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Background: The treatment of cholangiocarcinoma (CCA) continues to face

numerous clinical challenges, including the prediction of sensitivity to

immunotherapy and the development of preoperative diagnostic models.

Methods: In this study, we aimed to address these challenges by collecting bile

samples from CCA patients for metabolomic and microbiomic analyses. We also

performed immunofluorescence (IF) staining on tissue formalin-fixed, paraffin-

embedded (FFPE) blocks to assess the expression of relevant biomarkers.

Additionally, we followed up with patients to analyze prognostic indicators

based on their survival times. Using advanced machine learning techniques,

specifically LASSO regression, we constructed a predictive model to determine

the effectiveness of programmed cell death protein 1 (PD-1) inhibitors in treating

CCA. The model integrates bile metabolomic data with an Immune Hot-Cold

Index (IHC Index) derived from IF results, providing a comprehensive metric of

the patient’s immune environment.

Results: Our findings revealed significant differences in metabolomic profiles

between CCA patients and those with non-malignant liver diseases, as well as

between patients with different genetic mutations. The IHC Index successfully

differentiated between immune “hot” and “cold” states, correlating strongly with

patient responses to immunotherapy. Furthermore, in one CCA patient, the

model’s predictions were validated, demonstrating high accuracy and

clinical relevance.
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Conclusion:Our predictive model offers a robust tool for assessing the sensitivity

of CCA patients to PD-1 inhibitors, potentially guiding personalized treatment

strategies. Additionally, the integration of bile metabolomics with IF data provides

a promising approach for developing preoperative diagnostic models, enhancing

early detection and treatment planning for CCA.
KEYWORDS
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1 Introduction

Cholangiocarcinoma (CCA) is a heterogeneous malignant

tumor originating from bile duct, with an incidence rate second

only to that of hepatocellular carcinoma (HCC) among primary

liver tumors. CCA accounts for approximately 1% of all cancers in

the population and about 10-15% of all primary liver cancers (1–3).

Most patients are asymptomatic in the early stage and lack of

effective diagnostic biomarkers, making early clinical diagnosis

challenging. Consequently, only about one-third of patients are

candidates for surgical resection at the time of diagnosis (4).

Current treatment options for inoperable patients are limited,

with gemcitabine combined with platinum chemotherapy being

the most commonly used regimen. However, the clinical efficacy of

this treatment is extremely poor (5, 6).

As a novel class of immunotherapeutic agents, immune check

point inhibitors targeting programmed cell death protein 1 (PD-1)

have shown clinical efficacy in treating various tumors (7, 8), but their

role in CCA remains in the exploratory stages, with ongoing clinical

trials. In the Phase I of clinical treatment of advanced CCA, the

median overall survival time was reported to be 15 ± 4 months, with

11 of 30 patients achieving objective remission (9). The ongoing

TOPAZ-1 project used durvalumab combined with platinum and

gemcitabine to treat advanced CCA in Phase III clinical trial,

demonstrating partial clinical efficacy (10, 11). However, not all

patients benefit from this treatment regimen. At present, there is no

reliable index to predict whether patients are effective in PD-1

treatment, which is crucial for guiding patients in clinical treatment.

Therefore, developing predictive tools to for this purpose is essential.

Clinically, patients with CCA are often accompanied by obstructive

jaundice. To mitigate liver function damage, percutaneous

transhepatic cholangial drainage (PTCD) puncture and drainage of

bile are needed to improve liver function, which also serves as a reserve

for subsequent drug treatments. This procedure facilitates the

collection of bile samples in a clinical setting.

Existing research predominantly focused on the relationship

between specific metabolites in bile and CCA. Hashim AbdAlla

et al. (12) focused on phosphatidylcholine (PtC) and bile acids,
02
comparing their levels in bile from CCA patients and those with

benign biliary diseases. Similarly, Sharif et al. (13) analyzed glycine-

conjugated bile acids, primary bile acids, and PtC in bile from CCA

patients. Albiin et al. (14) studied the levels of PtC, bile acids, lipid,

and cholesterol in bile, highlighting significant differences between

CCA patients and those with benign biliary conditions. Volinsky

et al. (15) explored oxidized phosphatidylcholines in cellular

signaling and their role in various diseases, including CCA. Won-

Suk Song et al. (16) identified glycocholic acid (GCA) and

taurochenodeoxycholic acid (TCDCA) as specific metabolic

biomarkers for CCA. Gomez et al. (17) developed and validated

an LC-MS/MS method for quantifying various bile acids,

highlighting the significance of free and conjugated bile acids in

disease mechanisms.

Although these studies have provided significant insights, they

are limited by their focus on specific metabolites. Concentrating

solely on individual metabolites can overlook broader metabolic

interactions and comprehensive biochemical alterations

associated with CCA. This narrow scope may miss potential

biomarkers and therapeutic targets that could be identified

through a more hol is t ic analys is . Metabolomics , the

comprehensive study of metabolites in a biological system,

reveals that cancer’s metabolic reprogramming affects numerous

pathways and involves a wide array of metabolites. Therefore,

analyzing bile as a whole can offer a more complete picture of the

disease and its interactions, potentially leading to more effective

predictive models and therapeutic strategies (18).

To address these limitations, our research aims to take a

comprehensive approach by analyzing bile as a whole and exploring

its association with CCA. By examining the entire spectrum of bile

metabolites, we hope to develop a more robust predictive model for

PD-1 inhibitor response in CCA patients. In this study, we used bile

samples from patients with CCA for metabolomics and microbiology

detection, sequenced exons of corresponding cancer tissue samples of

patients, and detected the expression of immune-related indicators in

tissues by immunofluorescence (IF). We then built a prediction model

for the therapeutic effect of PD-1 on CCA through machine learning

and verified the model in some patients treated with PD-1.
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2 Methods and materials

2.1 Human subjects

Bile was collected from patients between January 2019 and July

2023 at The First Affiliated Hospital of Bengbu Medical University.

A total of 66 CCA patients who had not received neoadjuvant

therapy were selected for this study. Among them, 62 patients

underwent surgical procedures for tumor collection. Additionally,

bile from 38 patients with non-malignant liver diseases, such as

gallbladder stones or liver hemangioma, was collected and used as a

negative control. The collection and preservation of bile samples

followed the same protocols described in our previous publication

(19). Written informed consent was obtained from each patient,

and the study was approved by the Ethics Committee of Bengbu

Medical University (No. 2021230 and No. 2019035).
2.2 Metabolomics

Completed by Huada Gene Company (Shenzhen, China) in the

same way as the previous published articles (19).
2.3 Microbiology (16S)

Completed by Huada Gene Company (Shenzhen, China). The

microbial community DNA was extracted using MagPure Stool

DNA KF kit B(Magen, China) following the manufacturer’s

instructions. DNA was quantified with a Qubit Fluorometer by

using Qubit dsDNA BR Assay kit (Invitrogen, USA) and the quality

was checked by running aliquot on 1% agarose gel. Variable regions

V4 of bacterial 16S rRNA gene was amplified with degenerate PCR
Frontiers in Immunology 03
primers, 515F (5-GTGCCAGCMGCCGCGGTAA-3’) and 806R

(5’-GGACTACHVGGGTWTCTAAT-3’). Both forward and

reverse primers were tagged with Illumina adapter, pad and linker

sequences. Then do PCR reaction. The Libraries were qualified by

the Agilent Technologies 2100 bioanalyzer. The validated libraries

were used for sequencing on MGISEQ-2000 platform (BGI,

Shenzhen, China) following the standard pipelines of Illumina,

and generating 2 × 250 bp paired-end reads.
2.4 Whole-exome sequencing

Completed by LC Bio Tech (Hangzhou, China). We sequenced

exons of 61 formalin fixed paraffin embedded (FFPE) blocks in

these patients with CCA. The total DNA was extracted using

QIAGEN DNeasy Blood & Tissue Kit (69506, QIAGEN) or

QIAamp DNA FFPE Tissue (56404, QIAGEN). Then the DNA

which was fragmented by using Covaris M220 Focused-

ultrasonicator were subjected to sequencing library construction.

Exome capture was performed using the Human Exome 2.0 Plus

(Twist Bioscience) following the vendor’s recommended protocol.

The final libraries were sequenced for paired-end 150 bp using the

Illumina NovaSeq 6000 Sequencing System (Illumina) at LC-Bio

Technology Co., Ltd (Hangzhou, China).
2.5 Immunofluorescence

The routine steps for IF are detailed in the literature. Briefly, the

process involves dewaxing FFPE blocks to water, antigen repair,

blocking endogenous peroxidase with 3% hydrogen peroxide,

serum blocking, and sequentially adding primary and secondary

antibodies. In this study, we detected 12 protein indexes in 62 cases
TABLE 1 Primary and secondary antibodies used for multiplex immunofluorescence staining of FFPE blocks.

Primary antibody Cat no. Company Species Ratio Secondary antibody

OX40 AB264466 Abcam Rab 1:4000 CY3(red)

ICOS A00291-3 BOSTER Biological Technology Rab 1:400 488(green)

CD20 60271-1-AP Proteintech Group Mou 1:400 CY5(pink)

CD86 AB239075 Abcam Rab 1:200 594 (yellow)

LAG3 AB209236 Abcam Rab 1:1000 CY3(red)

TIM3 AB241332 Abcam Rab 1:1000 488(green)

PD-1 GB12338 Servicebio Mou 1:1000 CY5(pink)

VISTA 24849-1-AP Proteintech Group Rab 1:200 594(yellow)

CD3 GB13014 Servicebio Rab 1:200 CY3(red)

CD206 AB64693 Abcam Rab 1:500 488(green)

CD8 GB12068 Servicebio Mou 1:500 CY5(pink)

CD4 AB133616 Abcam Rab 1:500 594(yellow)
This table lists the 12 immune-related protein markers analyzed in 62 cholangiocarcinoma (CCA) tissue samples. For each marker, the primary antibody name, catalog number, source company,
host species, dilution ratio, and the corresponding fluorophore-conjugated secondary antibody are provided.
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of CCA using a four-label fluorescence staining method. The first

antibody was stained and photographed, followed by antigen repair

and blocking steps, repeated until the fourth antibody was obtained.

We tested the following 12 indexes on the same FFPE block. The

details of the primary and secondary antibodies used for multiplex

immunofluorescence are summarized in (Table 1).
2.6 Calculation and assessment of the
Immune Hot-Cold Index

We utilized IHC results to indicate the overall level of a patient’s

immune environment, characterized by a specific metric. This

involves treating OX40, ICOS, CD20, CD86, LAG3, TIM3, PD-1,

VISTA, CD3, CD206, CD8, and CD4 as twelve dimensions of

vectors, thereby creating a patient-specific IHC vector space. Within

this space, we calculated the Euclidean distance between the 12-

dimensional vectors and a zero vector, which serves as a measure of

immune response strength—denoted as the IHC index. The

Euclidean distance formula used is:

IHC   index = d(p, q)2 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(oN

i=1(pi − qi)
2)

q

where p and q represent the two vectors (data points).

We adopted the same computational approach as in previous

studies, compared the clustering results, and assessed the scoring

method based on recall, F1 score, precision, and accuracy.

Additionally, t-SNE was employed for visualization.
2.7 Model construction

After testing various machine learning algorithms, we selected

the Least Absolute Shrinkage and Selection Operator (LASSO)

regression for our dataset. Our focus was on predicting a

continuous variable, the immune hot-cold index, using biliary

metabolomic sequencing data. LASSO regression’s advantage lies

in its ability to assume coefficient sparsity, which reduces overfitting

by setting the coefficients of less significant variables to zero. This

method enhances the model’s interpretability, allowing us to

identify promising targets among numerous metabolic products.

To prevent overfitting, we initially used Spearman correlation to

reduce the number of metabolic products used as inputs to the

model. Following this, we employed a five-fold cross-validation to

establish the predictive model using LASSO regression. This

approach ensured robust model performance by testing it on

multiple subsets of the data. Finally, we tested statistical

hypotheses to determine the optimal parameters for the model,

ensuring its accuracy and reliability.
2.8 Statistical analysis

Statistical test was finished by t test in excel (version 16.58) and

p value < 0.05 was determined as significance.
Frontiers in Immunology 04
3 Results

3.1 Patient characteristics

A total of 66 CCA patients (intrahepatic CCA n= 17; extrahepatic

CCA n= 49) that did not receive neoadjuvant therapy were selected for

this study. 62 CCA samples (intrahepatic CCA n= 15; extrahepatic CCA

n= 47) underwent surgery to collect tumors. Among 66 CCA patients,

39% were female and with a median age of 66 years (range, 40–83;

Supplementary Table 1). Forty percent of patients were alive at the latest

follow-up. Ninety seven percent of patients were diagnosed at advanced

stages (T2 or higher). Bile from 38 patient with non-malignant liver

diseases, such as gallbladder stone or liver hemangioma, were collected

as negative control: 45% were female and with a median age of 59 years

(range, 25–90; Supplementary Table 1).
3.2 The significant difference in
metabolites instead of microbes between
CCA and control

We identified 8783 substances in the metabolism-related

database (1132 were down-regulated and 1459 were up-regulated

by the criteria: p-value<0.05). We also identified 1316 substances in

the microbe-related database (12 microbes shows significant

changes by the criteria: p-value<0.05). The heatmap of top 100

up/down-regulated metabolisms and microbes shows in

Figures 1A–C. Due to the limited changes in microbes, we will

focus on metabolites in following research.
3.3 The significant difference in
metabolites between patients harboring
mutated and wild-type genes

We examined metabolite profiles in patients harboring specific

mutations. Among 62 CCA patients, 21 of them harbor TP53

mutations (Supplementary Table 1). Compared with wild-type

patients, 236 metabolites show significant changes by the criteria:

p-value<0.05 (98 up-regulated and 138 down-regulated, Figure 2A).

Besides, in seven patients harboring K-Ras mutations, 446

metabolites up-regulated while only 18 metabolites down-

regulated (Figure 2B). These results suggest that mutations in

oncogenes and tumor suppressor genes show different impact on

the profile of metabolites in bile.
3.4 The expression of immune cell and
immune checkpoint markers

All 62 samples underwent singleplex IHC for 12 immune cell and

immune checkpoint markers. Representative examples of staining are

shown in Figure 3A and the positive rates of each marker are shown

in Figure 3B. To further explore the relationships between these

markers, we examined their correlations (Figure 3C). As expected,
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high correlations in CD4:CD8 (r = 0.42) and CD20:CD8 (r = 0.52)

are observed. Notably, the correlation between CD3 and CD8 is

rather low (r = 0.14). While few other strong correlations were

observed, including CD206:CD3 (r = 0.46), CD206:CD4 (r = 0.46),

CD20:CD4 (r = 0.45), and CD3:CD4 (r = 0.57).
3.5 Validation and universality of the IHC
Index

In the following step, we calculated the IHC Index in each

sample based on the expression of immune cell and immune

checkpoint markers.
Frontiers in Immunology 05
First, we illustrated the three-dimensional projection of all

patients’ immune vectors in the IHC vector space after

dimensionality reduction using t-SNE (Figure 4A), which

provides a continuous scalar value representing an individual’s

overall level of immune hotness or coldness. To validate the

reliability of this method, we subsequently applied this

methodology to retrospectively assess a previous study of 96

patients with intrahepatic cholangiocarcinoma (iCCA) (https://

pubmed.ncbi.nlm.nih.gov/34510503/), achieving convincing

results (Figure 4B). This retrospective validation suggests that our

approach may be applicable to multi-target IHC data; however,

additional datasets and prospective studies are needed to confirm its

broader applicability. The study identified two groups—immune
FIGURE 1

Overview of study design and comparison of metabolomic and microbial profiles between CCA and control groups. (A) Schematic of patient
selection, sample collection, and processing workflow. (B) Heatmap showing the top 100 up- and down-regulated metabolites in bile samples
between CCA and control groups. (C) Heatmap showing microbial taxa significantly altered between CCA and control groups based on 16S
rRNA sequencing.
frontiersin.org

https://pubmed.ncbi.nlm.nih.gov/34510503/
https://pubmed.ncbi.nlm.nih.gov/34510503/
https://doi.org/10.3389/fimmu.2025.1614683
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2025.1614683
“hot” and immune “cold”—and provided IHC data targeting

similar markers as our current work. Additionally, it presented a

code set of 773 immune genes associated with immune exhaustion,

affirming the reliability of IHC-based groupings. Figure 4B shows

the calculation of the IHC index using our method on this dataset,
Frontiers in Immunology 06
where using a single threshold accurately distinguished between the

original hot and cold groups with an accuracy of 1, proving our

defined IHC index’s ability to continuously describe and universally

address similar issues, solving previous challenges associated with

the lack of a continuous scale.
FIGURE 2

Differential bile metabolite profiles in CCA patients with TP53 and K-Ras mutations. (A) Volcano plot showing significantly altered metabolites in
patients harboring TP53 mutations versus wild-type. (B) Volcano plot showing significantly altered metabolites in patients harboring K-Ras mutations
versus wild-type.
frontiersin.org
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3.6 Establishment of the IHC index
predictive model

Initially, based on Spearman correlation (setting significance at

p<0.05), we identified 163 metabolic products strongly correlated

with the IHC index to minimize overfitting in model predictions.

Figures 4C, D display the correlation between these selected

metabolites and their predictive values.

Using the LASSO regression method, we developed a predictive

model; Figure 4E illustrates its performance on the test and training

sets, showcasing R² values of 0.83 and 0.58, respectively. The grey

dashed line represents a perfect prediction, and while the model’s

performance slightly diminishes at higher score ranges, it does not
Frontiers in Immunology 07
deviate significantly from the ideal fit line, demonstrating that our

model captures the data characteristics well and exhibits good

predictive performance.

Figures 4F–H respectively display the model’s residuals values,

residuals distribution, and Q-Q plot. The residuals values are

scattered equally on both sides of a horizontal red line, follow a

normal distribution, and ordered residuals align closely with the red

line, thus fulfilling the model assumptions of normality, linearity,

equality of variance, and independence.

Figures 5A, B show the LASSO model’s selection of alphas and

the optimal alpha used in this model. Figure 5C presents predictions

of the IHC index for newly recruited patients. Figure 5D displays

these predictions as a boxplot, which falls into four quartiles,
frontiersin.o
FIGURE 3

Immune profiling of CCA tissues using immunofluorescence. (A) Representative photomicrographs of CCA tissue samples showing high and low
expression of immune markers. (B) Dot plot summarizing the percentage of positive staining for each of the 12 immune markers across all patients.
(C) Correlation matrix showing Spearman correlations between expression levels of immune cell and immune checkpoint markers.
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highlighting the predictive model’s effectiveness and consistency.

Based on these four quartiles, we calculated the survival curve of

CCA patients. As shown in Figure 5D, Q1 group with the lowest

scores shows significant lower survival rate compared with other

three groups. Figure 5E presents CT images from a representative

patient before and after PD-1 inhibitor treatment, demonstrating

a notable reduction in tumor size that enabled successful

surgical resection.
Frontiers in Immunology 08
3.7 The clinical validation of this model

Among four unresectable patients, the predicted IHC index

values were 81.6, 23.1, 28.5, and 75.8, respectively. The patient with

the highest IHC index (81.6) underwent PD-1 inhibitor treatment

and subsequently demonstrated a favorable clinical response.

At initial presentation (March 22, 2022), the patient had a

CA19–9 level exceeding 1200 IU/mL and was diagnosed with
FIGURE 4

Construction and validation of the Immune Hot-Cold (IHC) index and predictive model. (A) Three-dimensional projection of IHC vectors from patient
samples using t-SNE dimensionality reduction. (B) Validation of the IHC index using an external iCCA cohort (PMID: 34510503), demonstrating separation of
immune “hot” and “cold” groups. (C) Spearman correlation between bile metabolites and the IHC index. (D) Scatter plot of selected metabolites significantly
associated with IHC index (p < 0.05). (E) Predicted vs actual values of the IHC index using LASSO regression in training and test sets. (F) Residual plot
showing homoscedasticity. (G) Histogram of residuals indicating normality assumption. (H) Q-Q plot confirming the normal distribution of residuals.
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unresectable intrahepatic cholangiocarcinoma. After four cycles of

PD-1 inhibitor therapy, the CA19–9 level dropped to 118.07 IU/mL

(June 18, 2022). A preoperative measurement on July 25, 2022,

showed a sustained decline at 299.68 IU/mL. CT imaging revealed a

35% reduction in tumor size, leading to surgical eligibility. Surgery

was performed on July 29, 2022, with frozen section confirming
Frontiers in Immunology 09
negative margins. Final pathology (August 3, 2022) reported a

resected 5.5×4.0×3.0 cm hilar cholangiocarcinoma with necrosis

and no lymph node involvement (0/5).

This case illustrates the potential clinical utility of the IHC index

in identifying immunologically active tumors that are more likely to

respond to PD-1 inhibitors and become surgically resectable.
FIGURE 5

Model performance and case validation in clinical settings. (A) Cross-validation curve for LASSO regression showing the relationship between lambda
values and model error. (B) Optimal alpha value selected for the final model based on lowest cross-validation error. (C) Predicted IHC index values
for newly recruited patients using the trained model. (D) Boxplot categorizing patients into IHC index quartiles with a red dot highlighting an
unresectable patient enrolled in immunotherapy. (E) CT images from a representative patient before and after PD-1 inhibitor treatment, showing a
reduction in tumor size and successful surgical resection.
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4 Discussion

Intrahepatic cholangiocarcinoma is the second most common

liver tumor, characterized by high malignancy, resistance to

chemotherapy, and poor prognosis. Anti-PD-1 immunotherapy

(Nivolumab, durvalumab, etc.) has shown certain effects in

treating intrahepatic cholangiocarcinoma (20). The Phase II of

the KEYNOTE-158 trial evaluated the efficacy of PD-1 inhibitory

monoclonal antibody pembrolizumab in a cohort of 104 patients

with advanced biliary cancer who received standard chemotherapy.

The results showed an objective remission rate of 5.8% (21).

Consequently, PD-1 inhibitors have been increasingly used in

clinical practice for treating cholangiocarcinoma. However, there

is a current challenge in evaluating the sensitivity of patients to PD-

1 inhibitors and selecting the appropriate PD-1 drugs. There are few

related studies at present.

We present, for the first time, a numerical standard for assessing

the overall immune environment’s heat level based on multi-target

IF. Traditional metrics for measuring immune heat have significant

limitations, often focusing on PD-L1 or just 1–3 IF targets. They

typically rely on the percentage of stained cells for stratification,

using a 0–2 criterion to describe the overall level of immune heat,

such as 1,2. These immune scores do not provide a continuous

quantitative evaluation. Our newly created index offers a promising

framework to this issue, based on a multi-dimensional vector length

constructed from the percentage of cells stained for multiple IF

targets, straightforwardly reflecting the definition of immune heat

intensity. It is crucial to note that while some target expression

levels are considered to have positive or negative associations with

immune responses, there is evidence that they are also involved in

regulatory processes and immune responses in other, deeper ways.

Our focus is on the overall immune response strength, hence,

considering the positive or negative impact of individual targets

on immune response strength is limited. Our metric preserves the

intensity information of individual targets to the greatest extent.

Our study also examined the genetic aspects of CCA, identifying

significant differences in metabolomic profiles between patients

with specific mutations, such as TP53 and K-Ras. Research

indicates that these mutations are commonly found in iCCA and

significantly influence the disease’s development and progression.

For instance, mutations in TP53 and K-Ras can lead to distinct

metabolic alterations, which are known to impact the bile

metabolomic profiles, adding complexity to the understanding of

CCA. The presence of these mutations is associated with changes in

metabolic pathways that are critical for tumor growth and response

to therapy (22). This highlights the necessity for personalized

therapeutic approaches, considering the unique genetic and

metabolic landscape of each patient.

To translate the IHC index into clinically actionable insights, we

aimed to identify a low-cost, clinically oriented bridge through

biliary metabolites that could provide convenient, rapid, and

accurate predictions for cholangiocarcinoma patients’ responses

to immune checkpoint inhibitors.

During model development, we initially tested fully connected

neural networks, ResNet, and XGBoost regressors. However, these
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models exhibited notable overfitting and poor generalization in our

relatively small-sample, high-dimensional dataset, even after

applying pruning and other regularization strategies. LASSO

regression was therefore selected for its superior stability and

interpretability in this context. Before using LASSO regression, we

also compared its performance with these alternative methods, but

LASSO consistently yielded more reliable results, particularly in

terms of avoiding overfitting and maintaining model clarity.

Therefore, LASSO was ultimately chosen to ensure the majority

of parameters are zero-valued.

Furthermore, our research illustrates the broader implications

of integrating multi-omic data in clinical diagnostics. The

combination of metabolomics with IF data may improve the

predictive performance of our model and provide additional

insights into the tumor microenvironment, though further

validation is required. This integrative approach has the potential

to be extended to other cancer types and may inform the

development of future diagnostic and prognostic tools.

We also attempted to construct a preoperative diagnostic model

of cholangiocarcinoma based on bile metabolomics, supplemented

by microbiome analysis. However, the microbiome results revealed

only 12 taxa with statistically significant differences between CCA

and control groups, and no strong overall microbial signal was

observed. Given the known antimicrobial properties of bile and its

typically low microbial biomass, the diversity and functional

relevance of bile microbiota may be inherently limited compared

to other compartments like the gut. These biological constraints,

combined with the limited statistical differences detected, led us to

deprioritize the microbiomic data and focus our model

development on metabolomics. Although preliminary attempts at

diagnostic modeling using bile metabolomics alone were not yet

satisfactory, we plan to expand our sample size and consider

additional molecular layers, such as virology or proteomics, in

future work to enhance diagnostic potential.

Despite the promising results, our study has limitations that need

to be addressed in future research. The relatively small sample size and

the single-center nature of the study may limit the generalizability of

our findings. To mitigate the sample size limitation, we used LASSO

regression, which performs well in small-sample, high-dimensional

contexts by penalizing less informative features. Spearman correlation-

based preselection and five-fold cross-validation further helped control

for overfitting. In addition, we retrospectively validated the IHC Index

using a previously published iCCA dataset (PMID: 34510503),

achieving accurate classification of immune ‘hot’ and ‘cold’ profiles.

Although complete external validation of the bile metabolomics model

is limited by data availability, these findings support the model’s

robustness and potential generalizability. Future studies should aim

to include larger, multi-center cohorts to validate and refine our

predictive model further. Additionally, while our model focuses on

bile metabolomics and immune biomarkers, incorporating other omics

data, such as proteomics and transcriptomics, could provide a more

comprehensive understanding of CCA and its response

to immunotherapy.

Moreover, the dynamic nature of the immune response and its

interaction with metabolic pathways suggest that longitudinal
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studies are necessary to capture these changes over time. Such

studies could provide insights into the temporal aspects of

treatment response and resistance, further enhancing the clinical

utility of our predictive model (23).

Our findings offer an early observation that may contribute to

understanding the relationship between metabolomic and immune

profiles. However, the mechanistic links between individual bile

metabolites and specific immune signaling pathways remain to be

fully elucidated. While prior studies have identified compounds

such as glycocholic acid (GCA) and taurochenodeoxycholic acid

(TCDCA) as biomarkers for CCA, their direct roles in modulating

T-cell responses or immune checkpoints are not well established.

Future studies involving pathway-based metabolomic analysis and

experimental validation will be needed to explore how specific bile

metabolites contribute to immune regulation in the CCA

microenvironment. Figure 4B demonstrates that our defined IHC

index reliably captures the variables measured in comparable

studies. This accuracy is further validated by the immune

exhaustion gene code set provided in the referenced study. We

anticipate that future research will continue to utilize and refine this

standard, thereby enhancing its application and validity in

diverse contexts.
5 Conclusions

In summary, our study presents a novel, integrative approach to

predicting PD-1 inhibitor responses in CCA patients. By combining

bile metabolomics with immune biomarkers, we have developed a

preliminary predictive model that shows potential for informing

personalized treatment strategies. Our findings underscore the

importance of a holistic approach in cancer research, paving the

way for more effective and tailored therapeutic interventions.

Future research should continue to build on these findings,

expanding the scope of biomarker discovery and refining

predictive models to enhance the clinical management of CCA.
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