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Belonging to the focal adhesion kinase (FAK) family, proline-rich tyrosine kinase 2 
(PYK2) is a non-receptor tyrosine kinase, has become a focal point in cancer research 
owing to its essential participation in the formation and dissemination of tumors. 
Studies have shown that this kinase controls various cellular activities, including: tumor 
cell adhesion, growth, multiplication, specialization, and detachment, making it a 
promising target for developing anticancer drugs. The goal of this review is to analyze 
the multifaceted role of PYK2 in gastrointestinal disease, focusing on its contribution to 
tumor progression, associated signaling pathways, and the therapeutic potential of 
PYK2 inhibitors in improving disease management and prognosis. 
KEYWORDS 

PYK2,  digestive  system  diseases,  targeted  therapy,  tumor  progression,  
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1 Introduction 

Part of the FAK family, PYK2 is referred to as cellular adhesion kinase b (CAK-b), which is 
mainly distributed in the cytoplasm, and thus belongs to the Cytoplasmic tyrosine kinase (1–3). 
This enzyme belongs to a unique group of protein kinases that target tyrosine residues on proteins 
for phosphorylation. Various cell types and tissues universally express PYK2, such as neural 
tissues, endothelial cells, brain cells, fibroblasts, platelets, and specific hematopoietic cells (4–6). 
2 Structure and function of PYK2 

2.1 Structural domains of PYK2 

PYK2 was initially cloned and identified in 1995 as a gene encoding a protein tyrosine 
kinase. This gene is found on chromosome 8p21.1 within the human genome, featuring a 
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cDNA sequence that spans 4,048 base pairs and with a molecular 
mass of ~116 kDa (7). Structural analysis reveals that PYK2 shares 
significant homology with FAK, exhibiting 46% identity and 65% 
similarity at the protein level (8). PYK2 contains three core 
functional domains (9): (1) the FERM (4.1 protein, Ezrin, 
Radixin, Moesin) domain at the N-terminal: structurally, the 
FERM domain adopts a compact cloverleaf conformation 
composed of three distinct structural modules (Figure 1). These 
modules are recognized for their role in facilitating protein-protein 
and protein-lipid interactions (10); (2) the central domain 
responsible for tyrosine kinase activity: it contains catalytic 
residues (Y579/Y580 in the activation loop) and connects to 
FERM via a conserved linker harboring Y402—a scaffold site for 
phosphorylation-dependent signaling; and (3) the C-terminal FAT 
(Focal Adhesion Targeting) domain targets focal adhesions and 
features the Y881 phosphorylation site, mediates focal adhesion 
targeting. The spatial organization of these domains determines the 
function of PYK2 as a signal transduction hub and scaffold. 

The primary PYK2 splice variant, PYK2-M, lacks kinase activity 
due to C-terminal truncation but retains the FERM domain, enabling 
it to function as a dominant-negative scaffold (11, 12). By 
competitively binding shared interactors (e.g., integrins, IRF5), 
PYK2-M disrupts PYK2-H-dependent signaling, suppressing cell 
migration and pro-inflammatory transcription (13). In digestive 
pathologies—where PYK2-H drives cancer metastasis (HCC/ 
PDAC) and inflammation (IBD)—PYK2-M may similarly 
antagonize these processes through kinase-independent scaffolding, 
though direct evidence remains limited and warrants investigation. 
2.2 Nuclear functions 

2.2.1 Nuclear localization and nucleocytoplasmic 
shuttling mechanisms of PYK2 

The nuclear functions of PYK2 in gastrointestinal tumors are 
regulated through a multifaceted mechanism involving a classical 
nuclear localization signal (NLS) located in the F2 subdomain of its 
FERM domain and a nuclear export signal (NES) embedded within 
its kinase domain (14). These signals coordinately govern the 
nucleocytoplasmic shuttling of PYK2. In gastrointestinal tumor 
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cells, calcium influx or mechanical stress activates calcineurin. 
Activated calcineurin dephosphorylates PYK2 at Ser778, which 
impairs the function of the NES, leading to enhanced nuclear 
accumulation of PYK2 (15). For instance, in pancreatic ductal 
adenocarcinoma (PDAC), increased matrix stiffness induces 
Piezo1-mediated calcium influx, triggering PYK2 nuclear 
translocation (16). Furthermore, SUMOylation enhances PYK2 
nuclear retention, whereas ubiquitination facilitates its nuclear 
export. Supporting this, SUMOylation-deficient PYK2 mutants 
exhibit significantly impaired nuclear accumulation in PDAC 
models, underscoring the critical role of post-translational 
modifications in PYK2 nucleocytoplasmic trafficking (17). 
2.2.2 Nuclear scaffolding functions of PYK2 
As a nuclear scaffolding protein, PYK2 remodels transcriptional 

networks through multiple mechanisms, including transcription 
factor cooperativity, chromatin remodeling and epigenetic 
regulation, and assembly of nuclear signaling complexes, thereby 
driving the malignant phenotypes of gastrointestinal tumors (18). 
(1) Transcription Factor Cooperativity: PYK2 directly interacts with 
GATA-binding protein 4 (GATA4), facilitating its binding to the 
cyclin D1 promoter and accelerating cell cycle progression (19). In 
gastric cancer cells, the PYK2-GATA4 complex upregulates c-Myc 
expression, enhancing tumor cell proliferation. 

Additionally, PYK2 interacts with CREB (cAMP response 
element-binding protein), activating the transcription of 
inflammatory cytokines such as IL-17A, which contributes to tumor 
microenvironment remodeling (20, 21). (2) Chromatin Remodeling 
and Epigenetic Regulation: Notably, in hepatocellular carcinoma 
models, dissociation of the PYK2-MBD2 complex is associated with 
activation of Wnt pathway-related genes (e.g., Axin2), promoting 
tumor cell invasion (22, 23). (3) Assembly of Nuclear Signaling 
Complexes: PYK2 recruits Src-family kinases (SFKs) in the nucleus, 
forming a PYK2-Src-Gab1 signaling module that activates the PI3K-
AKT pathway (24). In esophageal cancer, this complex enhances the 
nuclear activity of YAP/TAZ, promoting cancer stem cell maintenance 
(25). These diverse nuclear scaffolding functions highlight how PYK2, 
upon nuclear translocation, acts as a central hub for rewiring 
transcriptional programs to promote gastrointestinal tumorigenesis. 
FIGURE 1 

Structural and functional characterization of PYK2: identification of key domains and post-translational modification sites. 
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2.3 Activation mechanisms of PYK2 

Y402 phosphorylation serves as a master switch for PYK2 
activation. Diverse stimuli converge on this event through five 
primary mechanisms: 
2.3.1 Cell adhesion-mediated activation 
Integrin engagement (e.g., with fibronectin) induces FAK-

mediated phosphorylation of Y402. Phosphorylated Y402 recruits 
Src via its SH2 domain, leading to Src-mediated phosphorylation of 
Y579/Y580 in the activation loop and full kinase activation (26). 

2.3.2 Ca²+ and PKC-dependent activation 
This mechanism is commonly seen in vascular smooth muscle 

depolarization or neuronal signal transduction. For example, 
depolarization of vascular smooth muscle triggers the inflow of 
Ca2 +, activates PKC, and triggers the above-mentioned core 
activation pathway (27). 

2.3.3 Regulatory role of the FERM domain 
Under resting conditions, the FERM domain forms a b-sheet 

interaction with the linker region of PYK2, occluding the Y402 site. 
Disruption of this interaction (e.g., via the K60P mutation) exposes 
Y402, enhancing phosphorylation (28). 

2.3.4 Oxidative stress-induced activation 
Under oxidative stress (e.g., H2O2 stimulation), phospholipase 

D2 (PLD2) activation leads to Y402 phosphorylation, subsequently 
activating PI3K/Akt pathway to exert a cell-protective effect (29). 

Through the above-mentioned mechanism, the activated 
(phosphorylated) PYK2 serves as a critical regulator, coordinating 
essential cellular activities. These include cytoskeletal remodeling, 
adhesion  signaling,  proliferation,  motility,  phenotypic  
differentiation, apoptosis modulation, and transcriptional 
regulation. (Figure 2) (7, 30). 
2.4 Regulatory mechanisms governing 
PYK2 expression and activity 

2.4.1 Post-transcriptional regulation 
Regarding the post-transcriptional regulation of PYK2, it is 

mainly through microRNA-mediated expression regulation. 
Various microRNAs (miRNAs) inhibit the post-transcriptional 
expression of PYK2 by binding to the 3’ untranslated region 
(3’UTR) of PYK2’s mRNA to regulate cancer progression (31– 
33). For example, in hepatocellular carcinoma (HCC), miR-23b 
directly targets the 3’UTR of PYK2 and reduces the level of PYK2 
protein, thereby inhibiting epithelial-mesenchymal transition 
(EMT) and tumor metastasis. Mechanistically, miR-23b reduces 
the expression of matrix metalloproteinases (MMPs) by weakening 
the PYK2-mediated AKT/mTOR signaling pathway and blocks the 
invasive ability of cancer cells (31). MiR-214 inhibits PYK2 
expression by targeting its mRNA, thereby blocking the PI3K/ 
Frontiers in Immunology 03 
AKT pathway and inhibiting cell proliferation (32). Down-

regulation of miR-517a and miR-517c alleviates their inhibitory 
effect on PYK2, leading to elevated PYK2 expression. Subsequently, 
PYK2 promotes cell proliferation by activating ERK1/2 
signaling (33). 

2.4.2 Post-translational modifications 
Post-translational modifications of PYK2 primarily include 

phosphorylation at Y402, as well as at Y654, which promotes 
nuclear translocation of b-catenin, which activates the Wnt 
signaling pathway and drives reprogramming of pancreatic acinar 
cells and tumor maintenance. This modification relieves 
ubiquitination degradation of b-catenin and prolongs its half-life 
(34). In addition to phosphorylation, the activity of PYK2 may also 
be regulated by ubiquitination (35). Phosphorylated PYK2 may be 
more readily recognized and ubiquitinated by Cbl-b, forming a 
“phosphorylation-ubiquitination” cascade that promotes 
its degradation. 

2.4.3 Feedback loops 
PYK2 is also involved in the cross-regulation of signaling 

networks. For example, in PDAC, PYK2 activates the Wnt/b-
catenin pathway after phosphorylating b-catenin (Y654), inducing 
the expression of downstream genes (e.g., c-Myc, Cyclin D1) to 
promote cell proliferation. Meanwhile, the activation of Wnt 
signaling can upregulate the expression of PYK2, forming the 
“PYK2→b-catenin→Wnt→PYK2” feedback, driving the 
malignant transformation of precancerous cells (34). In addition, 
in breast cancer, PYK2 activates STAT3 (Y705 site), forming 
“PYK2→STAT3→PYK2” positive feedback (36). Although this 
loop was identified in breast cancer, similar mechanisms may 
operate in digestive tumors given STAT3’s established oncogenic 
role in PC (37). 
FIGURE 2 

PYK2: A comprehensive overview of its established biological roles. 
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These findings collectively demonstrate that PYK2 participates 
in the cross-regulation of multiple signaling pathways through the 
formation of positive feedback loops, and thus plays a key role in 
tumorigenesis and development. 
2.5 Context-dependent PYK2 function: 
tissue, microenvironment, epigenetics 

Context-dependent function refers to PYK2’s ability to act as 
either an oncogene or tumor suppressor based on tissue-specific 
cues, microenvironmental signals, and epigenetic regulation. The 
paradoxical functions of PYK2 as either an oncogene or tumor 
suppressor are principally governed by three interconnected 
determinants: (1) Tissue-specific interacting partners—in GC, 
PYK2 forms a nuclear complex with p53 and Mdm2 to drive p53 
ubiquitination and degradation, thereby disabling a critical tumor-

suppressive checkpoint (38–40). Conversely, in HCC, PYK2 
physically associates with c-Src to activate MAPK signaling, 
directly promoting proliferation and invasion (41). (2) Tumor 
microenvironmental cues—hypoxia in ESCC induces Piezo1-
mediated calcium influx, triggering PYK2 phosphorylation at 
Y402 and subsequent NOX5/c-Abl complex assembly to fuel 
tumor progression (16, 42); whereas in GC, mechanical stress 
from peristalsis may modulate RhoA-ROCK signaling through 
PYK2-p190RhoGEF crosstalk, potentially influencing cell 
detachment dynamics (43, 44). (3) Epigenetic regulation—miR-

23b-mediated PYK2 suppression in HCC inhibits EMT and 
metastasis (31), whereas downregulation of miR-517a/c in the 
same malignancy elevates PYK2 expression to activate ERK1/2-
driven proliferation (33). This functional plasticity necessitates 
context-aware therapeutic strategies: PYK2 inhibition may be 
beneficial in cancers where it acts as an oncogenic scaffold (e.g., 
Frontiers in Immunology 04
ESCC, HCC, PDAC), but could prove detrimental in GC where its 
tumor-suppressive functions are compromised by downregulation. 
3 Research progress on the role of 
PYK2 in digestive system diseases 

In recent years, with the deepening of PYK2 research, its crucial 
role in digestive system diseases has become increasingly 
prominent. Particularly, the regulatory mechanisms of PYK2 in 
inflammatory diseases and tumorigenesis have emerged as a 
research hotspot in this field. This review will systematically 
summarize the latest research progress by focusing on the pivotal 
functions of PYK2 in various digestive system disorders, including 
inflammatory bowel disease, hepatic fibrosis, and gastrointestinal 
tumors (Figures 3, 4). These comprehensive analyses aim to provide 
novel theoretical foundations and potential intervention strategies 
for early diagnosis, targeted therapy, and prognosis improvement of 
related diseases. 
3.1 The role of PYK2 in digestive system 
tumors 

3.1.1 Esophageal cancer 
EC, a common and lethal type of cancer worldwide, constitutes 

a serious risk to human health. There are two main histological 
subtypes: esophageal squamous cell carcinoma (ESCC) and 
esophageal adenocarcinoma (EAC), with ESCC being the most 
frequent (45). Current therapeutic strategies encompass surgery, 
radiotherapy, chemotherapy, and endoscopic interventions. Given 
its highly invasive and metastatic nature, the identification of 
potential prognostic biomarkers and therapeutic targets is of 
FIGURE 3 

PYK2 in gastrointestinal malignancies: implications in esophageal, gastric, colorectal, hepatic, gallbladder, and pancreatic carcinomas. 
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paramount importance. Current investigations have shown a 
significant elevation in nicotinamide adenine dinucleotide 
phosphate oxidase 5 (NOX5) expression levels in ESCC. 
Mechanistically, hypoxia has been shown to increase intracellular 
Ca2+ levels, thereby inducing phosphorylation of PYK2 at the Y402 
site. This post-translational modification facilitates the interaction 
between PYK2 and NOX5, leading to the formation of a membrane-

associated complex. Furthermore, PYK2 recruits c-Abl, which 
enhances the activity of NOX5 within this complex, ultimately 
promoting ESCC progression (42). Although PYK2 does not 
directly participate in the pathogenesis of EC, it plays a pivotal 
role in ESCC progression as a scaffold protein that facilitates c-Abl-
mediated activation of NOX5 within the PYK2/NOX5 complex. 
Cisplatin, a commonly used chemotherapeutic agent in adjuvant 
therapy following radical esophagectomy, has been shown to have 
its efficacy influenced by PYK2. Moreover, PYK2 expression levels 
have been correlated with EC prognosis (46). In conclusion, PYK2 
critically regulates both tumorigenesis and progression in EC. T 
Incorporating PYK2 inhibitors into postoperative adjuvant therapy 
could be a viable strategy for treating EC patients. Additional 
studies are needed to clarify the exact molecular mechanisms and 
assess the clinical effectiveness of therapies targeting PYK2. 

3.1.2 Gastric carcinoma 
Globally, GC represents the fifth most frequently diagnosed 

malignancy worldwide and ranks among the principal contributors 
to cancer-associated mortality (47). Elucidating the functional 
interplay between PYK2 and GC could provide important 
understanding of the molecular processes involved in disease 
progression and the creation of new treatments. Notably, studies 
have demonstrated a marked downregulation of PYK2 expression 
in GC tissues. Furthermore, clinical evidence has revealed an 
inverse correlation between the progressive decline in PYK2 
expression levels and the advancement of TNM staging, strongly 
Frontiers in Immunology 05 
suggesting that function as a tumor suppressor during gastric 
carcinogenesis (38). The tumor suppressor p53 is a critical 
guardian of the genome, instrumental in inhibiting GC cell 
proliferation by inducing cell cycle arrest (primarily at G1/S 
checkpoint) and apoptosis in response to stress signals (48). 
Crucially, PYK2 directly antagonizes p53 function, particularly 
through the formation of a nuclear complex. As detailed in the 
“Nuclear Functions” section (Section 2.2), the N-terminal FERM 
domain of PYK2 binds p53 and recruits the E3 ubiquitin ligase 
Mdm2. This nuclear PYK2-p53-Mdm2 complex facilitates K48-
linked polyubiquitination of p53, targeting it for proteasomal 
degradation (40). The degradation of nuclear p53 by this PYK2-
mediated mechanism represents a key pathological event in GC. By 
reducing functional p53 levels, PYK2 effectively compromises p53-
dependent cell cycle arrest, allowing dysregulated proliferation and 
contributing to tumor progression. This mechanism provides a 
molecular explanation for the observed inverse correlation between 
PYK2 expression and GC stage, linking PYK2 downregulation to 
the loss of a critical tumor suppressor checkpoint. PYK2 may also 
contributes to tumor metastasis, particularly in the initial 
detachment phase of cells. Previous studies have established that 
PYK2 can influence cancer progression by enhancing cell 
separation,  as  evidenced  by  its  glucocorticoid-induced  
upregulation promoting osteoclast detachment (39). In the 
digestive system, trypsin, a digestive enzyme abundantly present 
in the stomach, small intestine, and colon, is commonly utilized for 
cell detachment. Trypsin causes cells to detach by degrading PYK2 
via the ubiquitin-lysosome system, but PYK2 can counteract this 
detachment, though the exact regulatory processes are not yet fully 
understood (35). Accumulating experimental data indicate that 
mechanical forces generated by gastric peristalsis could potentially 
stimulate proliferation in both primary and metastatic GC cell lines, 
with concomitant modulation of proliferating cell nuclear antigen 
and p53 expression profiles (43). The tumor suppressor p53 is 
FIGURE 4 

Role of PYK2 in other diseases of the digestive system (inflammatory bowel disease, hepatic fibrosis, acute pancreatitis). 
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known to be instrumental in inhibiting the proliferation of GC cells 
(48). Interestingly, the N-terminal FERM domain of PYK2 can form 
a complex with p53 and Murine double minute-2 to regulate p53 
levels (40). Furthermore, gastrointestinal motility is associated with 
the RhoA-ROCK signaling pathway, which plays a pivotal role in 
regulating cancer cell motility and invasion (49). In FAK−/− 
fibroblasts, PYK2 has been shown to promote RhoA activation 
and migration through enhanced p190RhoGEF expression (44). 
Collectively, these findings indicate a tumor-suppressive role for 
PYK2 in GC. Its downregulation facilitates tumor progression by 
impairing p53-mediated cell cycle arrest and genomic stability 
through nuclear complex formation and degradation, and 
potentially modulating cell detachment and motility pathways. 
Further investigation into the molecular mechanisms underlying 
PYK2’s role in GC progression, especially its nuclear scaffolding 
functions impacting cell cycle regulators beyond p53, may provide 
novel therapeutic targets for this devastating disease. 

3.1.3 Colorectal cancer 
CRC, a highly common malignancy globally, is affected by both 

environmental and genetic factors. Despite groundbreaking 
developments in both diagnostic technologies and treatment 
modalities since the turn of the century, there remain unexplored 
areas that necessitate further investigation. The progression of CRC 
is a complex, multifactorial process involving PYK2, which 
contributes not only to colonic smooth muscle contraction but 
also to intestinal homeostasis, epithelial repair, and tumorigenesis 
(50, 51). Canonical Wnt signaling constitutes a master regulatory 
pathway driving colorectal cancer development (52). Mechanistic 
studies have revealed that elevated FAK/PYK2 levels lead to 
dephosphorylation of glycogen synthase kinase-3b (GSK-3b) at

the Y216 site, facilitating the recruitment of the ubiquitin ligase 
b-transducin repeats containing proteins (b-TrCP). Ubiquitination 
of b-catenin through this process activates Wnt signaling (53). 
These findings suggest that CRC progression is mediated through 
the PYK2/GSK-3b(Y216)/b-catenin regulatory axis, ultimately 
influencing cellular metabolism and contributing to malignant 
transformation. Furthermore, emerging evidence indicates that 
PYK2  may  suppress  CRC  tumor  growth  by  inhibiting  
mitochondrial oxidative phosphorylation (OXPHOS) in CRC cells 
(54). Notably, PYK2 has been identified as a novel independent 
prognostic marker for colon adenocarcinoma progression following 
surgical resection (55), with its overexpression demonstrating 
enhanced cellular proliferation and invasive capabilities. In 
conclusion, PYK2 critically regulates CRC development and 
disease outcomes. PYK2’s multifaceted pathway involvement 
establishes its druggability, warranting further mechanistic and 
clinical studies for CRC. 

3.1.4 Hepatocellular carcinoma 
Globally, HCC is the leading type of primary liver cancer. 

Notably ,  PYK2  overexpress ion  has  been  detected  in  
approximately 60% of HCC patients, where it not only promotes 
cancer cell proliferation but also enhances tumor cell invasiveness 
(56). Mechanistic investigations have revealed that PYK2 
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overexpression facilitates its binding with c-Src, forming a PYK2-
c-Src signaling complex that undergoes autophosphorylation at 
Y402. This process activates c-Src, subsequently triggering 
multiple signaling cascades that activate the MAPK pathway, 
thereby promoting HCC cell proliferation and invasion (41). 
Furthermore, TMEM237 overexpression, frequently observed in 
HCC, has been shown to enhance HCC cell multiplication, 
movement, invasion, and epithelial-mesenchymal transition 
(EMT), correlating with poor clinical outcomes. Under hypoxic 
conditions, the transcriptional activity of the TMEM237 promoter 
is significantly enhanced through direct binding of HIF-1a (57). 
The TMEM237-NPHP1 association warrants special attention, as 
prior research has confirmed NPHP1’s ability to interact with 
PYK2, resulting in PYK2 phosphorylation and subsequent 
initiation of the PYK2-dependent ERK1/2 signaling cascade 
within renal tubular epithelial cells (58). Consequently, when 
TMEM237 is overexpressed, the interaction between NPHP1 and 
PYK2 is enhanced, forming a ternary complex that activates the 
PYK2/ERK1/2 pathway in HCC cells, thereby promoting tumor 
progression (57). PYK2’s involvement in tumor metastasis has been 
extensively documented. Researchers have proposed that the 
activation of the PI3K/AKT pathway by PYK2 enhances VEGF 
expression in HCC, facilitating peritumoral angiogenesis and 
inducing tumor metastasis (59). Alternatively, others suggest that 
PYK2 may enhance metastatic potential by modulating Rac1/RhoA 
activity to induce EMT (60). independent validation comes from 
Cao’s work showing miR-23b-mediated PYK2 downregulation 
effectively curbs EMT-driven HCC invasion (31). Additionally, 
both miR-214 overexpression and PTK2b/PYK2 knockdown 
triggered G1-phase arrest, effectively inhibiting malignant cell 
proliferation through cell cycle disruption (32). Both miR-517a 
and miR-517c inhibit G2/M phase transition and reduce mitotic 
activity, at least in part through direct targeting of PYK2, a key 
regulator of mitotic entry (33). In conclusion, PYK2 is critically 
involved in HCC progression and metastasis, functioning as both a 
predictive biomarker for platinum-based chemotherapy resistance 
and a potential therapeutic target. Further research into PYK2’s 
molecular mechanisms and its clinical applications may provide 
novel insights into HCC management strategies. 
3.1.5 Pancreatic cancer 
Despite notable progress in modern medicine, PC continues to 

be a highly fatal gastrointestinal cancer, with early detection 
remaining a significant challenge (61). Pancreatic ductal 
adenocarcinoma (PDAC) progresses through a multistep 
mechanism and constitutes the majority of pancreatic cancer 
cases. This process involves the reprogramming of precancerous 
acinar cells in response to various stimuli, including Kras oncogene 
mutations and pancreatitis, leading to pancreatic intraepithelial 
neoplasia and ultimately progressing to PDAC. During this 
transformation, alterations in PYK2 and other factors play crucial 
roles. Mechanistically, Yes-associated protein 1 (YAP) and 
transcriptional coactivator with PDZ-binding motif (TAZ), 
effectors of the Hippo pathway, regulate PYK2 transcription via 
STAT3 mediation. Subsequently, PYK2-mediated phosphorylation 
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of b-catenin drives Wnt pathway activation, establishing PYK2 as a 
key orchestrator of PDAC tumorigenesis and progression (34, 37, 
62). Critically, nuclear-translocated PYK2 acts as a scaffold to 
potentiate YAP/TAZ transcriptional activity. As detailed in 
Section 2.2.2, PYK2 recruits Src-family kinases (SFKs) within the 
nucleus to form a PYK2-Src-YAP/TAZ complex. This complex 
enhances the nuclear retention and transcriptional output of YAP/ 
TAZ, directly activating genes essential for cancer stem cell 
maintenance (e.g., SOX9, OCT4) and EMT progression (18, 25). 
Concurrently,  PYK2-phosphorylated  b-catenin  (pY654)  
translocates to the nucleus, where it displaces transcriptional 
repressors (e.g., HDAC1) from TCF/LEF-binding sites, further 
amplifying Wnt target genes (e.g., c-MYC, CYCD1) (34). This 
synergistic nuclear crosstalk between PYK2-YAP/TAZ and PYK2-
b-catenin axes creates a self-reinforcing transcriptional circuit that 
drives PDAC aggressiveness. The importance of PYK2 in the 
development of PDAC is emphasized by these findings. A 
hallmark of PDAC is its extensive desmoplastic reaction, 
characterized by substantial type I collagen deposition. This 
collagen-rich microenvironment signals through integrins and 
discoidin domain receptor 1 (DDR1), with the DDR1b isoform 
interacting with PYK2 via Sch1. This interaction induces increased 
N-cadherin expression and facilitates EMT in PC cells, contributing 
to PDAC’s tumorigenic properties. During this process, collagen-
mediated DDR1 activation induces PYK2-associated signaling 
pathways, potentially driving collagen-induced tumor progression 
(63, 64). Furthermore, Recent findings indicate that autophagy 
levels are crucial in the development and treatment of PDAC 
(65). Type I collagen activates the DDR1/PYK2/ERK signaling 
pathway, which primarily mediates autophagosome-lysosome 
fusion. The use of SH2 super binder to inhibit PDAC cell 
autophagy through DDR1 regulation has demonstrated antitumor 
effects (66). In conclusion, PYK2 demonstrates significant 
associations with pancreatic disease progression. The modulation 
of PYK2 expression and function holds promise for attenuating or 
reversing pancreatic pathological processes. Future investigations 
should prioritize elucidating the molecular mechanisms underlying 
PYK2’s role in pancreatic pathophysiology and developing targeted 
therapeutic interventions. These research endeavors may yield 
significant advancements in the clinical management of 
pancreatic disorders. 
3.1.6 Cholangiocarcinoma 
The detection rate of CCA - a biologically aggressive 

malignancy originating from biliary tract epithelia - has increased 
significantly with the advent of advanced diagnostic technologies. 
Despite this progress, research investigating the role of PYK2 in 
CCA remains limited. A notable study by Cui et al. (67) revealed 
that in CCA, PYK2 is activated by overexpressed Eph receptor A2 
(EphA2). This activation subsequently triggers the PYK2/c-Src 
signaling pathway, which independently activates the ERK 
signaling cascade through a Raf/MEK-independent mechanism, 
ultimately modulating tumor cell invasion and metastatic potential. 
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3.2 The role of Pyk2 in other diseases of 
the digestive system 

3.2.1 Inflammatory bowel disease 
IBD, including the two principal phenotypes - ulcerative colitis 

(UC) and Crohn’s disease (CD), characterized by relapsing-
remitting mucosal inflammation (68). Numerous genetic loci play 
significant roles in IBD pathogenesis, with PYK2 being identified as 
a nominated pathogenic gene for UC (69). PYK2 not only directly 
regulates UC progression but also functions as a regulatory factor in 
its pathological development. Interferon regulatory factor 5 (IRF5), 
a key immune response regulator, significantly contributes to the 
development of intestinal inflammation (70). PYK2 exacerbates 
intestinal inflammation through IRF5 phosphorylation (Tyr-171 in 
mice/Tyr-172 in humans), a modification that induces pathogenic 
CD11c+ macrophage accumulation in the inflamed colon (13, 71, 
72). Furthermore, studies have demonstrated elevated levels of 
peripheral serotonin (5-hydroxytryptamine or 5-HT) in patients 
with intestinal inflammation (73). As an immunomodulatory 
neuroendocrine peptide, 5-HT not only regulates intestinal 
homeostasis and tumor biological processes (74, 75), but also 
induces B cell transformation into regulatory B cells (Bregs), 
enhancing their capacity to suppress intestinal inflammation (76). 
PYK2 influences IBD progression through its involvement in 5-HT 
secretion: upon binding with invariant natural killer T cells, 
enterochromaffin cells selectively sense lipid antigens, leading to 
CD1d Tyr332 recruitment and PYK2 activation. Subsequently, 
PYK2 regulates Kv1.2 channels through tyrosine phosphorylation, 
triggering Ca2+ influx and subsequent 5-HT release (77). 

3.2.2 Hepatic fibrosis 
PYK2, a critical regulator of cellular processes, has recently been 

identified as closely associated with liver health, particularly playing 
significant roles in lipid metabolism, inflammatory responses, and 
liver cirrhosis. Its aberrant activity may disrupt lipid homeostasis, 
exacerbate hepatic inflammation, promote liver fibrosis, and 
accelerate the progression of cirrhosis. Therefore, in-depth 
investigation of PYK2’s role in these pathways may provide new 
hope for developing targeted therapies for liver diseases. 
Specifically, PYK2 can activate the ERK1/2 and AKT-mediated 
mTORC1/S6K1 axis, enhancing lipogenesis and leading to hepatic 
steatosis (78). Furthermore, metabolic dysfunction-associated 
steatohepatitis is crucial in the development of liver steatosis., 
characterized by progressive extracellular matrix deposition and 
sterile hepatic inflammation, potentially culminating in end-stage 
liver complications including cirrhosis, HCC, and elevated all-cause 
mortality. When PYK2 is activated, it triggers dimerization 
associated with its N-terminal FERM domain, resulting in JNK 
signaling pathway activation. This process increases procollagen C-
endopeptidase enhancer 1 in brown adipose tissue, thereby 
promoting l iver fibrosis  (79, 80).  On  the  other  hand,  
autophosphorylation of PYK2 at Tyr402 facilitates recognition by 
Src kinase, forming a PYK2-Src-RhoA ternary complex. This 
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complex leads to YAP/TAZ activation and subsequent induction of 
connective tissue growth factor, which can also contribute to liver 
fibrosis (81). In conclusion, PYK2’s complex mechanisms in liver 
diseases shed light on the pathophysiological processes of hepatic 
disorders and suggest potential therapeutic targets for developing 
novel treatment strategies. Further research into PYK2’s molecular 
interactions and signaling pathways may yield significant 
advancements in liver disease management. 
3.2.3 Acute pancreatitis 
AP, a prevalent disorder of the digestive system, is characterized 

by complex and diverse pathogenesis. Research indicates that 
inflammatory responses, acinar cell damage, and inappropriate 
activation of trypsinogen constitute critical biological processes in 
AP (82). Under normal physiological conditions, pancreatic acinar 
cells synthesize and secrete digestive enzymes, with trypsinogen and 
other digestive enzymes remaining in an inactive state. However, 
when certain pathogenic factors disrupt this balance, leading to 
inappropriate activation of trypsinogen, acinar cell damage occurs, 
triggering inflammatory responses. In severe acute pancreatitis 
(SAP), reactive oxygen species (ROS) and oxidative stress have 
been closely associated with pancreatic acinar cell injury (83). 
During this process, PYK2 upregulates the expression of NADPH 
oxidases (NOXs), promoting excessive ROS generation. As highly 
reactive molecules, ROS can damage various intracellular 
biomolecules, including proteins, lipids, and nucleic acids, 
ultimately compromising cellular function. Furthermore, PYK2 
facilitates the activation of AKT and MAPKs, exacerbating 
cellular oxidative stress and creating a more detrimental cellular 
environment (84–86). Additionally, PYK2 promotes increased 
expression of pro-inflammatory cytokines in macrophages (87). 
The substantial release of these pro-inflammatory cytokines 
exacerbates  inflammatory  damage  in  pancreatic  tissue,  
manifesting as local tissue swelling, pain, and other inflammatory 
responses, thereby worsening the clinical condition. 
4 PYK2 in metastasis and genomic 
alterations 

PYK2 orchestrates metastasis in digestive cancers through 
multifaceted regulation of EMT, cell motility, and tumor 
microenvironment (TME) remodeling. In HCC, PYK2 promotes 
EMT by modulating Rac1/RhoA activity, enhancing invasive 
potential and distant dissemination (60). Concurrently, PYK2-
driven PI3K/AKT activation upregulates VEGF, facilitating 
peritumoral angiogenesis to fuel metastatic spread (59). PDAC 
studies  reveal  that  nuclear  PYK2  scaffolds  YAP/TAZ  
transcriptional complexes, sustaining cancer stemness and EMT 
via SOX9/OCT4 activation (18, 25). Furthermore, collagen-rich 
PDAC stroma engages DDR1-PYK2 signaling to induce N-cadherin 
expression and EMT, linking desmoplasia to metastasis (63, 64). 
Within the TME, PYK2 phosphorylates IRF5 in macrophages, 
amplifying pro-inflammatory cytokine release (e.g., IL-17A) and 
recruiting pathogenic CD11c+ macrophages in colitis-associated 
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cancer (13, 71). Genomically, PTK2B (encoding PYK2) exhibits 
frequent amplifications and missense mutations in gastrointestinal 
malignancies (e.g., HCC, PDAC), correlating with metastatic 
progression and therapy resistance. For instance, hypoxia-induced 
HIF-1a transactivates TMEM237, which stabilizes NPHP1-PYK2 
complexes to drive ERK1/2-dependent HCC metastasis (57). PYK2 
also confers cisplatin resistance via PI3K/AKT-mediated anti-
apoptotic signaling or mitochondrial Lon protein-triggered PYK2-
SRC-STAT3 survival pathways (88, 89). Targeting PYK2 with 
inhibitors (e.g., PF-562,271) disrupts stromal crosstalk and 
reverses therapy resistance, highlighting its dual role as a 
metastatic scaffold and genomic driver. 
5 Therapeutic targeting and 
overcoming resistance 

5.1 PYK2 as a therapeutic target 

PYK2 has been proven to exert essential functions in 
gastrointestinal cancers, serving as a signaling hub that integrates 
inputs  from  growth  factors,  integrins,  and  the  tumor  
microenvironment to drive malignancy. Given its extensive 
physiological and pathological functions, close association with 
tumor development, potential roles in other diseases, and the 
ongoing clinical research on related therapeutic agents, PYK2 
indeed represents a promising drug target. This multifaceted 
involvement positions PYK2 inhibition as a rational strategy for 
cancer therapy. 
5.2 Classes of PYK2 inhibitors 

Current PYK2-targeted therapeutics fall into three main 
categories (90): (1) ATP-competitive kinase inhibitors (e.g., PF-
562,271, PF-431396), which bind the kinase domain and block 
phosphorylation (91); (2) allosteric inhibitors (e.g., T6BP), which 
disrupt scaffolding functions by targeting FERM domain 
dimerization (79); (3) PROTACs (Proteolysis-Targeting 
Chimeras), which are experimental agents (e.g., PYK2-PROTAC) 
that induce ubiquitin-mediated degradation (92). Ongoing clinical 
trials focus on PF-562,271 in pancreatic cancer (NCT04472174), 
while PROTACs remain preclinical (93). 
5.3 Mechanisms of action of key inhibitors 

PF-562,271 (Methane sulfonamide diaminopyrimidine), an 
ATP-competitive inhibitor (94), exhibits potent and reversible 
inhibition of PYK2 catalytic activity. By blocking PYK2 
phosphorylation, it disrupts cancer-associated fibroblast 
persistence and monocyte recruitment, suppressing tumor growth 
and metastasis, suppressing tumor growth and metastasis (95). 
Combining this drug with sunitinib enhances PYK2 inhibition, 
yielding superior anti-angiogenic and anti-invasive effects (96). PF-
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431396 (trifluoromethyl pyrimidine) induces apoptosis, inhibits cell 
cycle progression and metastasis in PDAC and mesothelioma via 
PYK2 inhibition, and attenuates tumorigenicity in anchorage-
independent conditions (97). It also blocks replication of 
adherent-invasive E. coli(AIEC) in Crohn’s disease and alters 
Salmonella infection course (98). T6BP blocks PYK2 FERM 
domain dimerization, attenuating JNK signaling. This reduces 
hepatic lipid accumulation and cytokine secretion, ameliorating 
fatty liver disease and fibrosis. T6BP also potentiates CBL-mediated 
PYK2 ubiquitination and degradation (79). 
5.4 PYK2-mediated resistance mechanisms 

Despite the growing body of research on PYK2 inhibitors, the 
potential development of acquired drug resistance poses new 
therapeutic challenges. Studies have shown that PYK2 
overexpression increases cisplatin resistance, potentially through 
PI3K/AKT pathway activation, reduced apoptosis, and upregulation 
of drug resistance genes (89). Alternatively, cisplatin-induced 
mitochondrial DNA damage may lead to Lon (a stress protein) 
overexpression, which, upon binding with the Na+/Ca2+ exchanger, 
triggers mitochondrial calcium release into the cytoplasm, activating 
the PYK2-SRC-STAT3 pathway and subsequent BCL-2 expression, 
ultimately inhibiting apoptosis and contributing to cisplatin 
resistance (88). Regardless of the dominant mechanism, PYK2 
inhibition can enhance tumor necrosis/apoptosis during cisplatin 
treatment, potentially reducing drug resistance. 
5.5 Strategies to overcome resistance 

Critically, PYK2 functions as a key mediator of acquired 
resistance to multiple chemotherapeutics, particularly cisplatin, in 
digestive tumors. Experimental evidence implicates PYK2 
overexpression in conferring cisplatin resistance, primarily 
through two interconnected mechanisms: (1) Activation of the 
PI3K/AKT survival pathway, suppression of apoptosis, and 
upregulation of drug resistance genes (89); and/or (2) Cisplatin-
induced  mitochondrial  stress  leading  to  Lon  protease  
overexpression, which triggers calcium release and subsequent 
activation of the PYK2-SRC-STAT3-BCL-2 anti-apoptotic axis 
(88). Consequently, targeted inhibition of PYK2 emerges as a 
rational strategy to overcome or prevent this acquired resistance, 
potentially sensitizing tumors to cisplatin and improving 
therapeutic outcomes, as suggested by studies combining PYK2 
inhibitors with chemotherapy (95). Furthermore, given its role as a 
signaling hub and scaffold protein integrating inputs from growth 
factors, integrins, and the tumor microenvironment, PYK2 may 
also contribute to resistance against other therapeutic modalities, 
although this warrants further investigation in digestive cancer 
contexts. Therefore, targeting PYK2 is highly relevant for 
overcoming resistance to approved digestive cancer therapies. As 
a central node in key resistance/survival pathways (e.g., PI3K/AKT, 
STAT3) (34, 88, 89) and a scaffold for pro-tumorigenic signaling 
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complexes (18, 34), PYK2 inhibition directly disrupts therapy 
evasion mechanisms. Preclinically, PYK2 inhibitors (e.g., PF-
562,271, PF-431396) resensitize tumors to chemotherapeutics like 
cisplatin by counteracting anti-apoptotic signaling and 
compensatory survival cascades (95, 96). Furthermore, PYK2’s 
role in critical tumor microenvironment processes, including 
stromal crosstalk (e.g., DDR1-PYK2 in PDAC (63), macrophage 
polarization (e.g., IRF5 phosphorylation 13), and cancer stemness 
maintenance (e.g., via nuclear YAP/TAZ 18), suggests its 
contribution to resistance against broader therapies, potentially 
including targeted agents and immunotherapies. Strategies to 
mitigate FAK compensation, such as dual FAK/PYK2 inhibitors 
or exploiting PYK2-specific activation (Ca²+/PKC, oxidative stress, 
nuclear functions) (18, 27, 29, 34, 91, 95), enhance this approach’s 
feasibility. Thus, PYK2 targeting represents both a direct anti-tumor 
strategy and a promising combinatorial approach to restore efficacy 
of approved therapies facing acquired resistance in digestive 
cancers. While cisplatin’s cytotoxicity involves complex 
mechanisms beyond these two pathways (99), targeting PYK2 to 
circumvent drug resistance represents a promising avenue for 
future research. 

Furthermore, given PYK2’s pivotal role as a signaling hub 
orchestrating multiple oncogenic pathways—including MAPK, 
PI3K-AKT, and YAP-TAZ—its inhibition presents a compelling 
rationale for combination therapies with agents targeting these 
downstream effectors, particularly for overcoming therapy 
resistance in digestive cancers. Preclinical evidence supports this 
approach: co-targeting PYK2 and VEGFR (sunitinib) demonstrated 
superior anti-angiogenic and anti-invasive effects compared to 
monotherapy in a hepatocellular carcinoma xenograft model, 
suggesting  synergy  in  disrupting  PYK2-driven  tumor  
microenvironment remodeling and survival signaling (96). 
Specifically, combining PYK2 inhibitors with agents blocking the 
PI3K-AKT axis could counteract PYK2-mediated anti-apoptotic 
signaling and drug resistance gene upregulation observed in 
cisplatin resistance (88, 89). Equally promising is the combination 
with YAP-TAZ-TEAD pathway inhibitors, as nuclear PYK2 
scaffolds transcriptional complexes (e.g., PYK2-Src-YAP/TAZ) 
critical for cancer stemness maintenance and EMT in PDAC and 
other GI malignancies (18, 25, 34). Targeting both the upstream 
activator (PYK2) and the key downstream transcriptional 
machinery (YAP-TAZ-TEAD) may offer a more comprehensive 
strategy to dismantle this resilience network and reverse therapy 
resistance. Future research should prioritize evaluating these 
rational combinations in models of innate and acquired resistance 
across diverse digestive tumors. The significant sequence homology 
(46% identity) and functional redundancy between PYK2 and FAK 
raise concerns that FAK may compensate for PYK2 inhibition, 
potentially limiting therapeutic efficacy (7, 8). This compensatory 
capacity is evidenced by enhanced suppression of tumor 
progression in HCC models when both kinases are co-inhibited 
compared to single targeting (41, 95). To circumvent this challenge, 
strategic approaches focus on dual inhibition or exploiting 
functional divergence. Dual FAK/PYK2 inhibitors (e.g., PF-
562,271 derivatives) simultaneously block compensatory signaling 
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nodes within this kinase family (91, 95). Alternatively, leveraging 
PYK2-specific regulatory mechanisms—such as its unique 
activation by Ca²+/PKC and oxidative stress (27, 29), and non-
redundant nuclear scaffolding functions (e.g., b-catenin Y654 
phosphorylation driving Wnt in PDAC; YAP/TAZ complex 
assembly sustaining cancer stemness) (18, 34) (18, 35)—enables 
context-selective targeting. This approach minimizes FAK-driven 
escape while capitalizing on tissue-specific roles of PYK2, such as its 
tumor-suppressive function in GC versus oncogenic actions in 
PDAC/HCC (38, 62). 
6 PYK2 genomic alterations in 
digestive cancers 

Emerging evidence implicates PYK2 (PTK2B) genomic 
alterations as drivers of digestive carcinogenesis. Analysis of 
public cohorts (TCGA, cBioPortal) reveals frequent PYK2 
amplifications and missense mutations across gastrointestinal 
malignancies, often correlating with metastatic progression and 
therapy resistance. The table below summarizes key alterations 
and their clinical implications (Table 1): 
7 Conclusion 

Over the past decade, PYK2 has garnered significant attention 
in the scientific community as a critical regulatory molecule in 
various cellular processes. In addition to serving as a robust 
prognostic biomarker for tumor evaluation, this molecule exerts 
regulatory control over numerous critical signaling cascades that 
drive  the  pathogenesis  and  c l inical  manifestat ion  of  
gastrointestinal disorders. This multifaceted role endows PYK2 
with unique value in molecular therapy, diagnosis, and prognostic 
evaluation. Consequently, research on PYK2-targeted drugs has 
proliferated, particularly in combination with chemotherapeutic 
agents, demonstrating significant effects in slowing tumor 
progression, improving prognosis, and even modulating 
chemotherapy drug resistance. These results highlight the 
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essential role of PYK2 in the onset and progression of diseases 
affecting the digestive system. However, considering PYK2’s 
involvement in multiple pathways, several critical questions 
remain to be addressed. These include potential cross-talk 
between these pathways, as well as the challenge of balancing 
antitumor efficacy with the reduction of complications and drug 
resistance risks in targeted therapy development. Therefore, the 
widespread application of PYK2-targeted therapy in digestive 
system diseases remains debatable and requires extensive clinical 
validation. Furthermore, compared to diseases in other systems, 
the research landscape between gastrointestinal disorders and 
PYK2 remains largely unexplored, particularly in specific 
diseases such as GC and CCA, indicating substantial room for 
further investigation. In conclusion, while the application 
prospects of PYK2 in digestive system disease treatment 
appear promising, it is imperative to maintain a scientifically 
rigorous approach and continuously promote high-quality 
clinical research to establish a solid foundation for its future 
clinical applications. Developing PYK2-targeted therapies 
requires in-depth research into their molecular mechanisms, 
possible side effects, and long-term effectiveness to ensure 
successful and safe clinical implementation. 
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Liver metastasis; 

Poor post-resection prognosis 
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Vascular invasion 

Recurrence 
(57, 60) 

PDAC 15-20% Amplification 
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Cancer stemness maintenance 
(34, 62, 64) 

IBD(UC) GWAS locus SNP: rs4750316 
Disease severity; CD11c+ 
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