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Machine learning differentiation
of rheumatoid arthritis-Sjögren’s
syndrome overlap from Sjögren’s
syndrome with polyarthritis
Minzhi Gan, Yong Peng, Ying Ying, Keyue Zhang
and Yong Chen*

Department of Rheumatology and Immunology, Ningbo NO.2 Hospital, Ningbo, Zhejiang, China
Objective: This study aimed to evaluate the utility of machine learning algorithms

in differentiating rheumatoid arthritis-Sjögren’s syndrome overlap (RA-SS) from

Sjögren’s syndrome with polyarthritis (SS-PA), and to identify key factors

influencing diagnostic differentiation.

Methods: This retrospective analysis included 106 RA-SS and 135 SS-PA patients

randomized 7:3 into training and validation sets. Clinical, laboratory, and

radiographic data were collected. Least Absolute Shrinkage and Selection

Operator (LASSO) regression facilitated feature selection before constructing

diagnostic models using four machine learning algorithms, with feature

importance quantified through SHapley Additive exPlanations (SHAP).

Results: The random forest algorithm demonstrated superior performance

(AUC=0.854, 95% CI: 0.747-0.944) compared to other machine learning

algorithms. SHAP analysis identified anti-CCP level, rheumatoid factor (RF)

level, erosive joint count, anti-SSA/Ro60 antibodies, and C-reactive protein

(CRP) as critical discriminating factors between RA-SS and SS-PA.

Conclusion: The random forest algorithm demonstrates promising clinical potential

for RA-SS and SS-PA differential diagnosis, with diagnostic efficiency surpassing

traditional logistic regression (LR), offering a new approach for clinical differentiation.
KEYWORDS

rheumatoid arthritis, Sjögren’s syndrome, machine learning, random forest, differential
diagnosis, autoimmune diseases, arthritis
Introduction

Sjögren’s syndrome (SS) is a chronic autoimmune disorder characterized by

lymphocytic infiltration of exocrine glands, resulting primarily in xerophthalmia and

xerostomia. In addition to glandular involvement, SS can affect multiple organ systems

including joints, nervous system, lungs, and kidneys (1–3). Evidence from observational
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studies indicates that arthritic symptoms occur in 30-60% of SS

patients (4). A longitudinal study following 521 patients

documented that 44% developed extra-glandular manifestations,

including arthritis and neurological involvement, within six years of

initial sicca symptoms. Joint manifestations typically present as

polyarticular pain and swelling, predominantly affecting small

joints of the hands, wrists, and feet (5). Although most patients

exhibit non-erosive arthritis, a subset of primary SS patients develop

destructive joint changes clinically resembling rheumatoid arthritis

(RA) (6). SS may occur as a primary disorder or in association with

other connective tissue diseases, with RA representing one of the

most frequent comorbidities.

RA is an autoimmune disease characterized by synovial

inflammation and hyperplasia, resulting in cartilage degradation

and bone deformity. Cross-sectional analyses demonstrate

significantly higher prevalence of joint tenderness, swelling, and

pain in patients with RA-SS overlap (7). Currently, no

pathognomonic laboratory tests exist for definitively diagnosing

either RA or SS. Both diagnoses require comprehensive assessment

of symptoms, clinical signs, and laboratory parameters. SS patients

with polyarthritis (SS-PA) may manifest joint distribution patterns

clinically indistinguishable from RA-SS, thereby confounding

differential diagnostic assessment.

Furthermore, rheumatoid factor (RF) remains a widely utilized

diagnostic marker due to its accessibility, standardization across

laboratories, and historical significance in classification criteria (8,

9). Clinical data indicate that approximately 50% of early RA patients

may be RF-negative, while 50-80% of primary SS patients may test

RF-positive (10). Anti-cyclic citrullinated peptide antibody (anti-

CCP) exhibits superior specificity for RA diagnosis. Despite this

advantage, recent studies identified anti-CCP positivity in 7.5-10% of

SS patients (11). These overlapping serological profiles, combined

with the absence of definitive radiographic changes in early disease

stages, create differential diagnostic uncertainty that can delay

appropriate therapeutic intervention. Accurate differentiation

between these conditions is essential for therapeutic decision-

making, as RA-SS patients require earlier and more aggressive

disease-modifying antirheumatic drug therapy to prevent

irreversible joint damage.

Previous investigations frequently utilized conventional

statistical approaches such as logistic regression (LR) to analyze

multiple variables and evaluate diagnostic performance through

receiver operating characteristic (ROC) curves (12–14). Despite

their capacity for multivariate analysis, these methodologies exhibit

inherent constraints in dimensionality reduction, feature selection,

and non-linear pattern recognition, particularly when confronted

with complex interparametric relationships across clinical,

serological, and radiographic domains.

Recently, artificial intelligence has demonstrated remarkable

progress in autoimmune disease diagnostics, with recent

comprehensive reviews highlighting its transformative potential

across rheumatological applications (15). Machine learning

approaches have shown substantial advantages in handling

heterogeneous clinical datasets, with the random forest algorithm

integrating hand imaging and functional metrics demonstrating
Frontiers in Immunology 02
exceptional discriminatory capacity between RA patients and

healthy controls (16). More complex machine learning methods,

particularly deep learning approaches, have been increasingly

applied to rheumatological imaging tasks. Recent studies have

demonstrated the effectiveness of deep learning radiomics fusion

models for ultrasound-based bone erosion identification in RA

patients, achieving area-under-curve values exceeding 0.93 in

external validation (17). Deep learning approaches applied to

metacarpophalangeal joint ultrasound imaging in RA have shown

excellent discriminative ability between normal and pathological

synovium, with performance metrics exceeding 0.8 in AUC (18).

These diverse machine learning applications demonstrate the

potential to identify complex feature patterns undetectable by

conventional statistical methods. Accordingly, this study aims to

develop machine learning-based differential diagnostic models

incorporating demographic characteristics, clinical manifestations,

laboratory parameters, and radiographic findings to establish robust

differential diagnostic algorithms distinguishing SS-PA from RA-

SS, thereby providing more precise diagnostic criteria for

clinical implementation.
Materials and methods

This study was approved by the Ethics Committee of Ningbo

No.2 Hospital (YJ-NBEY-KY-2023-143-01) and adhered to all

principles established in the Declaration of Helsinki. Given the

retrospective, observational design, the ethics committee granted a

waiver of individual informed consent. Patient confidentiality was

maintained through comprehensive deidentification procedures,

with systematic removal of all personal identifiers from electronic

health records prior to analysis in accordance with institutional

privacy standards.
Study population

Clinical data from arthritis patients presenting to the

Department of Rheumatology and Immunology between January

2018 and June 2024 were retrospectively analyzed. RA was

diagnosed according to the 2010 Rheumatoid Arthritis

Classification Criteria (19). SS was defined according to the 2002

American-European Consensus Group (AECG) or 2012 American

College of Rheumatology (ACR) classification criteria (20, 21). All

patients underwent standardized diagnostic and treatment

protocols administered by experienced rheumatology

specialists.For this study, RA-SS patients were defined as those

concurrently meeting both RA and SS criteria. Patients were

included if they had complete demographic and laboratory data

and had undergone standard imaging during their initial

consultation. Exclusion criteria comprised severe hepatic or renal

impairment, concomitant malignancy, other rheumatic

autoimmune diseases (ankylosing spondylitis, gout, systemic

lupus erythematosus), the presence of trauma, infection, or other

bone and joint disorders.
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Ultimately, a total of 241 patients met the selection criteria,

including 106 with RA-SS and 135 with SS-PA. Patients were

randomized to training and validation cohorts (7:3 ratio),

resulting in 169 training set (74 RA-SS, 95 SS-PA) and 72

validation set (32 RA-SS, 40 SS-PA), as illustrated in Figure 1.
Radiological examination

Radiological assessment employed peripheral joint radiographs

as the primary imaging modality, with particular emphasis on

bilateral hands and wrists. Magnetic resonance imaging was

selectively performed in cases requiring further clarification of

bone erosion. Imaging analysis documented structural

abnormalities including erosive changes, symmetrical joint

involvement patterns, and distribution of affected joint sites. All

radiological data underwent independent evaluation by two

experienced radiologists, with discrepancies resolved through

consensus discussion.
Data collection

Data acquisition comprised demographic variables (age, sex,

disease duration), primary clinical manifestations (sicca symptoms,

cutaneous lesions, parotid enlargement, Raynaud’s phenomenon,

tender, and swollen joint counts), and systemic organ involvement
Frontiers in Immunology 03
(hematological, neurological, pulmonary, and renal manifestations).

Laboratory testing targeted hematological indices, inflammatory

markers, autoantibody profiles, and immunological parameters.

All laboratory examinations adhered to standardized protocols.

Complete blood count and erythrocyte sedimentation rate (ESR)

were measured using a Beckman Coulter LH 750 analyzer

(Beckman Coulter Inc., California, USA). Additionally,

antinuclear antibodies (ANA) were evaluated by indirect

immunofluorescence (positive: titer ≥1:80), while anti-Ro/SSA

and anti-La/SSB antibodies were detected via immunoblotting.

Immunonephelometry measured rheumatoid factor (positive: ≥20

IU/mL), complement component 3 (C3) and 4 (C4), C-reactive

protein (CRP), and immunoglobulins. Anti-cyclic citrullinated

peptide (anti-CCP) antibodies were quantified using

chemiluminescence immunoassay (positive: >5 U/mL).
Data processing

The analytical framework incorporated 46 feature variables

encompassing demographic characteristics, clinical manifestations,

radiological findings, and laboratory parameters. Original medical

records were reviewed by two investigators independently to ensure

data extraction accuracy. Continuous variables underwent z-score

standardization (mean=0, standard deviation=1), while categorical

variables were transformed into numerical features through one-hot

encoding. Least Absolute Shrinkage and Selection Operator (LASSO)
FIGURE 1

Flow diagram of patient selection for this study. RA-SS, rheumatoid arthritis-Sjögren’s syndrome overlap; SS-PA, Sjögren’s syndrome with
polyarthritis.
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regression with 10-fold cross-validation was implemented for feature

selection. The optimal regularization parameter l was determined

through cross-validation on the training dataset. The final diagnostic

model included variables that retained non-zero coefficients with

stable magnitudes across multiple iterations of the cross-

validation procedure.
Model development

Four machine learning algorithms were developed for SS-PA

and RA-SS differentiation: LR, support vector machine (SVM),

random forest, and extreme gradient boosting (XGBoost). LR

incorporated L2 regularization, with strength parameters

logarithmically spaced from 0.001 to 10. The SVM algorithm

utilized a radial basis function kernel, systematically evaluating

kernel parameter g (logarithmically spaced from 0.001 to 0.1) and

penalty coefficient C (logarithmically spaced from 1 to 100), with a

tolerance of 0.0001. Random forest parameters were optimized

across tree numbers (100-500), maximum depth (4-8), and

minimum samples for split (2-10), employing bootstrap sampling

with a ratio of 0.8. For XGBoost, learning rates (0.01-0.2), number

of trees (100-300), and maximum depth (3-6) were evaluated, with

subsample and feature sample ratios fixed at 0.8. Early stopping

criteria monitored validation loss. Grid search optimization

determined optimal parameter combinations through iterative

evaluation across the cross-validation folds.

Model performance was assessed using 10-fold cross-validation.

The training set underwent random division into 10 subsets, with

models iteratively trained on nine subsets and validated on the

remaining subset. The complete model training code is provided in

the Supplementary Appendix.
Statistical analysis

Continuous variables were expressed as mean (SD) or median

(Q1, Q3) based on their distribution normality, while categorical

variables were presented as numbers (percentages). Comparative

analyses between groups were conducted using independent t-test

or Wilcoxon rank-sum test for continuous variables and chi-square

test for categorical variables. Model performance was evaluated

using accuracy, sensitivity, specificity, area under the receiver

operating characteristic curve (AUC), and additional diagnostic

metrics, with 95% confidence intervals calculated through bootstrap

resampling. The DeLong test was employed to compare

AUCs between different models. Subsequently, the SHapley

Additive exPlanations (SHAP) method was utilized to quantify

feature contributions to model classification and rank overall

feature importance.

Data preprocessing and model development were implemented

using Python (version 3.8) and scikit-learn (version 1.0) library.

SHAP analysis was performed using the SHAP library (version

0.40). Statistical significance was set at P < 0.05.
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Results

Baseline characteristics

The study enrolled 241 patients, predominantly female

(95.02%), with median age of 54 years and median disease

duration of 60 months. Exocrine glandular dysfunction presented

as ocular and oral dryness in 81.33% and 69.29% of patients,

respectively. Articular involvement was prevalent, characterized

by symmetrical distribution (86.72%) and hand joint arthritis

(77.18%), with clinical features of synovitis and radiographic

erosions in a subset of patients. Extraglandular manifestations

included Raynaud’s phenomenon (34.02%), lung (19.09%) and

neurological (20.75%) involvement, and renal impairment

(14.94%). No significant differences in demographic or clinical

parameters were observed between training and validation sets

(Table 1, all P>0.05).
Laboratory evaluation

Laboratory results demonstrated significant immunological

abnormalities in the study population (Table 2). Autoantibody

profiles showed high positivity rates for ANA (78.84%), anti-SSA/

Ro52 (70.12%), anti-SSA/Ro60 (59.75%), RF (61.41%), and anti-

CCP (47.30%). Immunological parameters showed a median IgG

level of 16.75 g/L, and hypergammaglobulinemia was present in

40.66% of patients. All laboratory parameters, including

hematological indices, inflammatory markers, autoantibody

profiles, and immunological parameters showed comparable

distributions between training and validation sets (all P>0.05).
Feature selection

LASSO regression identified 18 statistically significant factors

from the initial 46 features through 10-fold cross-validation for

optimal penalty parameter determination (Figure 2A). The selected

feature set encompassed variables across multiple dimensions,

including clinical symptomatology, immunological parameters,

and radiographic findings, integrating key indicators of joint

involvement and immunological abnormalities. Coefficient

trajectory analysis (Figure 2B) revealed notable stability of

autoantibody markers throughout the penalization process, with

anti-CCP antibodies and RF maintaining relatively high coefficient

values. In addition, bone erosion-related parameters exhibited

consistent contributions across most penalization levels.
Model evaluation

In the training set, all algorithms (random forest, SVM,

XGBoost, LR) exhibited excellent discriminative capacity with

AUC values exceeding 0.85, with random forest demonstrating
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superior overall performance (Figures 3A–C). Evaluation on the

validation set revealed significant inter-algorithm performance

differences. As illustrated in Figure 3D, random forest and

XGBoost maintained robust discriminative capacity, with AUC

values of 0.854 and 0.844, respectively. In contrast, SVM and LR

showed marked performance deterioration, with AUC values of

0.678 and 0.574, respectively. Statistical comparison by the DeLong

test confirmed significant superiority of random forest and

XGBoost over SVM and LR (p<0.05). Decision curve analysis

(Figure 3E) demonstrated sustained high net benefit for random

forest and XGBoost across the 0.4-0.8 threshold probability range,

while SVM exhibited substantial decline beyond 0.4 threshold and

LR consistently yielded suboptimal net benefit. Calibration curves

(Figure 3F) revealed comparable probability estimation properties

between random forest and XGBoost algorithms. Comprehensive

evaluation of performance metrics showed identical sensitivity

between random forest and XGBoost. However, random forest

demonstrated modest superiority in accuracy, specificity,

precision, F1 score, and kappa coefficient (Figure 4; Table 3).
Frontiers in Immunology 05
Feature importance

The SHAP value analysis revealed key features influencing

model output (Figure 5A). Anti-CCP level emerged as the most

discriminative factor, with elevated values positively correlating

with RA-SS classification. Moreover, RF demonstrated a positive

association effect, with increased levels enhancing RA-SS

identification probability. Erosive joint count, anti-SSA/Ro60

positivity, and CRP level exhibited positive associations with RA-

SS classification.

Mean absolute SHAP value analysis (Figure 5B) further

quantified the impact magnitude of each feature, with anti-CCP

level demonstrating the highest mean absolute SHAP value

(approximately 0.4), substantially exceeding other indicators. RF

level, erosive joint count, anti-SSA/Ro60 positivity, and CRP level

displayed moderate contributions. Comparatively, anti-SSB/La,

tender joint count, swollen joint count, IgG, symmetric arthritis,

ESR, and IgA exhibited relatively limited influence in distinguishing

between the two disease categories.
TABLE 1 Comparison of demographic and clinical features between training and validation sets.

Factors All (n=241) Training set (n=169) Validation set (n=72) P value

Age, years 54 (42, 69) 54 (41, 68) 56.5 (43.75, 72) 0.365

Female, N (%) 229 (95.02) 160 (94.67) 69 (95.83) 0.956

Diabetes duration, months 60 (29, 82) 59 (29, 83) 61 (28.25, 82) 0.820

Clinical manifestations

Xerophthalmia, N (%) 196 (81.33) 136 (80.47) 60 (83.33) 0.602

Xerostomia, N (%) 167 (69.29) 119 (70.41) 48 (66.67) 0.564

Salivary gland enlargement, N (%) 29 (12.03) 21 (12.43) 8 (11.11) 0.774

Rash, N (%) 15 (6.22) 11 (6.51) 4 (5.56) 0.991

Raynaud phenomenon, N (%) 82 (34.02) 57 (33.73) 25 (34.72) 0.881

Symmetric arthritis, N (%) 209 (86.72) 146 (86.39) 63 (87.50) 0.816

Hand arthritis, N (%) 186 (77.18) 132 (78.11) 54 (75.00) 0.599

Swollen joint count 7 (6, 9) 8 (6, 9) 7 (6, 9) 0.545

Tender joint count 9 (7, 11) 9 (7, 11) 9 (7, 11) 0.702

Erosive joint count 2 (1, 4) 2 (1, 5) 2 (1, 4) 0.893

Anemia, N (%) 57 (23.65) 39 (23.08) 18 (25) 0.748

Leukopenia, N (%) 23 (9.54) 16 (9.47) 7 (9.72) 0.951

Lymphopenia, N (%) 26 (10.79) 19 (11.24) 7 (9.72) 0.728

Thrombocytopenia, N (%) 16 (6.64) 12 (7.10) 4 (5.56) 0.874

Lung involvement, N (%) 46 (19.09) 32 (18.93) 14 (19.44) 0.927

Renal involvement, N (%) 36 (14.94) 25 (14.79) 11 (15.28) 0.923

Nervous system involvement, N (%) 50 (20.75) 36 (21.30) 14 (19.44) 0.745
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Discussion

RA-SS represents an autoimmune pathological overlap between

RA and SS with complex and severe clinical manifestations.

According to large-scale data from the American Corrona RA

registry, the comorbidity rate of SS in RA patients reaches

approximately 30% (22). SS coexistence likely exacerbates RA

disease burden and diminishing quality of life. It also correlates

with increased disease severity, elevated lymphoma risk, and poorer
Frontiers in Immunology 06
prognosis (23). Joint structural damage constitutes a critical

prognostic factor in RA-SS patients, manifesting as progressive

bone erosion, joint space narrowing, and osseous destruction. Non-

erosive arthritis, conversely, suggests SS-PA consideration (24). Based

on this clinical distinction, early identification and intervention for

RA-SS hold significant clinical importance for preventing irreversible

joint structural damage, potentially enhancing patients’ long-term

quality of life. This investigation employed machine learning

algorithms to construct diagnostic models, providing innovative
TABLE 2 Comparison of laboratory parameters between training and validation sets.

Factors All (n=241) Training set (n=169) Validation set (n=72) P value

PLT, ×109/L 236 (177, 279) 236 (180, 282) 236 (173, 277) 0.658

WBC, ×109/L 6.60 (5.24, 7.92) 6.55 (5.11, 7.70) 6.70 (5.37, 8.32) 0.244

ANC, ×109/L 3.70 (2.73, 4.75) 3.73 (2.80, 4.75) 3.56 (2.56, 4.72) 0.494

ALC, ×109/L 2.64 (1.51, 3.72) 2.61 (1.51, 3.69) 2.74 (1.60, 3.86) 0.499

Hb, g/L 119 (114, 125) 118 (114, 125) 119 (114, 125) 0.636

Alb, g/L 40.11 (37.69, 44.81) 40.04 (37.63, 44.61) 40.13 (37.81, 45.29) 0.492

Glb, g/L 32.25 (26.02, 34.41) 32.23 (25.78, 34.46) 32.30 (26.17, 34.40) 0.767

Cr, mmol/L 59.85 (49.45, 79.90) 59.85 (49.45, 79.90) 61.52 (49.58, 79.97) 0.906

BUN, mmol/L 5.54 (4.33, 6.25) 5.56 (4.45, 6.25) 5.52 (4.19, 6.13) 0.464

CRP, mg/L 4.33 (2.73, 5.97) 4.30 (2.81, 6.10) 4.36 (2.63, 5.84) 0.814

ESR, mm/h 18 (13, 22) 18 (12, 23) 17 (13, 22) 0.531

ANA, 1/titer 210 (120, 300) 210 (120, 290) 210 (127.5, 302.5) 0.410

ANA positivity, N (%) 190 (78.84) 133(78.70) 57 (79.17) 0.935

Anti-SSA/Ro52 positivity, N (%) 169 (70.12) 118 (69.82) 51 (70.83) 0.875

Anti-SSA/Ro60 positivity, N (%) 144 (59.75) 102 (60.36) 42 (58.33) 0.770

Anti-SSB/La positivity, N (%) 58 (24.07) 42 (24.85) 16 (22.22) 0.662

Anti-dsDNA positivity, N (%) 19 (7.88) 13 (7.69) 6 (8.33) 0.866

Anti-Sm positivity, N (%) 14 (5.81) 10 (5.92) 4 (5.56) 0.849

ACA positivity, N (%) 16 (6.64) 11 (6.51) 5 (6.94) 0.874

C3, g/L 0.92 (0.69, 1.07) 0.94 (0.63, 1.08) 0.93 (0.70, 1.08) 0.568

C4, g/L 0.23 (0.17, 0.29) 0.23 (0.17, 0.29) 0.24 (0.17, 0.30) 0.426

RF positivity, N (%) 148 (61.41) 105 (62.13) 43 (59.72) 0.725

RF, IU/mL 41.20 (12.91, 72.84) 41.20 (12.52, 72.84) 40.87 (13.64, 75.57) 0.882

Ig G, g/L 16.75 (14.23, 21.37) 16.62 (14.25, 20.32) 16.84 (14.10, 21.32) 0.573

Ig A, g/L 2.85 (2.10, 4.32) 2.71 (2.08, 4.31) 2.87 (2.28, 4.29) 0.589

Ig M, g/L 1.18 (0.84, 1.75) 1.14 (0.84, 1.65) 1.18 (0.87, 1.75) 0.781

Anti-CCP, U/mL 4.97 (2.21, 20.88) 4.95 (2.23, 20.85) 5.04 (2.23, 21.55) 0.610

Anti-CCP positivity 114 (47.30) 80 (47.34) 34 (47.22) 0.987

HGG, N (%) 98 (40.66) 68 (40.24) 30 (41.67) 0.836
PLT, platelet count; WBC, white blood cell count; ANC, absolute neutrophil count; ALC, absolute lymphocyte count; Hb, hemoglobin; Alb, albumin; Glb, globulin; Cr, creatinine; BUN, blood
urea nitrogen; CRP, C-reactive protein; ESR, erythrocyte sedimentation rate; ANA, antinuclear antibody; Anti-SSA/Ro52, anti-sjögren’s syndrome-related antigen A/Ro52 antibody; Anti-SSA/
Ro60, anti-sjögren’s syndrome-related antigen A/Ro60 antibody; Anti-SSB/La, anti-sjögren’s syndrome-related antigen B/La antibody; Anti-dsDNA, anti-double-stranded DNA antibody; Anti-
Sm, anti-smith antibody; ACA, anti-centromere antibody; C3, complement component 3; C4, complement component 4; RF, rheumatoid factor; IgG, immunoglobulin G; IgA, immunoglobulin
A; IgM, immunoglobulin M; Anti-CCP, anti-cyclic citrullinated peptide antibody; HGG, hypergammaglobulinemia.
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methodology for early RA-SS identification. Results demonstrated

that among four evaluated machine learning models, the random

forest algorithm exhibited superior performance with validation set

AUC reaching 0.854, surpassing the traditional LR algorithm. SHAP

analysis identified anti-CCP level as the most discriminative factor,

and RF level, erosive joint count, anti-SSA/Ro60 positivity, and CRP
Frontiers in Immunology 07
level showed close associations with RA-SS diagnosis. Although these

factors represent established biomarkers, our integration of joint

manifestations with serological parameters through machine

learning methodology enhanced differential diagnostic precision

and provided objectively quantified diagnostic parameters for

clinical practice.
FIGURE 3

Performance evaluation of various machine learning classification algorithms. (A) ROC curves of algorithms in the training set; (B) Decision curve
analysis in the training set; (C) Calibration curves in the training set; (D) ROC curves in the validation set; (E) Decision curve analysis in the validation
set; (F) Calibration curves in the validation set. RF, random forest; SVM, support vector machine; XGBoost, extreme gradient boosting; LR, logistic
regression; ROC, receiver operating characteristic.
FIGURE 2

LASSO regression analysis for feature selection. (A) Cross-validated deviance curve against log(l), where l is the regularization parameter; vertical
dotted lines indicate optimal l values; (B) LASSO coefficient profiles across log(l) values. LASSO, least absolute shrinkage and selection operator.
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This study population exhibited a predominantly female gender

distribution with peak incidence in middle-aged adults, which is a

demographic pattern consistent with established literature on SS (25,

26). Sicca symptoms (xerostomia and xerophthalmia) were prevalent

among subjects and demonstrated similar patterns across different
Frontiers in Immunology 08
disease subtypes, reflecting the exocrine gland dysfunction

characteristic of SS in both patient groups. Regarding treatment

approaches, RA-SS patients have historically required more intensive

immunosuppressive regimens. Observational studies demonstrated

higher proportions of glucocorticoid and methotrexate utilization in
TABLE 3 Comparative model performance metrics in the validation set.

Metrics Random forest XGBoost SVM LR

AUC (95% CI) 0.854 (0.747-0.944) 0.844 (0.738-0.939) 0.678 (0.551-0.808)* 0.574 (0.446-0.704)*

Accuracy 0.83 0.82 0.64 0.56

Sensitivity 0.79 0.79 0.38 0.26

Specificity 0.87 0.84 0.87 0.82

Precision 0.84 0.82 0.72 0.56

Recall 0.79 0.79 0.38 0.26

F1 0.82 0.81 0.50 0.36

Kappa 0.66 0.64 0.26 0.08

Brier 0.14 0.15 0.23 0.25
As against the random forest, *p < 0.05. SVM, support vector machine; XGBoost, extreme gradient boosting; LR, logistic regression; AUC, area under the curve.
FIGURE 4

Confusion matrices of machine learning algorithms in the validation set display the distribution of true and predicted classifications. (A) Confusion
matrix of the LR algorithm; (B) Confusion matrix of the RF algorithm; (C) Confusion matrix of the XGBoost algorithm; (D) Confusion matrix of the
SVM algorithm. RF, random forest; SVM, support vector machine; XGBoost, extreme gradient boosting; LR, logistic regression.
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RA-SS patients compared to SS-PA counterparts, correlating with

increased disease activity and erosive joint inflammation (27). Both

patient groups typically receive DMARD therapy, though specific

medication selection and dosing may differ based on predominant

disease manifestations. This therapeutic distinction further underscores

the importance of precise differential diagnosis in guiding clinical

decision-making and optimizing treatment outcomes.

Analysis of joint involvement patterns reveals distinct disease-

specific manifestations. This study employed comprehensive articular

assessment metrics including symmetric arthritis proportion, hand

joint involvement proportion, and quantification of swollen, tender,

and erosive joints, that collectively reflect distribution patterns,

inflammatory burden, and structural integrity. Patients with RA-SS

demonstrate persistent symmetric polyarthropathy with characteristic

hand joint involvement, sustained synovitis, and distinctive marginal

bone erosions on radiographic evaluation (28, 29). Primary SS

manifests articular involvement as its predominant extraglandular

feature, typically characterized by intermittent presentation and

preservation of structural integrity on imaging studies (30). The

clinical distinction becomes particularly challenging in early-stage or

atypical presentations, where significant phenotypic overlap exists

between SS-PA and RA-SS. Mohammed et al. (31) reported that

53% of SS-PA patients exhibit erosive radiographic features

indistinguishable from RA, which underscores the necessity for more

nuanced assessment methodologies when evaluating conditions with

overlapping phenotypic expressions.

Clinical immunological studies demonstrate RF and anti-CCP

antibodies are widely present in RA-SS patient sera. The production

of these antibodies is closely associated with protein citrullination

and plays a key role in disease pathogenesis and articular

destruction progression. RF has been used as an RA marker for

over five decades and remains the most common diagnostic

indicator. The literature reports RF positivity in 70-90% of RA

cases and 36-74% of SS patients (32, 33). In contrast, anti-CCP,

secreted by B lymphocytes, demonstrates positivity in early RA

stages and shows high sensitivity and specificity for RA patients,
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serving as a highly specific marker for early diagnosis and

progression prediction (34).

The SHAP analysis revealed anti-CCP level, RF level, and erosive

joint count as critical factors for distinguishing RA-SS. These results are

highly consistent with research by Yang et al. (35) establishing arthritis,

RF, and anti-CCP as independent risk factors for RA-SS overlap. A

retrospective analysis of 355 patients found that RF and anti-CCP

levels, anti-Ro/SS-A positivity, and renal involvement can effectively

differentiate high-risk RA-SS populations, consistent with the

immunological marker profile identified in this study (27). Anti-

Ro60 antibodies frequently occur in SS but may participate in more

complex immunopathological processes in RA-SS patients. Studies

have indicated that anti-Ro60 positive RA patients exhibited stronger

inflammatory responses and more severe joint destruction, possibly

due to Ro60-mediated RNA metabolic abnormalities enhancing

inflammatory cascades (36, 37). Methodologically, their study

primarily utilized conventional clinical serology and systemic

manifestations for analysis (27), whereas the present investigation

incorporated more refined joint damage assessment parameters. As a

core pathological feature of RA, quantitative assessment of joint erosion

may provide more direct evidence for RA-SS differential diagnosis.

Notably, previous studies have provided valuable clinical

evidence but relied primarily on LR for risk factor analysis (27, 35).

This approach may insufficiently capture complex multidimensional

features and non-linear relationships in autoimmune disorders.

Machine learning algorithms have become increasingly used in

medical applications due to their capacity to analyze complex data

structures and recognize latent patterns. This study evaluated four

distinct machine learning algorithms for RA-SS/SS-PA differential

diagnosis. Among the evaluated algorithms, the random forest

demonstrated superior performance over both logistic regression

and other machine learning methods. The ensemble nature of

random forest, combined with its ability to capture non-linear

relationships and complex feature interactions, proved particularly

effective for distinguishing between these clinically overlapping

autoimmune conditions. The algorithm’s performance was further
FIGURE 5

SHAP analysis of feature importance in the random forest algorithm. (A) Distribution of SHAP values for each feature, demonstrating the impact of
individual predictors on model output. Each point represents a single observation, with color indicating feature value; (B) Mean absolute SHAP values
quantifying the average magnitude of feature contributions to model outputs, arranged in descending order of importance. SHAP, SHapley Additive
exPlanations.
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enhanced by the focused feature set obtained through LASSO

regression preprocessing. While deep learning approaches continue

to advance rheumatological diagnostics, our study design prioritized

traditional machine learning methodologies based on the specific

characteristics of our clinical dataset. The mixed nature of our

variables, comprising both categorical and continuous clinical

parameters, aligned well with the strengths of ensemble-based

algorithms. Furthermore, the emphasis on clinical interpretability

in differential diagnosis guided our selection toward methods that

provide transparent decision pathways for practitioners (38).

This study has several limitations. First, the retrospective design

introduces selection bias that may affect result generalizability. Second,

this was a single-center study, which may limit external validity across

different populations and clinical settings. Third, while our sample size

of 241 patients is adequate for binary classification studies, it remains

relatively limited for comprehensive machine learning modeling,

particularly for deep learning approaches, which may limit statistical

power and affect the precision of performance estimates. Fourth, our

validation strategy employed a single train-test split approach rather

than cross-validation. While this approach avoids data leakage and

provides unbiased performance estimates, it uses less data for training

and provides performance estimates based on one specific data

partition, which may be less robust than estimates derived from

multiple validation rounds. Furthermore, the radiographic

assessment was restricted to three parameters (erosive joint count,

hand joint involvement proportion, and symmetric arthritis

distribution) without incorporating comprehensive structural damage

indices or advanced imaging modalities, potentially limiting complete

characterization of articular pathology. Future prospective multicenter

studies with larger cohorts and advanced imaging are needed to

improve diagnostic accuracy. Expanded datasets would also enable

exploration of deep learning methodologies, which may offer enhanced

pattern recognition capabilities for complex autoimmune disease

classification tasks.
Conclusion

In conclusion, this study demonstrates the substantial clinical

utility of the random forest algorithm in differentiating RA-SS from

SS-PA, with the identification of key discriminatory parameters

including anti-CCP and RF levels, erosive joint count, anti-SSA/

Ro60 positivity, and CRP value. These findings enhance the

diagnostic criteria available to clinicians, potentially facilitating

earlier detection and therapeutic intervention in RA-SS cases,

with subsequent implications for improved patient outcomes.
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