold

tumors,” those with low or absent lymphocyte infiltration often

exhibit resistance to neoantigen-based immunotherapies (15). The

cytotoxic function of neoantigen-specific TILs is further constrained

by the profoundly immunosuppressive nature of the TME. The

therapeutic potential of neoantigen-specific TILs is impeded not
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only by classical immunosuppressive factors—such as infiltration of

immunosuppressive cells (e.g., regulatory T cells, myeloid-derived

suppressor cells) and accumulation of inhibitory metabolites (e.g.,

adenosine, lactate)—as highlighted in traditional immunotherapy

research (16), but also by physical barriers encountered during TIL

activation, migration, and infiltration. These biophysical constraints

severely restrict cellular metabolism and functional execution.

In this review, we systematically analyze the physical barriers

confronting neoantigen-specific TILs in cancer immunotherapy and

discuss potential strategies to overcome these limitations, thereby

providing a theoretical framework for enhancing the therapeutic

efficacy of neoantigen-specific TIL-based immunotherapies.
2 Components of physical barriers of
neoantigen-specific lymphocytes

2.1 Tumor extracellular matrix

2.1.1 Pathological remodeling features of
extracellular matrix

The extracellular matrix (ECM) is a highly dynamic structure

continuously remodeled through cellular activities such as synthesis,

degradation, reorganization, and chemical modification (17). At the

molecular level, the core components of ECM include structural

proteins (e.g., collagen, elastin), adhesive proteins (e.g., fibronectin,

laminin), polysaccharides (e.g., hyaluronic acid, heparan sulfate

proteoglycans), and matrix-remodeling enzymes (e.g., matrix

metalloproteinases, lysyl oxidases) (18). Structurally, the ECM

primarily comprises the basement membrane, fibrous networks, and

hydrated gel-like matrices (19–21). These components collectively

form a three-dimensional microenvironment that provides essential

biomechanical support and biochemical signaling to maintain tissue

architecture and function. The tumor ECM is a critical component of

the TME and plays a pivotal role in tumor initiation, progression,

metastasis, and therapeutic resistance (22). Compared to normal

ECM, the tumor ECM exhibits distinct pathological features,

including fibrosis, enhanced crosslinking, and increased tissue

stiffness (17). These biomechanical alterations in the tumor ECM

represent one of the core physical barriers faced by neoantigen-specific

TILs during antitumor immune responses. The tumor ECM and

fibrotic stroma form structural physical barriers, leading to the

entrapment of TILs in the peritumoral or interstitial regions,

resulting in an immune-excluded phenotype (23). The impaired

migration of neoantigen-specific TILs and their inability to infiltrate

tumor tissues constitute major obstacles to therapies based on

neoantigen-specific TILs.

2.1.2 Barrier mechanisms of key ECM
components

Collagen, a major component of the tumor ECM, forms a dense

mesh-like structure that provides physical support to tumors. The

activity of neoantigen-specific TILs against tumor cells is influenced

by the arrangement and density of collagen within the ECM.

Physically, moderate collagen fiber alignment facilitates TIL
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migration, whereas dense collagen networks formed by high

collagen density reduce the motility of neoantigen-specific TILs

and impede T-cell infiltration into the tumor core (24, 25). Gene

families involved in collagen post-translational modification,

crosslinking, and degradation regulate its physicochemical and

immune properties. Lysyl oxidase (LOX) family proteins catalyze

the conversion of lysine residues in collagen and elastin precursors

into highly reactive aldehyde groups, triggering crosslinking and

stabilization of ECM proteins (e.g., type I collagen and elastin) and

modulating cell adhesion, migration, and invasion (17).

Overexpression of LOX, a collagen crosslinking enzyme, increases

matrix stiffness, which is critical for maintaining tissue mechanical

strength and regulating matrix rigidity, and is closely associated

with T-cell exhaustion (24, 26).

Hyaluronic acid (HA), a key component of the tumor ECM,

dynamically regulates the TME through a synthesis-degradation

balance. Beyond its inherent properties, HA molecular weight plays

a pivotal role in cancer progression. High-molecular-weight HA

(HMW-HA) exhibits anti-angiogenic, anti-inflammatory, and

immunosuppressive effects but may promote matrix stiffening in

certain contexts (e.g., pancreatic cancer). Low-molecular-weight

HA (LMW-HA) is linked to inflammation, angiogenesis, and

tumor progression (27). The specific roles of HA molecular

weight require further investigation. HA itself forms a physical

barrier that hinders TIL infiltration and reduces the efficacy of

neoantigen-based therapies. Cancer-associated fibroblasts (CAFs)

secrete HA to remodel the ECM, while HA reciprocally regulates

fibroblast proliferation, directly creating a physical barrier that

impedes neoantigen-specific TIL activity. Despite the barrier effect

of HA, its dual biological roles in cancer therapy must be

acknowledged. Therapeutic strategies targeting HA demand

deeper exploration, integrating molecular weight specificity,

tumor type, and microenvironment characteristics to optimize

HA-targeted drug applications.

During tumor progression, the normal ECM is degraded and

replaced by tumor-specific ECM. Tumor-driven ECM remodeling

involves mechanical forces exerted by tumor cells, leading to

nonlinear stiffening and plastic deformation of the ECM, which

significantly alters its microstructure. Tumor cells and CAFs also

secrete matrix metalloproteinases (MMPs) to degrade the ECM,

compromising its structural integrity (28). Consequently, the

remodeled tumor ECM exhibits higher density and stiffness due

to abnormal deposition of collagen, HA, and other components.

This dense and rigid ECM acts as a mechanical barrier to

neoantigen-specific TILs (24). Fibrotic regions of the tumor ECM

create a compact and stiff microenvironment that restricts the

infiltration and migration of neoantigen-specific TILs (29).

The abnormal deposition of tumor ECM influences neoantigen-

specific TILs behavior and function through multiple mechanisms.

Notably, while the rigid fibrotic ECM directly impedes TIL

infiltration into the tumor core, it also synergizes with

biochemical signals to suppress TIL activity. Studies indicate that

Osr2 is specifically upregulated in CD8+ T cells within high-

stiffness ECM regions of the tumor microenvironment. Its

expression depends on the synergistic effects of TCR signaling
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and mechanical stress from the tumor ECM. High-stiffness ECM

activates the mechanosensitive ion channel Piezo1, triggering Ca²+

influx, activating the CaMKII/CREB signaling pathway, inducing

Osr2 expression, and driving T-cell exhaustion. Inhibiting Osr2

may reverse T-cell exhaustion and enhance the efficacy of

neoantigen-specific TILs against tumors (30). Therefore,

combined therapeutic strategies targeting both the physical ECM

barrier and biochemical signaling pathways may improve

neoantigen-specific TIL functionality and enhance the

effectiveness of tumor neoantigen therapies (Figure 1).
2.2 Abnormal tumor angiogenesis

2.2.1 Structural and functional abnormalities of
tumor vasculature

The structural and functional abnormalities of the tumor

vascular system are critical factors limiting the efficacy of

neoantigen-specific TILs. Normal vasculature exhibits a

hierarchical structure, branching from large veins or arteries into

smaller capillary networks interconnected by delicate micro vessels

to ensure efficient nutrient and oxygen exchange. In contrast, tumor

vasculature is characterized by structural and functional defects.

Structurally, tumor vessels display irregular luminal diameters,

tortuous and blind-ended shapes, and heterogeneous density (31,

32). These vessels are composed of endothelial cells, mural cells

(e.g., pericytes), and a surrounding basement membrane (33).

However, endothelial cells are loosely arranged with reduced

intercellular junctions, and the basement membrane is

fragmented and poorly connected to endothelial cells and

pericytes (34). These structural defects result in high endothelial

proliferation, hyperpermeability, chaotic blood flow, loss of

hierarchical organization, and insufficient pericyte coverage (35,

36), all of which directly impede the penetration of neoantigen-

specific TILs through the vascular wall.

2.2.2 Molecular mechanisms of angiogenic
imbalance

At the molecular level, angiogenesis is regulated by a dynamic

balance between pro-angiogenic factors and endogenous

angiogenesis inhibitors (37). VEGF, particularly VEGF-A, is a key

regulator of tumor angiogenesis, driving both physiological and

pathological vascular growth (38). Beyond endothelial cells,

multiple cell types in the tumor microenvironment, including

endothelial progenitor cells, lymphatic endothelial cells, pericytes,

and vascular smooth muscle cells, respond to VEGF signaling (37).

The canonical VEGF pathway involves VEGF binding to VEGFR-2,

activating downstream PI3K-AKT, MAPK/ERK, and NF-kB
pathways to induce endothelial cell proliferation, migration, and

lumen formation. Overproduction of VEGF increases vascular

permeability, leading to plasma protein leakage and elevated IFP,

which hinders the migration of neoantigen-specific TILs (39).

Fibroblast growth factor (FGF), another well-known angiogenic

factor stored in the vascular basement membrane, also contributes

to vascular development and progression via its signaling pathways
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(40). Fibroblast growth factor-2 (FGF-2), a member of the FGF

family (also known as basic FGF), exhibits potent angiogenic

activity comparable to VEGF-A (38).

2.2.3 Synergistic role of tumor ECM component
HA in vascular abnormalities

HA, a key tumor ECM component discussed earlier, promotes

tumor angiogenesis through multiple mechanisms. HA

accumulation in tumors enhances the recruitment of monocytes

and macrophages, which secrete pro-angiogenic factors like VEGF

to directly stimulate neovascularization. Increased hyaluronidase

(HYAL) activity and reactive oxygen species (ROS) production in

tumors degrade high-molecular-weight HA (HMW-HA) into low-

molecular-weight HA (LMW-HA). LMW-HA fragments activate

specific HA-binding proteins (e.g., RHAMM), inducing endothelial

cell actin cytoskeleton reorganization and disrupting intercellular

junctions (e.g., VE-cadherin). This reduces vascular integrity,

allowing leaky vessels to release pro-angiogenic signals, forming a

positive feedback loop that accelerates tumor angiogenesis (41).
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2.2.4 Synergistic effects of multiple barriers
Beyond directly forming a vascular barrier that hinders

neoantigen-specific TIL penetration, abnormal tumor vasculature

interacts with the tumor ECM to create a combined physical barrier,

further limiting TIL infiltration into tumors (42). Additionally, the

hyperpermeability of tumor vessels elevates interstitial fluid

pressure, generating a compressive physical barrier that restricts

the mobility and efficacy of neoantigen-specific TILs, thereby

constraining therapeutic outcomes (43, 44).
2.3 Elevated interstitial fluid pressure

Elevated Interstitial Fluid Pressure (IFP) in the TME is a critical

physical barrier that impedes the infiltration and function of

neoantigen-specific TILs. High IFP results from multiple mechanisms,

including vascular leakage and dysfunctional lymphatic drainage. First,

the abnormal tumor vasculature described earlier exhibits

hyperpermeability and leakage, allowing plasma proteins and fluid to
FIGURE 1

Physical barrier mechanisms of neoantigen-specific TILs. Neoantigen-specific TILs encounter three core physical barriers during activation,
migration, and infiltration: abnormal ECM, dysregulated tumor vasculature, and elevated IFP. The tumor ECM forms a dense three-dimensional
network due to fibrosis, increased crosslinking density, and elevated tissue stiffness. Tumor vasculature exhibits uneven luminal diameters, distorted
morphology (e.g., blind-end structures), loosely arranged endothelial cells, and abnormal connections between the basement membrane and
pericytes. High IFP results from the synergistic effects of abnormal vascular leakage, impaired lymphatic drainage, and excessive ECM deposition.
Abbreviation: TILs: tumor-infiltrating lymphocytes, ECM: extracellular matrix, IFP: interstitial fluid pressure.
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extravasate into the interstitium. This increases interstitial fluid volume,

elevates IFP, and creates a mechanical barrier that hinders neoantigen-

specific TIL infiltration (45, 46). Notably, this pressure environment

interacts bidirectionally with the vascular system: aberrant tumor

vasculature contributes to IFP, while IFP conversely compresses blood

vessels, limiting the extravasation of neoantigen-specific TILs into

tumor tissue (47). Second, discontinuous basement membranes and a

lack of pericyte coverage in tumor lymphatic vessels result in high

permeability and low shear stress, leading to dysfunctional lymphatic

drainage and elevated IFP (48, 49). The interplay between lymphatic

dysfunction and vascular leakage forms a vicious cycle, causing

persistent interstitial fluid accumulation and progressive IFP elevation,

which physically compresses and restricts TIL infiltration (50). Excessive

ECMdeposition further restricts interstitial fluid flow, exacerbating fluid

accumulation within the tumor (51). The role of HA in contributing to

IFP remains debated. Local injection of hyaluronidase into

osteosarcoma xenografts has been shown to reduce IFP, whereas

forced overexpression of HA in thyroid and colon cancer xenografts

does not increase IFP (52–54). Beyond its physical compressive effects,

elevated IFP promotes interstitial fluid flow, exposing neoantigen-

specific TILs to shear stress. Shear stress significantly impacts the

biological behavior of TILs in multiple ways, including activating

CAFs, influencing tumor angiogenesis and lymphangiogenesis, and

inducing matrix metalloproteinase (MMP) activation. These effects

are primarily mediated by mechanosignal transduction through focal

adhesions, glycocalyx, cell-cell junctions, ion channels, and Notch

receptors. Such mechanical signaling can upregulate transforming

growth factor-b (TGF-b) expression and activate the YAP/TAZ

pathway (51). Under the combined regulation of these factors, ECM

remodeling and abnormal vasculature formation are induced, ultimately

leading to impaired TIL infiltration and functional suppression.
2.4 Functional roles of key cellular
components

2.4.1 Fibroblasts
Fibroblasts regulate the structure and function of normal tissues

by synthesizing the ECM and facilitating tissue repair. CAFs are

perpetually activated fibroblasts within the tumor microenvironment.

As key players in shaping the biophysical properties of the tumor

microenvironment, CAFs deposit abundant ECM fibers (including

collagen) and crosslinking enzymes such as LOX, leading to increased

matrix stiffness and fibrous reorganization. These processes create a

compact physical barrier that impedes the activity of neoantigen-

specific TILs (55). Fibroblasts are the primary source of collagen and

are responsible for organizing and aligning collagen fibers (56). In a

TGF-b-dependentmanner, CAFs not only influence ECM remodeling

but also contribute to HA production, which participates in ECM

remodeling by generating high IFP (57). Fibroblast activation protein

(FAP), a specific marker of CAFs, exhibits unique endopeptidase and

exopeptidase activities by cleaving after proline residues. FAP

processes ECM proteins to promote tissue remodeling and activates
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growth factors and cytokines, including TGF-b, thereby enhancing

fibroblast activation and immune suppression (58). Overexpression of

FAP may lead to ECM fragment accumulation and the formation of

dense, disorganized fibrous networks. Additionally, FAP synergizes

with the TGF-b/Smad pathway to further amplify CAF activation and

ECM synthesis (59). Increased CAF abundance and overexpression of

growth factors such as platelet-derived growth factor (PDGF), TGF-b,
and fibroblast growth factor 2 (FGF2) are closely associated with

tumor angiogenesis and ECM remodeling (60).

2.4.2 Regulatory T cells
Regulatory T cells (Tregs) are a subset of CD4+ T cells with

immunosuppressive properties (61). While direct physical barrier

mechanisms of Tregs against neoantigen-specific TILs are less

studied, previous research has focused on their immunosuppressive

functions, such as secreting immunomodulatory cytokines and

cytotoxic molecules to suppress TIL activity or modulating antigen-

presenting cell function (62, 63). However, the physical obstruction of

neoantigen-specific TIL infiltration and function by Tregs should not

be overlooked. First, Tregs accumulate densely in tumor tissues,

forming high-density zones that physically occupy space and restrict

the migration of neoantigen-specific TILs toward the tumor core (64).

Second, Tregs promote physical barrier formation by triggeringmatrix

remodeling and abnormal tumor vasculogenesis through multiple

mechanisms: Treg-secreted TGF-b induces CAF differentiation,

driving collagen crosslinking and fibrin deposition to form dense

ECM that hinders neoantigen-specific TIL migration (65); Tregs also

secrete VEGF-A and IL-10 to promote immature, leaky vasculature,

which impedes effector cell infiltration (66). Furthermore, collagen can

upregulate Treg markers such as FoxP3, enhancing Treg

differentiation and thereby reinforcing both physical and immune

barriers against neoantigen-specific TILs (24).
2.5 Dual regulatory role of tumor cell-cell
junctions

Cell-cell junctions are crucial structures for maintaining tissue

architecture and function. The main types of cell-cell junctions

include tight junctions, gap junctions, and adherens junctions. The

role of tumor cell-cell junctions in neoantigen-specific TILs is

complex, and their intricate regulatory mechanisms determine

their “double-edged sword” characteristics in tumors. Tight

junctions are primarily composed of transmembrane proteins

(e.g., claudins, occludin) and cytoplasmic scaffold proteins (e.g.,

ZO-1, cingulin), which maintain endothelial barrier integrity, form

selective barriers, and regulate permeability (67, 68). In the tumor

microenvironment, tumor cells secrete factors such as VEGF, TGF-

b1, and ANGPTL4 to downregulate claudin-5 and ZO-1, thereby

weakening the endothelial barrier (69). However, abnormally

enlarged gaps between tumor vascular endothelial cells may allow

macromolecules like plasma proteins to enter the interstitium,

further increasing IFP (70). This mechanism may impair the
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ability of neoantigen-specific TILs to reach tumor sites and exert

their effects. Gap junctions, formed by connexin family proteins

(Cx37, Cx40, Cx43), regulate intercellular communication,

permeability, and coordinated cellular activities. Wang et al.

found that Cx43 suppresses VEGF expression in tumor cells,

reducing tumor angiogenesis (71). Elizabeth McLachlan et al. also

demonstrated that connexin overexpression modulates multiple

angiogenesis-related proteins, inhibiting tumor angiogenesis (72).

However, beyond these tumor-suppressive effects (e.g., reduced

angiogenesis), their pro-tumorigenic roles in certain contexts

cannot be overlooked. Studies show that Cx43 is upregulated in

hepatocellular carcinoma, enhancing invasiveness and metastasis by

forming gap junctions with endothelial cells (73). Additionally,

during fibroblast-to-cancer-associated fibroblast transformation,

increased gap junction molecule expression strengthens stromal

signal transduction, promoting tumor progression (74). Current

research highlights the paradoxical role of connexins in cancer

development, with their expression linked to both favorable and

poor prognoses (75). Adherens junctions are primarily composed of

E-cadherin, which maintains tissue mechanical strength (69). In

most epithelial-derived malignancies (e.g., breast, gastric, and

colorectal cancers), tumor cells typically exhibit downregulated E-

cadherin expression. This downregulation is closely associated with

tumor invasion, metastasis, and poor prognosis (76–78). E-cadherin

may also directly or indirectly participate in forming physical

barriers for neoantigen-specific TILs through the Hippo-YAP/

TAZ pathway (79). Through dynamic regulation of endothelial

barrier integrity, intercellular communication, and mechanical

signaling, tumor cell-cell junctions exhibit complex dual roles in

the tumor immune microenvironment.
2.6 Chemokine-mediated physical barriers

Chemokines are a family of small chemotactic cytokines that

play a critical role in regulating the tumor microenvironment,

structurally classified into four subfamilies: CXC, CC, XC, and

CX3C (80). Key members of the chemokine family, CXCL9,

CXCL10, and CXCL11, bind to their shared receptor CXCR3 to

regulate immune cell differentiation, directional migration, and

tumor infiltration. The CXCL9/10/11–CXCR3 axis guides

immune cel l chemotaxis toward tumor sites through

concentration gradients (81) and antagonizes VEGF to suppress

tumor angiogenesis (82). Abnormal chemokine secretion in the

tumor microenvironment disrupts these gradients; for example,

CCR2/CCL2 and CXCR2/CXCL1 recruit immunosuppressive cells

such as myeloid-derived suppressor cells, tumor-associated

macrophages , and neutrophi l s , promot ing abnormal

vascularization and physically isolating neoantigen-specific TILs

(80). Additionally, studies reveal that CXCL12 is highly expressed in

high-stromal tumors, while TILs exhibit CXCR4 overexpression.

CXCL12 enrichment in stromal regions traps TILs around the

stroma via CXCL12-CXCR4 interactions, preventing their

infiltration into the tumor core (83).
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3 Key driving mechanisms of physical
barrier formation

3.1 TGF-b/Smad signaling axis-mediated
ECM remodeling

TGF-b, a prototypical multifunctional cytokine, is a critical

regulator of ECM assembly and remodeling. Signaling by TGF-b
family members occurs through type I (TbRI) and type II (TbRII)
receptors (84). TbRI and TbRII are transmembrane serine/

threonine kinases with structural similarities, but the type I

receptor contains a conserved glycine/serine-rich (GS box)

domain upstream of its kinase domain. Ligand binding induces

the assembly of type I and type II receptors into a complex, where

TbRII phosphorylates and activates TbRI (85). Signaling from

activated TbRI to the nucleus is primarily mediated by the

phosphorylation of cytoplasmic protein intermediaries belonging

to the Smad family. Smad proteins exhibit competitive pro-fibrotic

and anti-fibrotic roles and are involved in fibrosis regulation.

Additionally, downstream effectors of the TGF-b/Smad pathway,

such as matrix metalloproteinases (MMPs), tissue inhibitors of

metalloproteinases (TIMPs), and connective tissue growth factor

(CTGF), directly participate in ECM remodeling (86). Excessive

activation of TGF-b signaling can lead to abnormal collagen

deposition and ECM stiffening, directly forming a physical barrier

that impedes TILs infiltration.
3.2 Mechanosignaling via the hippo-YAP/
TAZ pathway

YAP/TAZ, key transcriptional co-activators in the Hippo

signaling pathway, play a significant role in the formation of

physical barriers within the TME, directly affecting the

functionality and infiltration efficiency of neoantigen-specific

TILs. The core downstream effectors of the Hippo pathway are

the transcriptional co-activators YAP and its paralog TAZ. When

the Hippo pathway is activated, YAP/TAZ are phosphorylated and

retained in the cytoplasm or degraded. Unphosphorylated YAP/

TAZ translocate to the nucleus, where they bind transcription

factors such as TEAD to activate target genes. The Hippo-YAP/

TAZ pathway acts as a sensor for the mechanical properties of the

extracellular environment, regulated by external cues and stimuli

(87). YAP, a potent tumor promoter, is commonly activated during

tumor progression. ECM stiffness, cell-cell contact, and fluid shear

stress influence YAP/TAZ nuclear localization through Hippo

pathway activation or inactivation (88). YAP is critical in

converting quiescent fibroblasts into activated fibroblasts across

normal and malignant tissues, thereby increasing tumor ECM

stiffness (89). Studies show that YAP is highly expressed in Tregs

(90). In hepatocellular carcinoma, YAP promotes the differentiation

of naïve T cells into Tregs by directly upregulating TbRII expression
(91). YAP and TAZ activation in cancer cells also enhances the

expression of pro-angiogenic factors like VEGF, driving
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neovascularization (89). The E-cadherin-mediated cell adhesion

enhances LATS1/2-mediated phosphorylation of YAP/TAZ,

promoting their retention in the cytoplasm and suppressing

nuclear transcriptional activity. The loss of E-cadherin leads to

Hippo pathway inactivation, thereby facilitating the formation of

physical barriers (79). These findings illustrate how the Hippo-

YAP/TAZ pathway integrates physical signals (e.g., ECM stiffness,

fluid shear stress) to influence neoantigen-specific TILs through

direct and indirect mechanisms.
3.3 PDGF/PDGFR pathway-driven stromal
remodeling

PDGF ligands and their receptors, PDGFRa and PDGFRb, play
pivotal roles in regulating biological functions such as cell growth,

survival, and migration. PDGF-PDGFR interaction induces

receptor dimerization and tyrosine phosphorylation, triggering

intracellular signaling cascades. The PDGF signaling network

comprises four ligands—PDGF-A, PDGF-B, PDGF-C, and

PDGF-D—that interact with PDGFRa and PDGFRb (92).

PDGFRa/b drives tumor growth by activating downstream pro-

survival pathways like PI3K-AKT and MEK-ERK (93).

Additionally, PDGF is a key mediator of cancer-associated

stromal fibroblast (CAF) proliferation (94). PDGF activates CAFs

via PDGFR binding, inducing the secretion of ECM components

such as collagen (types I and III) and fibronectin (95). Studies

demonstrate that inhibiting PDGFR signaling in CAFs reduces their

replicative capacity and ECM deposition (55). Using a 3D

microengineered organotypic tumor-stroma model, Harpinder

Saini et al. confirmed that suppressing PDGFR activity in CAFs

decreases tumor ECM stiffness (55). Thus, targeting the PDGF/

PDGFR pathway may not only weaken physical barriers but also

enhance TIL infiltration efficiency by improving TME mechanical

properties, and facilitating neoantigen-specific TIL activity.

The signaling pathways driving physical barrier formation do

not act in isolation but collaborate to form an interactive regulatory

network. TGF-b directly remodels the ECM via Smad signaling

while synergizing with YAP/TAZ to respond to mechanical stress.

PDGF-driven CAF activation amplifies abnormal ECM deposition,

and YAP-mediated Treg differentiation reinforces barrier effects

through immune suppression and physical obstruction. This

multidimensional regulation results in a composite TME barrier

characterized by both physical resistance and immunosuppression,

ultimately hindering the efficacy of neoantigen-specific

TILs (Figure 2).
4 Therapeutic strategies targeting
physical barriers

Physical barriers not only act as spatial obstacles to the

infiltration of neoantigen-specific TILs but also serve as

biomechanical signaling sources driving immunosuppression. The

presence of these barriers highlights the limited efficacy of single-
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agent immunotherapy, necessitating combination with other

therapies. Multiscale mechanical interventions can establish a

“barrier-breaking” therapeutic system for neoantigen-based

therapies by dismantling physical barriers, thereby promoting the

migration, infiltration, and functional activity of neoantigen-

specific TILs into the tumor core (Table 1).
4.1 LOX inhibitors

Tumor stiffness is associated with the structure of the ECM.

High-stiffness tumors exhibit dense, linearized collagen fibers that

form physical barriers, whereas softer tumors have looser collagen

fibers and enhanced T-cell migratory capacity (24). LOX-mediated

collagen crosslinking is a key mediator of increased tumor stromal

stiffness and a driver of metastatic tumor growth. The LOX

inhibitor b-aminopropionitrile (BAPN) suppresses LOX

enzymatic activity, blocks collagen crosslinking, reverses tumor

ECM stiffness, and reduces collagen fiber thickness, linearization,

and density. Studies in breast cancer demonstrate that inhibiting

LOX and blocking TGF-b reduce collagen network stiffness and

density in mammary tissue, suggesting this network as a potential

therapeutic target (108). LOX inhibition not only improves

neoantigen-specific T-cell migration and infiltration but also

enhances drug penetration in anticancer therapies (96).
4.2 Collagen suppression

A novel study proposed that membrane-anchored, tumor-

targeted IL-12 T cells (attIL12-T) trigger IFNg release by binding

to CSV, inhibit TGF-b signaling, upregulate FAS expression on

CAFs, and activate the caspase-3/PARP apoptosis pathway. This

leads to loss of collagen contractility, loosened ECM structure, and

opening of T-cell infiltration channels (97). By anchoring IL-12 to

T-cell membranes, attIL12-T minimizes systemic toxicity while

achieving localized immune activation via CSV-mediated tumor

targeting. Combining this therapy with neoantigen immunotherapy

may enhance efficacy in ECM-rich tumors, offering a safe and

effective strategy for solid tumor treatment.
4.3 YAP/TAZ inhibitors

Combined use of YAP/TAZ inhibitors may disrupt physical

barriers and amplify antitumor immune responses. Current

strategies focus on inducing YAP/TAZ protein degradation,

interfering with YAP/TAZ-TEAD transcription factor binding,

blocking YAP/TAZ nuclear localization, or targeting upstream

regulatory pathways. First-generation YAP/TAZ inhibitors, such

as verteporfin, aim to block YAP/TAZ-TEAD 1–4 interactions but

exhibit off-target effects on autophagy and TNF signaling (109).

Next-generation TEAD inhibitors competitively bind to the

conserved hydrophobic palmitate-binding pocket of TEAD

proteins, inhibiting palmitoylation and destabilizing the YAP/
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TAZ-TEAD complex. Antisense oligonucleotides (e.g., ION537)

degrade YAP mRNA to disrupt YAP/TAZ-TEAD interactions

(110). YAP/TAZ inhibitors may also suppress CAF activity,

reduce ECM deposition, and improve neoantigen-specific

TIL infiltration.
4.4 Hyaluronic acid degradation

Excessive accumulation of high-molecular-weight hyaluronic

acid (HA) in tumor ECM forms a dense gel-like structure,

increasing IFP and impeding immune cell penetration.

Hyaluronidase-mediated HA degradation reduces tumor ECM

stiffness. PEGylated human hyaluronidase (PEGPH20)

enzymatically depletes intratumoral HA, as shown in preclinical

and clinical studies (111). For example, PEGPH20 enhances

therapeutic efficacy in pancreatic cancer models by degrading HA

(112). HA degradation may reduce ECM stiffness, alleviate

interstitial pressure, and promote neoantigen-specific TIL

migration. However, excessive HA degradation risks releasing

tumor cells and facilitating metastasis. Thus, precise control of

HA degradation is critical to minimize adverse effects and maximize

neoantigen therapy efficacy (113).
4.5 Tumor vasculature normalization

Anti-angiogenic drugs transiently “normalize” tumor

vasculature by “starving” tumors, improving perfusion, reducing

hypoxia, and enabling neoantigen-specific TILs to reach tumor

sites. VEGF stimulates abnormal tumor vasculature, impairing

neoantigen-specific TIL function. The anti-VEGF monoclonal

antibody bevacizumab binds VEGFA, blocking its interaction

with VEGFR-2 on endothelial cells, progenitor cells, and
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megakaryocytes. Bevacizumab also suppresses Treg proliferation

in metastatic colorectal cancer patients (114). Anti-VEGF

monotherapy may transiently normalize the vasculature and

improve neoantigen-specific TIL infiltration, but prolonged use

risks exacerbating hypoxia. Bevacizumab also faces challenges

such as drug resistance, toxicity, and the potential for short-term

treatment to enhance tumor aggressiveness. Therefore, identifying

strategies to overcome anti-VEGF resistance is critical. The

angiopoietin family (Angiopoietins) includes Ang1 and Ang2.

Ang1, secreted by pericytes, maintains vascular integrity by

activating the Tie2 receptor, stabilizing vascular structure (115).

Ang2, stored in Weibel-Palade bodies by endothelial cells, promotes

vascular destabilization and neovascularization (116). Endothelial

cell responsiveness to Ang1 depends on the relative levels of its

receptor Tie2 and the inhibitory co-receptor Tie1. Tie1 interacts

with Tie2 on the cell surface, suppressing Ang1-Tie2 signaling.

Regulated cleavage of Tie1—activated by VEGF, inflammatory

factors, and shear stress—relieves inhibition of Tie2, enhancing

Ang1 signaling (117). The Angiopoietin-Tie pathway plays a pivotal

role in tumor angiogenesis by regulating vascular stability,

remodeling, and microenvironment interactions. AMG-386

inhibits angiogenesis by blocking Ang1/2 binding to Tie2.

Combining angiopoietin inhibitors, particularly Ang2-targeted

agents, with VEGF inhibitors effectively addresses resistance to

single-target therapies (107, 116). By suppressing the tumor

vascular barrier’ s impact on neoantigen-specific TILs, this

approach further optimizes the clinical efficacy of neoantigen-

based therapies.
4.6 Other therapeutic strategies

Therapeutic strategies targeting other ECM components, such as

fibronectin and laminin, primarily focus on inhibiting their abnormal
TABLE 1 Classification of therapeutic strategies targeting physical barriers.

Therapeutic
strategy

Mechanism of action
Representative

agents/
technologies

Key
targets

Advantages Challenges

Inhibition
of Crosslinking

Block LOX family-mediated
collagen crosslinking

b-aminopropionitrile
(BAPN) (96)

LOX
Reverses matrix stiffness,

improves TIL infiltration and
drug penetration

Systemic toxicity

Collagen
Suppression

Inhibit TGFb signaling via attIL12-T,
induce CAF apoptosis, reduce

collagen deposition
attIL12-T (97)

TGFb/FAS/
caspase-3

Localized immune activation,
ECM loosening

Long-term safety
requires validation

YAP/
TAZ Inhibition

Degrade YAP/TAZ proteins, disrupt
YAP/TAZ-TEAD interaction, block

nuclear localization

Verteporfin (98, 99),
ION537 (100, 101)

YAP/TAZ-
TEAD
pathway

Suppresses CAF activity,
reduces ECM deposition

Off-target effects (e.g.,
interference with autophagy)

Hyaluronic
Acid Degradation

Degrade excessively deposited
hyaluronic acid (HA) in ECM

PEGPH20 (102, 103)
Hyaluronic
Acid (HA)

Rapidly improves
TIL infiltration

May accelerate metastasis and
tumor cell spread

Anti-
VEGF Therapy

Normalize vascular permeability
and perfusion

Bevacizumab (104) VEGF-A Enhances drug delivery
Resistance, toxicity, and short-
term treatment may increase

tumor invasiveness

Angiopoietin
Modulation

Stabilize vascular
endothelial junctions

Trebananib, AMG-
386 (105–107)

Tie2
receptor

Reduces vascular leakage
May disrupt vascular

homeostasis in normal tissues
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deposition or blocking their tumor-promoting signaling (118). For

fibronectin, targeting its pro-fibrotic EDA isoform can suppress CAF

secretion, thereby reducing ECM stiffness-induced obstruction of

neoantigen-specific TILs (119). Researchers have also engineered

Salmonella to continuously secrete VNPNKase, degrading

fibronectin and inhibiting CAF fibrosis (120). For laminin, strategies

involve inhibiting interactions between its key isoforms (e.g., LM-111,

LM-332) and the tumor microenvironment (121). These approaches

aim to reduce ECM density and reverse its immunosuppressive effects,

enhancing TIL infiltration and function. Beyond ECM-targeted

strategies, chemokine receptor antagonists (e.g., CXCR1/2

inhibitors) can disrupt chemokine-mediated barriers by reducing

pro-tumorigenic neutrophils (122). Physical therapies such as

photothermal, ultrasound, and laser treatments also address
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challenges in neoantigen therapy. Photothermal agents convert light

energy into heat, elevating local temperatures to destroy tumor cells,

soften/densegrade ECM, lower IFP, and promote neoantigen-specific

TIL infiltration (123). Novel delivery systems show promise in

improving TIL penetration. Nanoparticle delivery systems enable

precise anticancer drug targeting by mimicking natural metabolic

pathways and camouflaging drug structures (124). They reduce off-

target biodistribution of active pharmaceutical ingredients,

significantly minimizing treatment side effects (125). Leveraging

tumor hyperpermeability and poor lymphatic drainage,

nanoparticles selectively accumulate in tumors. Future efforts may

focus on combining neoantigen therapy with nanoparticle systems to

modulate tumor biomechanics, enhance TIL cytotoxicity, and achieve

efficient anticancer precision medicine (126).
FIGURE 2

Key signaling pathways driving physical barrier formation. The formation of physical barriers is primarily driven by three core signaling pathways:
TGF-b/Smad, Hippo-YAP/TAZ, and PDGF/PDGFR: TGF-b/Smad pathway: Ligand binding to TbRII and TbRI receptors forms a complex, triggering
TbRII phosphorylation and subsequent activation of TbRI, which phosphorylates Smad2/3 proteins. Phosphorylated Smad2/3 binds to Smad4 and
translocates to the nucleus to regulate target gene expression. Downstream effectors directly mediate ECM remodeling. Hippo-YAP/TAZ pathway:
This pathway regulates YAP/TAZ activity by sensing mechanical signals such as ECM stiffness and fluid shear stress. When the Hippo pathway is
inactive, unphosphorylated YAP/TAZ enters the nucleus and binds to transcription factors like TEAD, activating pro-fibrotic target genes. This drives
fibroblast activation into CAFs and ECM component secretion, increasing matrix stiffness. PDGF/PDGFR pathway: Ligand-receptor binding induces
receptor dimerization and tyrosine phosphorylation, activating downstream pathways such as PI3K-AKT, MEK-ERK, and JAK-STAT. These pathways
promote tumor growth and CAF activation. ECM, extracellular matrix; CAF, Cancer-associated fibroblast.
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5 Conclusion

The TME hinders the infiltration of neoantigen-specific TILs into

the tumor core by forming physical barriers. Therefore, studying these

physical barriers may provide novel strategies to overcome the

limitations of neoantigen-based immunotherapy. This article

discusses the physical barriers faced by neoantigen-specific TILs,

aiming to elucidate the multidimensional mechanisms by which

physical factors influence their function. Tumor mechanical stress,

generated during tumor growth due to cell proliferation, ECM

stiffening, and altered interstitial pressure, impacts neoantigen-

specific TILs by modulating tumor cell behavior and the

surrounding microenvironment (127). These mechanical stresses

include fluid shear stress and solid stress. Fluid shear stress arises

from interstitial fluid flow or blood circulation within the TME, while

solid stress results from tumor cell proliferation, ECM stiffening, and

compression by surrounding tissues (128). Tumor cells and CAFs

secrete collagen and fibronectin, leading to ECM crosslinking and

stiffening. Mechanical stresses (e.g., matrix stiffness) activate integrin

signaling pathways (e.g., FAK, Rho/ROCK) and mechanosensitive

transcription factors (e.g., YAP/TAZ), further remodeling the ECM

(129, 130). Abnormal tumor angiogenesis generates fluid shear stress

that disrupts vascular endothelial cell function, promoting vascular

leakage and inflammatory cytokine release (131). Vascular leakage,

impaired lymphatic drainage, ECM densification, and high cellular

metabolism collectively cause interstitial fluid accumulation, creating a

high-pressure environment. ECM stiffening interacts with elevated

IFP to directly compress blood and lymphatic vessels, obstructing fluid

drainage. High IFP compresses blood vessels, limiting the migration

and infiltration of neoantigen-specific TILs. Tumor mechanical stress

regulates ECM stiffening, aberrant angiogenesis, and high IFP,

creating a vicious cycle that forms a composite barrier with both

spatial obstruction and immunosuppressive properties, ultimately

impairing neoantigen-specific TILs.

The clinical translation of neoantigen-specific TILs is limited by

the complex regulatory network of tumor physical barriers. Current

clinical trials targeting these physical barriers remain in early

exploratory stages. Existing trials primarily focus on evaluating

the efficacy and safety of combining neoantigens with immune

checkpoint inhibitors, radiotherapy, chemotherapy, and targeted

therapies, while lacking synergistic regulation of ECM stiffness,

vascular abnormalities, and mechanical stress signaling pathways.

Interventions such as LOX inhibitors and hyaluronidase (HA)-

degrading enzymes can improve local stromal permeability but

carry risks of promoting metastasis and face contradictions in

therapeutic timeliness, highlighting the need to develop

multimodal synergistic intervention strategies. Future efforts

should advance multiscale biomechanical regulation systems,

explore the combination of physical modulators with neoantigen

vaccines, and leverage mechanical interventions to enhance

neoantigen-specific TIL infiltration. Additionally, integrating
Frontiers in Immunology 10
novel delivery systems with neoantigen vaccines may emerge as a

key technology to improve neoantigen-specific TILs. Establishing

interdisciplinary medical platforms that integrate biomechanics and

immunotherapy, along with in-depth analysis of the interplay

between physical barriers and immune metabolism, will provide

novel paradigms for solid tumor immunotherapy.
Author contributions

TC: Writing – original draft. XL: Writing – original draft. YZ:

Writing – original draft. XK: Writing – original draft. SZ: Writing –

original draft. TZ: Writing – original draft. DS: Writing – original

draft. YZ: Writing – review & editing. DZ: Writing – review

& editing.
Funding

The author(s) declare that no financial support was received for

the research and/or publication of this article.
Acknowledgments

The authors would like to thank the editors and reviewers for

their valuable comments and suggestions.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1614228
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chen et al. 10.3389/fimmu.2025.1614228
References
1. Agustinus AS, Al-Rawi D, Dameracharla B, Raviram R, Jones BSCL, Stransky S,
et al. Epigenetic dysregulation from chromosomal transit in micronuclei. Nature.
(2023) 619:176–83. doi: 10.1038/s41586-023-06084-7

2. Chen DS, Mellman I. Elements of cancer immunity and the cancer–immune set
point. Nature. (2017) 541:321–30. doi: 10.1038/nature21349

3. Peng M, Mo Y, Wang Y, Wu P, Zhang Y, Xiong F, et al. Neoantigen vaccine: an
emerging tumor immunotherapy.Mol Cancer. (2019) 18:128. doi: 10.1186/s12943-019-
1055-6

4. Zhang Z, Lu M, Qin Y, Gao W, Tao L, Su W, et al. Neoantigen: A new
breakthrough in tumor immunotherapy. Front Immunol. (2021) 12:672356.
doi: 10.3389/fimmu.2021.672356

5. Nelson MA, Ngamcherdtrakul W, Luoh S-W, Yantasee W. Prognostic and
therapeutic role of tumor-infiltrating lymphocyte subty pes in breast cancer. Cancer
Metastasis Rev. (2021) 40:519–36. doi: 10.1007/s10555-021-09968-0

6. El Bairi K, Haynes HR, Blackley E, Fineberg S, Shear J, Turner S, et al. The tale of
TILs in breast cancer: A report from The International Imm uno-Oncology Biomarker
Working Group. NPJ Breast Cancer. (2021) 7:150. doi: 10.1038/s41523-021-00346-1

7. Qin M, Chen G, Hou J, Wang L, Wang Q, Wang L, et al. Tumor-infiltrating
lymphocyte: features and prognosis of lymphocytes i nfiltration on colorectal cancer.
Bioengineered. (2022) 13:14872–88. doi: 10.1080/21655979.2022.2162660

8. Rosenberg SA, Restifo NP. Adoptive cell transfer as personalized immunotherapy
for human cancer. Science. (2015) 348:62–8. doi: 10.1126/science.aaa4967
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