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The complexity of the tumor immune microenvironment (TIME), which is 
composed of mainly tumor cells, immune cells, and cytokines, is a major 
obstacle limiting the effectiveness of immunotherapy, and the interactions 
among these factors in the TIME determine the efficacy of antitumor 
immunity. Over the past few years, nanomaterials, owing to their unique 
physicochemical properties, multifunctionality, and good targeting ability, have 
gradual ly  become  important  tools  for  modulat ing  the  immune  
microenvironment. By precisely delivering immunomodulatory factors, 
nanomaterials can effectively activate dendritic cells (DCs), enhance the 
function of effector T cells, and reverse the immunosuppressive state of 
tumor-associated macrophages (TAMs). In addition, nanomaterials can alleviate 
the local hypoxic and acidic tumor microenvironment, which in turn promotes 
immune cell function and enhances the antitumor immune effect. In light of the 
aforementioned associations, we summarize the existing studies, systematically 
describe the latest research progress on the use of nanomaterials in regulating 
the tumor immune microenvironment, and analyze the potential applications 
and challenges in tumor immunotherapy, with the goal of providing new 
therapeutic directions and strategies for tumor immunotherapy. 
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1 Introduction 

Tumor immunotherapy, a major breakthrough in cancer 
treatment in recent years, works by activating the body’s immune

defense system so that it can recognize and remove tumor cells. 
Immune cells constitute the cytological basis of immunotherapy. 
Therefore, understanding immune infiltration in the tumor immune 
microenvironment (TIME) is key to improving the potency of 
immunotherapy and developing new immunotherapeutic 
approaches (1). The tumor microenvironment is defined by 
cytokines and chemokines that facilitate immune suppression and 
an inflammatory condition. TME influences tumor differentiation, 
spread, and immune evasion. The TIME is a part of the tumor 
microenvironment (TME), and the TIME changes dynamically; as 
the tumor progresses, the immune system shifts from an 
immunosurveillance state to an immunosuppressive state. Initially, 
immune cells in the immune microenvironment attempt to attack 
tumor cells. On the other hand, as the cancer progresses, it alters the 
microenvironment, thereby suppressing the immune response 
(2).Nanoparticles possess unique properties (3, 4), and their precise 
delivery and targeting abilities and modifiability have made them 
important tools for modulating the TIME. These properties enable 
nanoparticles to deliver therapeutics directly to specific immune cells 
at the tumor site or in the tumor microenvironment, thus improving 
targeting. In addition, nanoparticles can be optimized to adjust the 
immune response, both by boosting antitumor immune cells and by 
suppressing immunosuppressive components of the tumor 
microenvironment (5). Not only do nanomaterials have many 
advantages, but nanomedicines are also advancing immuno

oncology research through their ability to deliver a variety of 
payloads and favorable molecular pharmacokinetics (6). The 
aforementioned benefits demonstrate that nanomaterials can 
effectively target drug delivery, influence immune cell activity, 
enhance  drug  delivery  efficiency,  and  alter  the  tumor  
microenvironment. In recent years, the role of tumor-associated 
immune cells has led to new advances in tumor immunotherapy; 
thus, remodeling the TIME is a useful strategy for cancer treatment 
and immunotherapy (7, 8). 
2 Characterization of the tumor 
immune microenvironment 

The tumor microenvironment is a highly complex system 
consisting mainly of tumor cells, infiltrating immune cells, 
cancer-associated stromal cells, endothelial cells and adipocytes 
(9). In contrast, multiple immune cell populations in the tumor 
microenvironment, including inherent and adaptive immune cells, 
such as myeloid and lymphoid cells, constitute a major part of the 
TIME (10). In addition, other cell types, such as cancer-associated 
fibroblasts (CAFs), are also present in the TIME; the interactions 
between these cells and their functions together determine the role 
of the TIME in tumor progression (11, 12). 
Frontiers in Immunology 02 
2.1 Cellular composition 

The TIME consists of a complex network of multiple immune 
cell subtypes, cancer cells and stromal cells, which play key roles in 
tumor growth and disease progression (13). T lymphocytes, B 
lymphocytes, natural killer cells, dendritic cells, macrophages, 
myeloid-derived suppressor cells (MDSCs), fibroblasts and 
endothelial cells interact with tumor cells via sophisticated signaling 
pathways, forming a dynamic microenvironment (14, 15). The tumor 
immune microenvironment (TIME) is primarily composed of 
different immune cell populations found within the tumor 
microenvironment (TME), such as myeloid cells and lymphocytes, 
which include both innate and adaptive immune cells (16). IL-10 and 
analogous anti-inflammatory cytokines and chemokines can suppress 
the cytotoxic function of T cells and NK cells (17). 
2.2 Immune escape 

The immune system shifts from a surveillance state to an 
immunosuppressive state as the tumor progresses (18). Tumor 
cells evade immune surveillance through a variety of mechanisms, 
which together result in the formation of an immunosuppressive 
tumor microenvironment. The main mechanisms are shown in 
Table 1 (Figure 1). 
3 Tumor immunotherapy 

Tumor immunotherapy is a therapeutic approach that 
mobilizes the body’s own immune system to attack tumor cells. 
In the last several years, immunotherapy has achieved remarkable 
advancements in the treatment of a wide range of cancers, making it 
one of the most important Strategies for the treatment of cancer. 

Immune checkpoints, such as cytotoxic T-lymphocyte antigen
4 (CTLA4) and programmed cell death-1 (PD-1), are cell surface 
proteins that mainly control the initiation, duration and intensity of 
the immune response (19). The interaction between CTLA-4, PD-1 
and PD-L1 increases the activity of protein phosphatase 2 and Src 
homology region 2 domain-containing phosphatases, inhibiting T-
cell activity (20). In contrast, immune checkpoint blockade (ICB) 
therapy, targets T-cell regulatory pathways with immune 
checkpoint inhibitors to enhance antitumor immune responses, 
and this treatment has been shown to significantly improve patient 
survival compared with conventional cancer therapy (21). Chimeric 
antigen receptor T-cell (CAR-T) therapy is another type of cancer 
immunotherapy. Chimeric antigen receptor (CAR) refers to a 
synthetic receptor that enables lymphocytes to recognize and 
destroy cells expressing a specific target antigen. CAR activates T 
cells and enhances immune responses by binding to target antigens 
expressed on the cell surface independently of MHC receptors (22). 
However, CAR-T-cell therapy still has several limitations, including 
life-threatening CAR-T-cell-related toxicity, inhibition of 
malignant B cells, antigen escape, and poor durability (23). 
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Therefore, there is an urgent need to identify new therapeutic 
means. In addition, tumor vaccines have been put into clinical 
use as a therapy to activate T cells and thus enhance immune 
responses. Currently, there are three main therapeutic tumor 
vaccines: cellular vaccines, peptide vaccines, and nucleic acid 
vaccines. The primary function of tumor vaccines is mainly to 
increase the infiltration of tumor-infiltrating lymphocytes in the 
tumor microenvironment or to increase their antitumor activity 
(24). However, some limitations in the clinical application of tumor 
vaccines remain. In addition, some cytokines in the tumor 
microenvironment such as interleukin-2 (IL-2), interferon-a 
(interferon-a, IFNa) and interferon-g (interferon-g, IFNg) have 
also been used in immunotherapy approaches (25). Hypoxia and 
cytokine signaling pathways, which involve proinflammatory 
mediators such TNF-a and IFN-g, are the main adaptive 
signaling pathways that upregulate immune checkpoint molecules 
(26).Consequently, it aids in preserving immunological tolerance 
and preventing assaults from the immune system. However, the 
Frontiers in Immunology 03 
clinical application of these therapies has also been hampered by 
their short duration and strong toxicity (27). 

Although the above therapies have certain therapeutic effects, 
they still have certain limitations and shortcomings, so the search 
for new therapeutic means is one of the urgent clinical problems to 
be solved (Figure 2). 
4 Application of nanomaterials in 
modulating the tumor immune 
microenvironment 

Owing to their small size and excellent physical, chemical and 
biological properties, nanomaterials have good potential for 
applications in medicine, energy, environmental protection, and 
electronics (28). Nanomaterials can act on complex and variable 
environments in the TIME and can specifically bind to 
immunosuppressive cells, thus improving immunotherapy efficacy. 
In addition, drug delivery systems constructed with nanoparticles 
have become favorable strategies for cancer treatment; for example, 
the main advantage of the utilization of nanoparticles as vehicles for 
drugs is that they can encapsulate the drug and transport it directly to 
tumor cells, which not only reduces drug toxicity but also maximizes 
the efficacy of the drug. Therefore, nanoparticles can be specifically 
developed to target components of the tumor microenvironment 
(TME) and disrupt the immunosuppressive TME, thereby 
enhancing the efficacy of cancer immunotherapy. Nanomaterials are 
categorized into organic nanomaterials, inorganic nanomaterials, and 
composite nanomaterials according to their composition (29). 
Therefore, in this work, we describe the regulatory effects of the 
above three different types of nanomaterials on the TIME in detail and 
analyze the potential application of these nanomaterials in 
immunotherapy (Figure 3). 
4.1 Organic nanomaterials 

Organic nanomaterials usually consist of naturally occurring 
organisms or compounds. Compared with inorganic materials, they 
are less cytotoxic and biodegradable (30). Organic nanomaterials 
are mainly composed of carbon, hydrogen, oxygen, and nitrogen; 
the biosafety of organic nanoparticles is a prominent advantage, and 
their biodegradability mitigates their accumulation in the body (31). 
Common types include polymer nanoparticles, liposomes, and 
dendrimers (Figure 4). 

4.1.1 Liposomes 
Liposomes consist of sterols, surfactants and natural or 

synthetic phospholipids, such as those that can be obtained from 
egg yolk, soybean and hydrogenated phosphatidylcholine, which 
are degradable, nontoxic and suitable for industrial production (32). 
In addition, liposomes are spherical vesicles with bilayer 
membranes (33). These bilayers are spontaneously formed by 
phospholipids dispersed in an aqueous phase medium, and the 
TABLE 1 Mechanisms of tumor immune escape. 

Mechanisms Effects References 

Production of 
immunosuppressive 
factors 

IL-10: IL-10 is a potent 
immunosuppressive factor that 
inhibits dendritic cell maturation and 
T-cell activity. 
TGF-b: TGF-b inhibits the 
multiplication and functionality of T 
cells, while promoting the 
differentiation and function of 
regulatory T cells. TGF-b production 
in the immunosuppressive 
microenvironment indirectly 
promotes tumor escape. Tumor cells 
escape immune surveillance by 
accumulating mutations that inhibit 
TGF-b signaling. 

(123–125) 

Immunosuppressive Regulatory T cells (Tregs): Tregs are (126, 127) 
cell infiltration essential for the prevention of 

autoimmunity and have a 
suppressive effect on effector T cells. 
MDSCs: MDSCs inhibit specific and 
nonspecific T-cell responses by 
producing large amounts of nitric 
oxide, arginase-1, and 
immunosuppressive cytokines, such 
as IL-10. 

Upregulation of PD-1/PDL-1: PD-1, as an (128–130) 
immune immunosuppressive molecule, 
checkpoint inhibits T-lymphocyte activation and 
molecules promotes T-lymphocyte apoptosis. 

The abnormally high expression of 
PD-L1 in tumor cells is also 
considered to be one of the main 
factors promoting tumor 
immune escape. 

Downregulation of 
antigen-
presenting 
molecules 

Tumor cells inhibit antigen 
presentation and evade immune 
surveillance by downregulating the 
expression of MHC molecules and 
antigen presentation-
related molecules. 

(131) 
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amphiphilic nature of liposomes makes them effective drug carriers 
(34) and  significantly improves the transport of drugs across 
various lipid-based barriers (35). In addition, liposomes can 
improve the therapeutic efficacy of drugs by increasing drug 
solubility and reducing drug toxicity (36). 

Liposomes have been used in a variety of therapeutic 
applications, such as anticancer drugs, antifungal drugs, 
antibiotics, gene therapy, anesthetic drugs, and anti-inflammatory 
drugs. Previous studies have revealed the ability of nanodrug 
de l i v e r y  s y s t ems  t o  modu l a t e  t h e  t umor  immune  
microenvironment and enhance the antitumor immune response 
(37, 38). Gu et al. (39)summarized the many advantages of 
liposomes as carriers,  including their  use as vaccines that

stimulate immune responses, their ability to selectively deliver 
drugs to the tumor microenvironment, and their ability to be 
used  in  conjunct ion  with  other  therapies ,  including  
chemotherapy, radiotherapy and photothermal therapy. Cheng 
et al. (40)mixed hydrogenated (soybean) L-a-phosphatidylcholine 
and 1,2-dioleoyl-3-trimethylammonium propane in a 100:1 weight 
ratio, dissolved them in chloroform and dried them with a rotary 
evaporator to form a lipid film. The liposomal nanoparticles were 
able to deliver cGAMP to macrophages via STING receptors in 
triple-negative breast cancer. cGAMP reprogrammed M2-like 
Frontiers in Immunology 04
macrophages in the TME to M1-like macrophages and increased 
CD4+ and CD8+ T-cell infiltration, thereby enhancing the efficacy of 
breast cancer immunotherapy. In addition, many factors in the 
TME, such as temperature and pH, can influence the action of the 
TME; therefore, Fu et al. (41) developed a temperature-sensitive 
liposome-based delivery system, which was able to remodel the 
immune microenvironmental of tumor lymph nodes and induce 
immunogenic cell death in tumor cells after stimulation by 
photothermal therapy, thus increasing the levels of calmodulin 
and the secretion of high-mobility protein B1 to promote 
dendritic cell maturation. Fu et al. (41) also demonstrated strong 
antitumor immunotherapy against hot and cold tumors when used 
in combination with PD-L1 therapy. In addition to temperature-

sensitive liposomes, pH-sensitive liposomes have been used for 
similar functions. CAFs are prevalent and engage with cancer cells 
and the adjacent tumor microenvironment (TME), significantly 
influencing tumor development, proliferation, and metastasis (42). 
Moreover, CAFs restructure the extracellular matrix by the 
secretion of growth factors, chemokines, and other tumor-

enhancing substances (43). Consequently, there is a growing 
emphasis on CAFs and their integration with nanomaterials to 
modify the tumor microenvironment and improve the effectiveness 
of immunotherapy. Jia et al. (44) fabricated liposomes encapsulated 
FIGURE 1 

Schematic diagram of the tumor immune microenvironment, TIME major immune cells and their interactions. NK cells, helper T cells, IFNg, cytotoxic 
T cells, DCs, etc. 
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in CAFs and tumor cell membranes that were able to specifically 
target CAFs and tumor cells. In addition to drug delivery, liposomal 
vaccines have shown great potential; a previous study revealed that 
a liposomal vaccine consisting of the cationic lipid DOTAP and 
loaded with mRNA was able to induce an immune response against 
melanoma (45). 

4.1.2 Lipid nanoparticles 
Lipid nanoparticles (LNPs) are colloidal nanocarriers ranging 

from 1–100 nm in size. Compared with metal nanoparticles, LNPs 
are more easily removed and accumulate less in the human body; 
thus, LNPs are less toxic to organisms (46). 

LNPs have been extensively studied for use in small interfering 
RNA (siRNA) and messenger RNA (mRNA) delivery. SiRNA 
largely addresses cancer by silencing genes, which is essential for 
tumor development. Among siRNA delivery techniques, liposomal 
nanoparticles are the most thoroughly investigated. Most siRNA 
nanoparticle delivery strategies depend on the increased 
permeability and retention (EPR) effect to increase tumor 
accumulation. The EPR effect can enhance the diffusion of siRNA 
nanoparticles to several organs (47). 
Frontiers in Immunology 05 
Compared with cationic liposomes, these lipids are neutral at 
physiological pH, are protonated at low pH, and have the 
advantages of greater biocompatibility and lower cytotoxicity 
(48). CRISPR/Cas is a gene editing technology, the RNA and 
protein constituents of the CRISPR/Cas9 system are prone to 
degradation in the in vivo milieu. Lipid nanoparticles (LNPs) 
safeguard these components against degradation by nucleases and 
proteases via their lipid shell, thus extending their stability within 
the body. Altering the surface of lipid nanoparticles (LNPs) can 
diminish their identification by the immune system, hence reducing 
the immunogenicity of the CRISPR/Cas9 system in vivo. It has been 
shown that by embedding the CRISPR/Cas system into the LNP 
system, nanocarriers can be target and deliver the CRISPR/Cas 
system to cancerous tissues; moreover, by incorporating specific 
antibodies, nanocarriers can reduce off-target effects and enhance 
their targeting ability (49). Mennati et al. (50) prepared

heterotrimeric LNPs loaded with siRNA and lycopene and 
demonstrated that blockade of the IGF-1R signaling pathway 
could inhibit cell proliferation and lead to programmed cell death 
and that LNPs significantly induced apoptosis and blocked the cell 
cycle in MCF-7 breast cancer cells. Zhang et al. (51) formulated an 
FIGURE 2 

Examples of cancer treatment using immunotherapy: The figure shows immune checkpoint blockade therapy, CAR-T-cell therapy, tumor vaccines, 
etc. 
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mRNA vaccine utilizing lipid analogs and designed and screened 
specific LNPs that activated Toll-like receptor 4 and induced T-cell 
activation; the results showed that the nanovaccine could deliver 
mRNAs to the DCs and promote antigen presentation; in addition, 
LNPs also have good immunogenicity and can induce T-cell 
activation, thus improving the immunotherapeutic effect on 
tumors (Figure 5). 

4.1.3 Dendritic macromolecules 
Dendritic macromolecules are nanoscale molecules with radial 

symmetry as well as well-defined, homogeneous, monodisperse 
structures. Dendritic polymers are usually between 4 and 20 nm 
in diameter, which is smaller than most nanoparticles and 
l iposomes;  this  feature  makes  them  potential ly  more  
advantageous in terms of interstitial diffusivity, cellular uptake 
volume and tissue penetration depth (52). Dendrimers are usually 
used as nucleic acid carriers, and in the treatment of cancer, nucleic 
acid therapy has a great advantage (53). 

Zhan et al. (54) designed a nanomicelle composed of a 
phosphorus dendrimer and the chemotherapeutic drug 
doxorubicin, and the material combined with aPD-L1 treatment 
inhibited tumor growth, enhanced the apoptosis of B16 cells, 
induced immunogenic cell death, and promoted the proliferation 
and activation of natural killer cells, which in turn affected the 
TIME in a mouse melanoma model. Xiang et al. (55) developed an 
Frontiers in Immunology 06
amphiphilic PAMAM G5 dendrimer that enhances the pH 
sensitivity of drugs in the TME. While Huang et al. (56) also 
developed the above dendrimer material and found that it was able 
to release Fe3+ and Cu2+ in a weakly acidic TME. Moreover, the 
targeted MR imaging of triple-negative breast cancer was achieved 
by modulating the TME with enhanced iron death and 
chemodynamic therapy. The TME contains a high concentration 
of glutathione (GSH), and glutathione enzymes can participate in 
the development of chemotherapeutic resistance, thus reducing the 
efficacy of conventional chemotherapeutic drugs (57). Zhang et al. 
(58) developed a smart nanomedicine formulation based on redox
responsive dendritic macromolecular nanogels, which not only has 
good biocompatibility and the ability to reduce the high 
concentration of GSH in the TME but also has the ability to 
activate tumor-infiltrating CD 4+ and CD 8+ T cells, in addition 
to being able to resist PD-L1 immune checkpoint blockade therapy, 
remodel the TIME and inhibit tumor growth. 

4.1.4 Exosomes 
Exosomes, also known as extracellular vesicles, are the smallest 

organelles, with a size of approximately 40–150 nm (59). Exosomes 
play important roles in human growth and development, 
immunomodulation, and tissue homeostasis (60), and they serve 
as versatile drug delivery vehicles that can be used to regulate 
immunity (61). In addition, although exosomes are similar to 
FIGURE 3 

The effects of nanomaterials on the TIME, including the reprogramming of tumor-associated macrophages, inhibition of immune checkpoints, and 
CAR-T cell therapy. 
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liposomes in shape and function, compared with liposomes, 
exosomes are retained in body fluids for a longer period of time 
and are not easily eliminated by macrophages or reticuloendothelial 
cells (62). In recent years, the application of exosomes in tumor 
immunity has become increasingly widespread; relevant studies 
have shown that miR-155 and miR-125b2 in exosomes can be used 
to reprogram tumor-associated macrophages, thereby inhibiting 
tumor progression (63). Fu et al. reported that exosomes derived 
from DCs can be loaded with a variety of peptide antigens and that 
they stimulate both CD4+ and CD8+ T cells, which participate in 
antitumor responses (64). M1-like macrophage-derived exosomes 
(M1-Exos) have inflammation-directed tumor-targeting ability, and 
relevant studies have shown their role in reprogramming the 
immunosuppressive TME (65). Zhen (66) developed an exosome 
bound to liposomes that could effectively alleviate hypoxia, increase 
ROS levels, promote the release of proinflammatory cytokines from 
Frontiers in Immunology 07 
M1-Exos and reprogram the immunosuppressive TME. Lv et al. 
(65) also developed a nanovesicle composed of exosomes and 
AS1411 aptamer-modified liposomes, which not only generate a 
large amount of reactive oxygen species to induce the apoptosis of 
tumor cells via near-infrared laser irradiation but also polarize 
TAMs and promote the infiltration of T lymphocytes, thus 
enhancing the antitumor immune response (Figure 6). 

4.1.5 Nanogels 
Nanogels can be used as nanocarriers for systemic drug 

delivery. Nanogels take advantage of the combination of 
nanotechnology with gel-based materials such as hydrogels (67). 
Nanogels have unique physical and chemical properties, such as 
nanoscale size, tunable properties, significant hydration, good 
biocompatibility, etc. (68). Compared with conventional 
nanoparticles, they have variable particle sizes and shapes as well 
FIGURE 4 

Classification of nanomaterials into organic nanomaterials, inorganic materials, and composite nanomaterials according to their composition. 
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as greater sensitivity to external stimuli such as pH, temperature, 
ionic strength and redox conditions (69). 

Bai’s team (70) developed a nanogel that responds to matrix 
metalloproteinase-2 in the TME and releases two types of liposomes 
at the tumor site; it not only promotes apoptosis but also triggers 
immunogenic cell death and promotes the maturation of DCs and 
T-cell infiltration, thus altering the immune-suppressive state of the 
TME and enhancing the therapeutic effect. In contrast, Li et al. (71) 
designed a biocompatible alginate-based hydrogel for codelivery of 
dextran nanoparticles encapsulated with pessidatinib and platelets 
modified with an anti-PD-1 antibody; this material was able to 
inhibit macrophage aggregation, significantly alleviate the 
immunosuppressive  tumor  microenvironment,  promote  
infiltration of effector CD8+ T  cells,  and  enhance  the  
immunotherapeutic effect of tumors by depleting TAMs. In 
addition, Jiang et al. (72) developed an injectable hydrogel for the 
delivery of macrophage CAR gene-loaded nanocarriers and anti
CD47 antibodies capable of targeting glioma stem cells and 
triggering an antitumour immune response. Tian et al. (73) 
prepared a self-degradable nanogel that efficiently facilitated the 
infiltration and activation of CD8+ T cells and remodeled the 
immunosuppressive TME. Gao et al. (74) developed Vir-Gel, a 
membrane-encapsulated nucleic acid nanogel embedded with 
Frontiers in Immunology 08
therapeutic miRNAs, which could induce the calibration of 
proinvasive M2 macrophages to antitumor M1 macrophages and 
enhance the immunotherapeutic efficacy in glioma. 

4.1.6 Polymeric nanoparticles 
Polymeric nanoparticles (PNPs) are entities whose size falls 

within the range of 1 to 1000 nm, mainly including nanospheres, 
nanocapsules,  and  polymeric  micelles  (75).  Polymeric  
nanoparticles are usually characterized by good biocompatibility, 
modifiability, etc., and can be either derived from nature or 
artificially synthesized. Chitosan, as a type of polymer 
nanoparticle, is derived mainly from the deacetylated form of 
chitin; it is one of the best drug carriers for the treatment of 
cancer (76). Micelles are nanocolloidal particles formed by the 
assembly of amphiphilic polymers. Targeting CAFs is one strategy 
in tumor immunotherapy, and Cheng et al. (77) demonstrated that 
polymeric micelles can noncovalently bind CAF-targeted antibody 
fragments, thus improving the efficacy of immunotherapy. Wang 
et al. (78) integrated paclitaxel, thioridazine and the small-

molecule PD-1/PD-L1 inhibitor HY19991 into a dual-enzymatic 
pH-sensitive polymer structure that was able to release paclitaxel 
in the acidic TME. This approach was almost always able to 
alleviate the immunosuppressive TME in a mouse model of 
FIGURE 5 

The effect of liposomes on the TIME. This figure demonstrates that thermosensitive liposomes release medicines in response to hyperthermia, 
thereby causing immunogenic cell death (ICD) in tumor cells. 
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MCF-7 metastatic breast cancer (79). In addition, Wan (80) 
synthesized a micellar system assembled with gemcitabine

conjugated polymer (PGEM), a CCR2 antagonist PF-6309, for 
cancer therapy; PGEM was shown to activate the STING signaling 
pathway in DCs, which enhanced natural killer cell and adaptive 
antitumor T-cell responses and reduced the aggregation of TAMs. 
Groettrup et al. (81) created a new type of cancer nanovaccine 
using PLGA and riboxxim. This vaccine can activate the immune 
response by triggering endosomal Toll-like receptor 3. Dacoba 
et al. (82) designed nanocomplexes capable of targeting and 
delivering the Toll-like receptor 3 agonist poly(I:C), and in vitro 
experiments revealed that poly(I:C) delivered by this nanocarrier 
was more efficiently internalized by macrophages, which facilitated 
macrophage polarization toward the M1 phenotype, thereby 
enhancing their antitumor effects. 

Guo et al. (83) prepared organic complex nanoparticles with 
photothermal capability, which, while being controllable for 
photothermal therapy and reducing damage to the surrounding 
tissues, were also able to significantly increase the infiltration of 
CD4+ and CD8+ T cells in the TME, downregulate the expression of 
PD-L1, and increase the proliferation and activity of cytotoxic T 
lymphocytes, thus improving the antitumor immune response of 
the organism (See Table 2) (Figure 7). 
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4.2 Inorganic nanomaterials 

Inorganic nanomaterials not only have controllable shapes and 
sizes but also well-defined chemical properties and excellent optical, 
electrical, and magnetic properties, thus showing great advantages 
in tumor immunotherapy (84, 85). The research and application of 
inorganic non-metallic biomaterials cover a wide range of fields. In 
addition to tissue engineering, they also include the diagnosis and 
treatment of diseases and drugs, such as imaging technology, tumor 
radiosensitization treatment, immune regulation, sterilization, etc. 
The inorganic non-metallic materials mainly used in these aspects 
are at the nanoscale (86). Inorganic nanomaterials are mainly 
classified into metallic and nonmetallic nanomaterials. 
4.2.1 Metallic nanoparticles 
Metal ions are vital to tumor immunomodulation, and some 

scholars have proposed the use of cancer metal immunotherapy (87). 
Combining metal ions with nanomaterials and preparing 
corresponding metal nanoparticles can modulate the immune 
response to tumors. Metallic nanoparticles can be designed to 
enhance biocompatibility and reduce toxicity to normal tissues by 
modifying their surface. In addition, metallic nanoparticles can act on 
FIGURE 6 

Effects of dendrimer macromolecules and exosomes on the TIME. This picture clarifies how dendrimers and nanomicelles facilitate ICD by drug 
delivery, subsequently activating anticancer immune responses. Exosomes containing miRNAs reprogram TAMs. 
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tumor cells, immune cells and the extracellular matrix simultaneously 
to modulate the TME and enhance therapeutic effects. 

Among many metal nanoparticles, gold nanoparticles are 
widely used because of their good biocompatibility and stability 
(88). Gold nanoparticles can induce an effective immune response 
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at low doses (89). Liang et al. (90) subcutaneously injected gold 
nanomaterials encapsulated in liposomes into tumor-bearing mice, 
and 12 hours after the injection, the composite nanoparticles 
reached maximum accumulation in local lymph nodes and 
significantly promoted the maturation of dendritic cells, 
FIGURE 7 

The mechanisms by which hydrogels and polymer nanoparticles deliver drugs to the TIME. 
TABLE 2 Functions and advantages of organic nanomaterials in the TIME. 

Name Function in TIME Advantage References 

Liposomes Increase the infiltration of CD4+ T cells and CD8+ T cells in tumor 
tissues 
Decrease the infiltration of Tregs in tumor tissues and their 
immunosuppressive effects 

Liposomes can protect drugs from degradation by the 
physiological environment, thus prolonging the half-life of 
drugs 
Through surface modifications, such as PEGylation or 
additional targeting ligands, liposomes enable the specific 
targeting of tumor cells 
Liposomes have the ability to control drug release. 

(41, 132, 133) 

Dendrimers Immunomodulation: Promote proliferation and recruitment of natural 
killer cells and cytotoxic T lymphocytes 

Good stability and pH-responsive drug release properties (54) 

Exosomes Suppress the growth and invasion of tumor cells (B16) 
Modulate the polarization status of immune cells, especially 
macrophages, in the tumor microenvironment by increasing the 
proportion of M1-type macrophages 

Low toxicity 
Efficient targeting ability 
Enhance the properties of tumor stem cells 
Regulate the function of immune cells 

(134–137) 

Nanogels Increase immune cell infiltration 
Improve drug delivery 

Biocompatibility: Nanogels are usually made of 
biocompatible materials. 
Drug loading capacity: Nanogels have high drug 
loading capacity. 

(138, 139) 

Polymer 
nanoparticles 

Regulates the function of immune cells: can carry immune checkpoint 
inhibitors, cytokines, etc.Can prolong drug action according to 
conditions in TIME 

Can load drugs 
Strong stability 

(140, 141) 
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indicating that gold nanomaterials can be used to activate immune 
cells and enhance immune responses. 

In contrast, among inorganic nanomaterials, only iron-based 
nanoparticles are approved by the FDA for medical use (91). Iron-
based nanomaterials can enhance the killing effect on tumor cells 
through the Fenton reaction (92). Zhang et al. (93) developed 
nanomaterials consisting of Fe/Cu-based metal–organic 
frameworks, lactic acid oxidase and hyaluronic acid, which were 
able to increase the level of intracellular reactive oxygen species 
(ROS) via the glycolysis, which then promoted the repolarization of 
TAMs and enhanced the efficacy of immunotherapy. 

CAFs inhibit the activity of immune cells by secreting 
immunomodulatory factors, which in turn promote  the
accumulation of immunosuppressive cells, such as Tregs and 
MDSCs, thereby helping tumor cells evade immune surveillance 
(94). Therefore, Bromma et al. (95) assayed gold nanoparticles 
modified with polyethylene glycol and arginine-glycine-aspartic 
acid peptides on the surface inside tumor cells and reported that 
the nanoparticles were able to increase cellular uptake and 
significantly reduce the tumor volume. In photodynamic therapy 
(PDT), photosensitizers are used to generate reactive oxygen species 
(ROS) under specific light irradiation, which is able to induce tumor 
cell death and amplify the efficacy of tumor immunotherapy (96). 
Zhou et al. (97) prepared ferritin nanoparticles, which are able to 
deliver photosensitizers to CAFs,  significantly increase their 
photosensitizer accumulation at the tumor site, and also generate 
an immune response toward CAFs, thus enhancing the effect of 
immunotherapy. Ding et al. (98) formulated a vaccine (ZPM@ 
OVA-CpG) that was able to release Zn2+ in a controlled manner 
and improve immunotherapy efficacy. Deng et al. (99) 
demonstrated the ability of a calcium-manganese bionic hybrid 
nanostimulant to activate both apoptosis and the innate immune 
response in ferrocytes, which provided a new therapeutic idea for 
the effective immunotherapy of triple-negative breast cancer. Cen 
et al. developed a functional immunotherapy for triple-negative 
breast cancer. 

4.2.2 Metal oxide nanoparticles 
Metal oxide nanomaterials are nanoscale materials composed of 

metal and oxygen, mainly zinc oxide, iron oxide and other 
nanomaterials. Sun et al (100). prepared a hyaluronic acid-
optimized magnetic nanoparticles (Fe3O4), which can not only 
efficiently penetrate into the interior of tumors but also adhere to 
CD44 receptors on the surface of tumor cells via hyaluronic acid to 
achieve specific targeting of tumor cells. In addition, these 
nanoparticles can regulate TAM repolarization and stimulate tumor 
cells and macrophages to secrete more chemokines. In contrast, 
Yang’s team (101) engineered a novel biomimetic magnetic 
nanoparticle, Fe3O4-SAS@PLT, which not only elicits tumor-

specific immune responses but also effectively repolarizes 
macrophages from the immunosuppressive M2 phenotype to the 
antitumor M1 phenotype, in addition to depleting glutathione (GSH). 

ROS can modulate the TIME and promote the infiltration and 
activation of immune cells, thereby enhancing antitumor responses. 
ROS usually act as intermediate signaling molecules, affecting the 
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differentiation, function, and secretion of TAMs (102). Previous 
studies have shown that ROS-scavenging nanozymes can inhibit the 
transformation of macrophages into M2 TAMs by suppressing the 
activity of the ERK and STAT3 signaling pathways (103). Therefore, 
Gong et al (104). used bimetallic oxide FeWOX nanosheets in 
combination with a CTLA-4 checkpoint blocker and reported that 
ROS-mediated inflammation induced by FeWOX nanosheets in the 
TME can activate the immune system and trigger a strong immune 
response, which not only promotes the maturation of DCs, 
increases the number of T cells, and decreases the number of 
Tregs but also induces the repolarization of TAMs, thus 
effectively inhibiting tumor growth. Wu et al. (105) prepared a 
composite metal oxide nanomaterial of titanium carbide-chitosan
manganese iron oxide (MnFe2O4) that was able to catalyze the 
oxidation of glutathione to oxidized glutathione, thus depleting 
excess glutathione in the TME and increasing ROS generation and 
therapeutic effects (Figure 8). 

4.2.3 Nonmetallic nanomaterials 
Non-metallic nanoparticles are particles at the nanoscale 

composed of non-metallic elements or non-metallic compounds. 
Graphene oxide nanosheets prepared by Guo et al. (106) were  not
only able to stimulate the polarization of M1-type macrophages but 
also were able to increase the levels of proinflammatory cytokines and 
chemokines, such as IL-12 and TNF-a, in the TME, thereby 
enhancing the antitumor immune response. A graphene quantum 
dot capable of forming a heterogeneous structure by combining with 
copper-based nanomaterials was prepared by Yan et al. and was able 
to promote the activation of immune cells directly or indirectly 
through its own properties, in addition to targeting and damaging 
DNA, thereby releasing tumor-associated antigens and promoting the 
maturation of DCs and the activation of T cells. In addition, selenium 
nanoparticles prepared by Xiong et al. (107) were able to promote 
ROS generation in tumor cells, leading to elevated levels of oxidative 
stress and thereby inhibiting tumor cell growth and proliferation. Xu 
et al. (108) synthesized PAP-SeNPs by integrating selenium 
nanoparticles with polysaccharides derived from Pholiota adiposa. 
Utilizing the diverse benefits of polysaccharides, including their 
degradability and biocompatibility, they improved the stability of 
selenium nanoparticles. These nanoparticles effectively targeted M2 
TAMs and induced their polarization into the M1 phenotype, which 
exhibits anticancer properties. Li et al. (109) created a nanoplatform 
(Nano-Bi2Se3@MnCaP). This platform’s photodynamic treatment 
(PDT) can efficiently induce immunogenic cell death, stimulate the 
immune system, facilitate dendritic cell maturation, and activate T 
cells, therefore augmenting the antitumor immune response. 

Mesoporous silica nanoparticles have excellent drug-carrying 
capacity and good hydrophilicity and have great potential for 
development (110). Zhao et al. (111) loaded acidic, environment-

responsive CCM-encapsulated mesoporous silica nanoparticles 
with dacarbazine and combined them with aPD1. These 
nanoparticles not only induced an antitumor immune response in 
T cells but also effectively inhibited the growth and metastasis of 
melanoma. Wang et al. (112) prepared hollow mesoporous silica 
(HMS) nanospheres, which were able to promote the maturation of 
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DCs. In addition, the HMS cancer vaccine exerted a synergistic 
effect with anti-PD-L1 antibodies on the tumor, which effectively 
increased the levels of CD4+ and CD8+ T cells and ultimately 
inhibited the growth of tumors (see Table 3) (Figure 9). 
4.3 Hybrid nanomaterials 

Hybrid nanomaterials refer to new materials formed by 
combining two or more different materials through a specific 
method. Gyu et al. (113) fabricated a composite nanomaterial of 
galactose-rich polysaccharides extracted from plant cell walls, which 
induced the conversion of M2-type tumor-associated macrophages 
to M1-type phenotypes, thereby enhancing the tumor immune 
response and mitigating the immunosuppressive TME. Gao et al. 
(114) used AMD3100-modified poly(lactic-coethanolic acid) 
nanoparticles as sorafenib carriers and prepared ADOPSor 
nanoparticles, which were shown to be able to effectively inhibit 
the infiltration of TAMs in hepatocellular carcinoma. Zhang et al. 
(115) prepared composite nanomaterials consisting of gold 
nanorods, manganese dioxide, and silicon dioxide, which enabled 
the loading of glucose oxidase; subsequently, they applied cancer 
cell starvation therapy and photothermal therapy to detect tumor 
cells; the results revealed that the material was not only able to 
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increase the oxygen level in the TME but also to enrich more 
efficiently at the tumor site, thus improving the therapeutic effect. 

Feng et al. (116) prepared a nanomaterial consisting of bacterial 
outer membrane vesicles combined with CD47 nanoantibodies; it 
not only specifically binds to CD47 molecules on the surface of 
tumor cells and Toll-like receptors on the surface of macrophages 
but also promotes the maturation of DCs as well as the recruitment 
of a variety of immune cells into tumor tissues, thus remodeling the 
TME. Chen et al. (117) loaded ovalbumin and copper sulfide into 
PLGA nanoparticles to form nanocomplexes with a core-shell 
structure and revealed that the nanomaterials were able to 
activate CD8+ T cells and induce a tumor immune response. 
5 Clinical trials related to 
nanomaterials regulating the immune 
microenvironment 

Nanomaterials have demonstrated remarkable potential in 
influencing the tumor immune microenvironment and have 
subsequently become a hot topic in research (33). During the past 
few years, several clinical studies have been carried out to explore 
the application of nanomaterials in immunotherapy to improve its 
FIGURE 8 

The effect of metallic nanomaterials on the TIME. Gold nanoparticles are modified on their surfaces with recognition molecules, such as plasmid 
DNA and polymers, enabling their entry into cancer cells via receptor-mediated endocytosis. 
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FIGURE 9 

The effects of nonmetallic nanomaterials on the TIME. 
TABLE 3 Functions and advantages of inorganic nanomaterials in the TIME. 

Category Name Function in TIME Advantages References 

Metal 
nanomaterials 

Gold 
nanoparticles 

Gold nanoparticles can carry immunomodulators 
photothermal therapy and photodynamic therapy 

Good biocompatibility, low toxicity to normal cells 
Generate ROS and promote cell apoptosis 
Improve the stability of chemotherapeutic drugs 

(142–144) 

Titanium dioxide 
nanoparticles 

Induce mitochondrial dysfunction produced by ROS 
overload, significantly promote osteosarcoma cell 
apoptosis in vitro, and effectively inhibit tumor 
growth in vivo 

Excellent anticancer properties and 
good biocompatibility 

(145) 

Mesoporous 
nanoparticles 

Regulate the phenotype of TAMs 
Promote the conversion of M2 type macrophages to 
M1 type 

Low toxicity to normal tissue 
Enhanced osmotic and retention effects 

(146) 

Nonmetallic 
nanoparticles 

Calcium 
hydroxide 
nanoparticles 

The numbers of immunosuppressive cells were 
significantly reduced, while those of 
immunosupportive cells (e.g., M1-type macrophages 
and T cells) were significantly increased in nano
CaH2-treated tumors.Significantly inhibit the growth 
of primary and distant tumors 

Ability to regulate pH 
Neoplastic growth was significantly curtailed, and 
overall survival was significantly augmented in the 
nano-CaH2-treated group 

(147) 

CaCO3 

nanoparticles 
React with protons in the tumor to neutralize the 
acidic environment, thereby improving the tumor 
microenvironment 
Reduce the number of MDSCs and Tregs 

Good biocompatibility, no significant tissue 
inflammation or damage seen in major organs 
pH-sensitive and able to enhance immune response 

(148) 
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effects, including amplifying immune cell activity, the promotion of 
antigen presentation, and the alleviation of immunosuppression. 
Therefore, we collated the targets of different types of nanomaterials 
in immunotherapy and their ability to improve the tumor immune 
microenvironment (TIME) (see Table 4) (Figure 10). 
 

6 Summary and discussion 

The tumor microenvironment is a highly complex ecosystem 
comprising a diverse array of cell types, including immune cells, as 
well as various cytokines, chemokines, and signaling molecules. The 
key cell types include mainly macrophages, tumor-associated 
fibroblasts, myeloid-derived suppressor cells (MDSCs), dendritic 
cells, natural killer cells and effector T cells; of these, macrophages 
usually tend to be protumorigenic with an M2 phenotype,

promoting tumor growth and angiogenesis (118), whereas 
regulatory T cells and MDSCs promote immunosuppression 
through the inhibition of effector T cells and natural killer (NK) 
cells, thus creating a supportive tumor environment for tumor 
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development (119). The immunotherapy of tumors often involves 
these cytokines; therefore, targeting these cytokines can improve 
therapeutic efficacy. 

Methods for targeting the TME to address this problem have 
been widely investigated; however, improving therapeutic efficacy 
more efficiently and rapidly is particularly important. Although 
conventional treatments are effective against tumors, they still have 
some shortcomings. Nanomaterials have made great progress as a 
novel means (92), and the rise of nanomaterials not only improves 
therapeutic efficacy but also improves precision and reduces toxic 
side effects (120). Owing to the unique physical and chemical 
properties of nanomaterials, the infiltration and activation of 
immune cells can be effectively enhanced to improve antitumor 
immune responses. This paper summarizes the main mechanisms 
by which different types of nanomaterials modulate the TME. 
Nanomaterials can not only deliver immune checkpoint 
inhibitors, such as anti-CD47 antibodies but also enhance the 
ability of immune cells to kill tumor cells (121). In addition, 
nanomaterials can be combined with a variety of therapies based 
on graphene materials, such as graphene oxide-polyethylene glycol-
TABLE 4 Different types of nanomaterials used in tumor immunotherapy. 

Targets Material type Cancer modeling Conclusion References 

PEG-modified single-walled 
carbon nanotubes 

B16 Melanoma Selectively targets Tregs in tumors and enhances tumor 
vascular permeability 
Increases CD8+ T cells in C57BL/6 mice 

(149) 

Tregs 

Hybrid nanoparticles 
(tLyp1-hNPs) 

DU145/B16 mouse model Hybrid nanoparticles target Tregs and combine with 
immune checkpoint blockers (e.g. anti-CTLA-4 
antibodies) to enhance anti-tumor immune responses 
and inhibit Treg cell differentiation and proliferation 

(150) 

Organic complex nanoparticles 
(PTEQ nanoparticles) 

CT26 cells PTEQ nanoparticles promote maturation of DCs and 
polarization of M1-type macrophages and enhance anti
tumor immune responses 

(83) 

Polymer nanoparticles PIMDQ/ 
Syro-NP 

4T1 breast cancer cells Inhibits proliferation and function of Tregs, activates 
DCs and promotes their maturation and function, and 
enhances infiltration and activity of effector T cells 

(151) 

Cyclodextrin nanoparticles MC38 colorectal tumor cells Enhancement of T-cell effector function (152) 

TAMs 

Polymer nanoparticles 4T1 breast cancer cells Nanomaterial-treated tumor cells release mtDNA 
fragments that are taken up by TAMs, activate the 
cGAS-STING pathway, and undergo reprogramming, 
which helps to alleviate immunosuppression in the 
tumor microenvironment and enhances T-cell-mediated 
anti-tumor immune responses 

(153) 

Bionic Nanocarriers 4T1 tumor model Activation of the TLR7/8 signaling pathway in TAMs 
induces conversion from an immunosuppressed M2 to 
M1 type; secretion of pro-inflammatory cytokines and 
activation of immune responses. 

(154) 

Gene editing nanoparticles B16F10 melanoma cells Promote phagocytosis of cancer cells by macrophages 
and enhance T-cell-mediated anti-tumor immune 
responses by improving antigen presentation 

(155) 

Nanocage containing gemcitabine Mouse model of triple-negative 
breast cancer 

Significantly reduces the proportion of MDSC while 
increasing T-cell infiltration. 

(156) 

MDSCs 
Lipid-coated biodegradable hollow 
mesoporous silica nanoparticles 

B16 F10 Homozygous C57/BL 
6 Mouse 

Nanoparticle-mediated combination therapies can 
benignly modulate the tumor microenvironment 
through the activation of tumor-infiltrating T 
lymphocytes and natural killer cells, as well as the 
promotion of IFN-g and IL-12 cytokine secretion. 

(157) 
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polyethyleneimine-CpG nanocomplexes loaded with CpG ODN, 
which utilize the near-infrared light absorption of graphene oxide, 
thus enhancing intracellular delivery and achieving a perfect 
combination of photothermal and immunotherapy (122). 

Despite the good biocompatibility of nanomaterials, further 
long-term assessments of their toxicity in living organisms and 
clinical trials are needed. The main limitations of currently 
employed immunotherapy strategies are the inability of most 
immunotherapeutic drugs to reactivate T cells and expand them 
in vitro or in vivo and the various complicating factors that lead to 
T-cell exhaustion in the context of tumor–TME interactions and the 
acquisition of immune resistance (33). In addition, the clearance 
mechanism of nanomaterials in vivo has not yet been clarified, and 
in the future, we can focus on their retention in vivo and whether 
they affect organ function. Finally, the drug delivery rate of 
nanomaterials still needs to be optimized, and owing to the 
complexity of the TME, the distribution of nanomaterials in 
tumor tissues is still limited, even though some drugs can be 
delivered effectively to the intended targets by nanomaterials. 
Emerging technologies, particularly artificial intelligence, possess 
significant potential. They are not only efficient and precise but also 
possess the capability to forecast therapy outcomes. In the future, 
further developing technologies may be incorporated with 
nanomaterials to augment medicinal effects. 
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In summary, nanomaterials have potential in regulating the 
TIME and offer new therapeutic tools for the immunotherapy of 
tumors. However, issues such as the biotoxicity and drug delivery 
rate of nanomaterials still need to be further explored. Therefore, in 
the future, more efficient and safer nanomaterials could be 
translated into the clinic, and multidisciplinary intersections 
could be applied to provide patients with more precise and 
effective therapeutic options. 
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FIGURE 10 

Effects of hybrid nanomaterials on the TIME. Hybrid nanomaterials stimulate the immune system via TLRs, facilitate targeted drug delivery to 
eradicate cancer cells, attract immune cells to modify the microenvironment. 
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