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Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy

characterized by poor prognosis, strong resistance to therapy, and a dense

immunosuppressive tumor microenvironment (TME). A small subset of cells

known as cancer stem cells (CSCs), or tumor-initiating cells (TICs), are

increasingly recognized as key contributors to tumor initiation, metastasis,

immune evasion, and treatment failure. These cells are defined by their self-

renewal capacity, plasticity, and resistance to chemotherapeutic and targeted

therapies. Pancreatic cancer stem cells (PaCSCs) are maintained by specific

surface markers (CD44, CD133, EpCAM, ALDH1A1) and regulated by stemness-

associated signaling pathways such as Wnt/b-catenin, Notch, Hedgehog, and
TGF-b. Their survival is further enhanced by metabolic reprogramming, including

shifts between glycolysis and oxidative phosphorylation and the activation of

ROS-detoxifying enzymes. Importantly, PaCSCs reside in specialized niches

formed by hypoxia, cancer-associated fibroblasts (CAFs), tumor-associated

macrophages (TAMs), and extracellular matrix (ECM) components that together

shield them from immune clearance and promote therapeutic resistance. This

review outlines the molecular features and functional roles of PaCSCs, their

interaction with the TME, and recent advances in targeting this CSC-stroma

network. Promising therapeutic strategies, such as CAR-T/NK cell therapies,

epigenetic inhibitors, and combination regimens with checkpoint blockade or

stromal modulators, are discussed in the context of ongoing clinical trials.

Targeting both CSCs and their supportive microenvironment is emerging as a

necessary strategy to overcome resistance and improve clinical outcomes

in PDAC.
KEYWORDS

pancreatic ductal adenocarcinoma, tumor-initiating cell, cancer stem cell, tumor
microenvironment, immune evasion
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1 Introduction

Pancreatic ductal adenocarcinoma (PDAC) is one of the most

lethal malignancies, characterized by late diagnosis, rapid

progression, and limited therapeutic efficacy (1). Despite

accounting for only about 3% of all cancers, PDAC is the fourth

leading cause of cancer-related deaths worldwide, with a 5-year

survival rate below 15% (2). The aggressive nature of PDAC

arises from its early metastasis, tumor immune environment,

and profound resistance to conventional treatments (3).

Although combinations such as FOLFIRINOX or nab-

paclitaxel with gemcitabine have prolonged overall survival (OS)

of patients, durable responses remain rare (4). These clinical

challenges reflect the urgent need to better understand the cellular

and molecular mechanisms that drive PDAC aggressiveness and

therapy failure.

A major contributor to PDAC’s dismal prognosis is its intrinsic

and acquired therapeutic resistance (4). Mounting evidence

suggests that a rare subpopulation of cells known as cancer stem

cells (CSCs), also referred to as tumor-initiating cells (TICs), plays a

central role in orchestrating this resistance (5, 6). These cells exhibit

self-renewal capacity, tumor-initiating potential, and resilience

under stressful conditions, including nutrient-deprived and

hypoxic microenvironments (7). Studies have shown that

gemcitabine treatment enriches for CD133+ and CD24+

pancreatic cancer stem cells (PaCSCs), which display enhanced

sphere-forming ability, drug efflux capacity, and tumorigenicity (8–

10). Moreover, CSCs are protected by a supportive niche that

includes hypoxia, immunosuppressive immune cells, and

extracellular matrix (ECM) barriers, all of which hinder drug

penetration and immune-mediated clearance (5, 11, 12). The

failure of single-agent targeted therapies, such as Hedgehog or

Notch inhibitors, to improve outcomes underscores the resilience

of CSCs and the importance of addressing their supportive

environment (13). Hence, understanding CSC biology is crucial to

overcoming PDAC drug resistance.

Beyond their inherent stemness, CSCs in PDAC exhibit

remarkable plasticity, enabling them to interconvert with non-

CSCs in response to microenvironmental cues. This phenotypic

flexibility is driven by factors such as hypoxia, inflammatory

cytokines, and ECM stiffness, which not only maintain CSC traits

but also promote therapy evasion (14). For instance, hypoxia-

induced HIF-1a activation enhances CSC stemness and triggers

EMT, fostering both drug resistance and metastasis (15).

Additionally, CSCs interact with tumor-associated macrophages

(TAMs), cancer-associated fibroblasts (CAFs), and other stromal

elements to maintain a protective niche (5, 11). TAM-derived

cytokines such as TGF-b and IL-10 reinforce CSC survival, while

CAFs contribute to ECM remodeling and metabolic crosstalk. This

bidirectional interplay between CSCs and the tumor

microenvironment (TME) creates a vicious cycle: CSCs remodel

the TME to support their maintenance, and in return, the TME

shields CSCs from immune and therapeutic attacks. These dynamic

interactions complicate efforts to eliminate CSCs and explain the

frequent relapses after initially successful therapies. Targeting CSCs
Frontiers in Immunology 02
in isolation may therefore be insufficient; effective interventions

must disrupt the reciprocal CSC-TME dialogue.

This review aims to provide a comprehensive overview of CSCs

in pancreatic cancer, with a particular focus on their mechanisms of

immune evasion, therapy resistance, and plasticity. We explore the

molecular features and key signaling pathways that sustain PaCSC

stemness, the metabolic adaptations that confer survival advantages,

and the intricate crosstalk between CSCs and various TME

components such as CAFs, TAMs, and endothelial cells.

Furthermore, we highlight emerging therapeutic strategies that

target both CSCs and the stromal landscape to achieve durable

treatment responses. By synthesizing current insights and recent

clinical developments, this review seeks to identify opportunities for

microenvironment-based reprogramming to synergistically disrupt

CSC-driven disease progression in PDAC.
2 Features of PaCSCs

2.1 Biomarkers for PaCSCs

Since many markers expressed by CSCs are also found in tissue-

resident stem cells and human embryonic stem cells, their

characterization and isolation must rely on combinations of

surface markers as well as both extracellular and intracellular

markers. A comprehensive understanding of biomarkers beyond

traditional surface markers will help better identify and isolate cells

responsible for tumor initiation, drug resistance, and relapse.

CD44, CD133, CXCR4 and EpCAM are classic surface

biomarkers for not only PaCSCs, but also other CSCs. The

expression of CD44 is associated with increased proliferation,

self-renewal and metastasis. For example, as few as a hundred

CD44high/CD24low/-/Lineage- breast cancer cells, could form tumors

in mice, whereas tens of thousands of cells with alternate

phenotypes failed to form tumors (16). The isoform of CD44,

CD44v6, were found to be related with enhanced CSCs properties

and resistance to anti-angiogenic therapies in PDAC (17). CD133 is

a transmembrane glycoprotein belonging to Glycoprotein 1 family,

and higher expression level of CD133 is closely associated with self-

renewal and chemoresistance ability of PaCSCs. It is worthwhile to

note that CD44high/CD133high cells are found to exhibit increased

tumorigenic capabilities across cancer types (18). EpCAM is a

transmembrane glycoprotein predominantly expressed in

epithelial cells and plays an essential role in regulating PaCSC

survival and tumor growth (19).

Other biomarkers related to the metabolic state, CSC-specific

signaling pathways and CSC niche regulation are critical for

identifying and understanding the biology of PaCSCs. PaCSCs,

like other CSCs, exhibit altered metabolism compared to

differentiated tumor cells. Aldehyde Dehydrogenase 1 A1

(ALDH1A1) enables the metabolic reprogramming essential for

PaCSC stemness and drug resistance by enhancing aerobic

glycolysis, detoxifying reactive oxygen species (ROS), and

increasing resistance to gemcitabine compared to normal PDAC

cells (20). Additionally, PaCSCs upregulate Vimentin, N-cadherin,
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and transcription factors such as Snail and ZEB1 and gain enhanced

capacity for EMT (21).

Previous studies have identified several markers for PaCSCs

identification, including PIM-1, L1CAM, CD9, HNF1A, and

DCLK1 (22–25). And recent studies have highlighted several

novel markers for PaCSCs such as laminin g2 (LAMC2) and

Voltage-gated calcium channel a2g1. A novel CSC subpopulation

has been identified based on LAMC2 expression, which marks an

aggressive signature in PaCSCs. This subpopulation is regulated by

Smad/TGF-b pathways, and TGFBR1 inhibitors like vactosertib

have shown to hinder PDAC progression (26). a2g1 is involved in

regulating various cellular processes, such as proliferation, survival,

and migration, which are vital for the aggressive behavior of

PaCSCs (27).
2.2 Key stemness signaling pathways

Several stemness pathways contribute to the maintenance and

aggressive phenotypes of PaCSCs, enabling them to sustain their

stem-like properties and negatively impact patients’ prognosis.

The Wnt/b-catenin signaling pathway is essential for

maintaining the self-renewal and stemness of PaCSCs (28). This

pathway regulates the translocation of b-catenin to the nucleus,

where it activates the expression of genes that sustain the

undifferentiated state of PaCSCs. Studies have shown that

CD133+ PaCSCs rely on Wnt signaling to maintain their

tumorigenic potential and resist differentiation (29). For instance,

Wnt inhibitors such as XAV939 have been found to significantly

reduce CSC-derived tumor growth, indicating the importance of

this pathway in CSC maintenance and tumor initiation (30, 31).

Notch signaling is another key pathway involved in regulating

PaCSC self-renewal and stemness. Activation of Notch receptors

leads to the cleavage of the Notch intracellular domain, which

translocates to the nucleus and activates the transcription of

stemness-associated genes (32). In a pancreatic cancer model,

Notch signaling was found to regulate the expansion of PaCSCs

(33). Inhibiting Notch using GSI-18 (a g-secretase inhibitor)

significantly reduced PaCSC expansion and tumor growth,

showing the essential role of Notch signaling in maintaining

stemness and tumor initiation in pancreatic cancer (34–36).

Hedgehog signaling was found to be upregulated in PaCSCs,

with the GLI1 transcription factor driving their tumorigenic

potential (37). Hedgehog pathway inhibition using Vismodegib

resulted in a significant reduction of PaCSC marker expression,

tumor growth, and metastasis in animal models. This demonstrates

the crucial role of Hedgehog signaling in supporting PaCSC self-

renewal and metastatic spread (38).

Additionally, TGF-b signaling regulates EMT, which enhances

the migratory and invasive properties of PaCSCs, contributing to

metastasis (14). TGF-b also helps PaCSCs survive under stress and

evade treatment, promoting quiescence and therapy resistance (39).

A study on PaCSCs in pancreatic cancer found that TGF-b
signaling promoted EMT in these cells, enabling them to acquire

invasive and metastatic capabilities (14). The inhibition of TGF-b
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signaling using SB431542 led to a decrease in PaCSC migration and

metastasis, as well as an increase in chemotherapy sensitivity,

highlighting the role of TGF-b in PaCSC metastasis and therapy

resistance (40) (Figure 1).
2.3 CSC metabolic reprogramming

PaCSCs undergo metabolic reprogramming for stemness

maintenance, survival in harsh microenvironments, and treatment

resistance. One major aspect of this reprogramming involves

glucose metabolism. PaCSCs exhibit dynamic metabolic flexibility,

shifting between glycolysis and oxidative phosphorylation

depending on the tumor ecosystem. During early tumorigenesis,

PaCSCs upregulate aerobic glycolysis, an adaptation driven by the

transcription factor MYC, which also enhances glutathione

synthesis to manage oxidative stress. This metabolic switch

enables PaCSCs to thrive in hypoxic niches and contributes to

their proliferative and survival advantages (41). Furthermore,

PaCSCs adapt their metabolic phenotype based on metastatic

sites: for example, lung-metastatic cells favor OxPhos, while liver-

metastatic ones rely more heavily on glycolysis. Lung-metastatic

PaCSCs are enriched in ALDH+/CD133+ populations and exhibit a

MET-like phenotype with oxidative metabolism (42). Liver-

metastatic PaCSCs, on the other hand, display a drug-resistant,

EMT-like phenotype, characterized by aerobic glycolysis and fatty

acid b-oxidation (FAO)-mediated oxidative metabolism (42).

Antioxidant defense is another metabolic hallmark of PaCSCs.

ALDH1A1, a recognized PaCSC marker, protects against oxidative

stress, promotes stemness and contributes to gemcitabine resistance

(43). Its activity is linked to enhanced ROS detoxification and

survival in hypoxic or drug-exposed niches. Functional studies in

ALDH1A1+ PaCSCs have shown elevated resistance to gemcitabine

and greater tumorigenic potential compared to ALDH1A1–

counterparts (44).

As for amino acid and lipid metabolism, evidence remains

limited and largely indirect. Some studies on PDAC (not

specifically PaCSCs) have shown reliance on non-canonical

glutamine metabolism and methionine cycling for NADPH

production and epigenetic regulation (45, 46). While these

pathways may be relevant to PaCSCs, their roles have not been

directly validated in purified CSC populations and warrant

further investigation.
2.4 CSC therapy resistance

PaCSCs exhibit robust chemotherapy resistance, particularly to

gemcitabine, through several well-documented mechanisms. Upon

gemcitabine treatment, there is a notable increase in CD24+ and

CD133+ PaCSCs alongside upregulation of stemness-associated genes

such as BMI1, Nanog, and SOX2. This shift is driven by a NADPH

oxidase (NOX)-mediated ROS/NF-kB/STAT3 signaling cascade (47),
which enhances phosphorylated STAT3 binding at promoters of

these stemness genes, thereby boosting sphere formation, cell
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migration, chemoresistance, and tumor relapse (42, 43).

Furthermore, functional studies show that CD133+ PaCSCs isolated

from gemcitabine-resistant pancreatic cancer models demonstrate

significantly greater resistance to gemcitabine compared to CD133-

cells (48). These cells also show enhanced 3D colony-forming ability

and inherently higher tumorigenic potential (49).

In addition to chemoresistance, PaCSCs also display

pronounced resistance to targeted therapies, largely due to

activation of stemness-linked developmental pathways and their

protective niche environments. For instance, Notch pathway

activation sustains PaCSC survival and self-renewal despite

conventional pathway inhibitors. In preclinical studies, inhibition

of DLL4/Notch signaling with anti-DLL4 antibodies reduced the

PaCSC fraction and partially restored drug sensitivity, but failed to

fully eradicate PaCSCs without combination treatment (50). Apart

from inhibitors of Notch signaling, inhibiting JNK signaling via

MKP-1 induction by dexamethasone reduces surviving levels,

increases gemcitabine sensitivity, and impairs PaCSC viability

(51). Overall, single-agent targeted therapies often fall short
Frontiers in Immunology 04
against PaCSCs unless they directly impair self-renewal networks

and are used along with conventional chemotherapy (52–55).
3 Interplay between PaCSCs and TME

3.1 Association between PaCSCs and
hypoxia

PaCSCs often exist in hypoxic niches within the TME, which

serve as important regulators of their maintenance, plasticity, and

aggressiveness. Hypoxia stabilizes HIF-1a, a key transcriptional

regulator that activates pathways critical for stemness and invasion.

For example, hypoxia activates the HIF-1a/Notch signaling axis,

which promotes the expression of core stemness genes such as

CD44, CD133, Nestin, and CXCR4, enhancing the dedifferentiation

and tumorigenic potential of PaCSCs (56, 57) (Figure 2).

In addition, hypoxia induces autophagy in pancreatic cancer

cells via HIF-1a signaling, facilitating both EMT and the conversion
FIGURE 1

Schematic illustration of the PDAC microenvironment. The image depicts CAFs secrete cytokines such as IL-6 and TGF-b and remodel the ECM,
while immunosuppressive cells (M2 macrophages, MDSCs, Tregs) further dampen T-cell infiltration and function, collectively reinforcing an
immunosuppressive, therapy-resistant niche. Concurrently, CSCs sustaining their stemness and therapy resistance via developmental signaling
pathways (Wnt, Notch, and Hedgehog) and dynamic chromatin states. CSCs also release exosomes containing regulatory molecules (e.g., PD-L1,
miR-21, lncRNA H19) that promote immune evasion.
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of non-CSCs into PaCSCs, further contributing to tumor

dissemination (58) CD133+ PaCSCs themselves exhibit

heightened expression of HIF-1a under hypoxia, directly linking

this transcription factor to EMT progression and increased

migratory capacity (59). Moreover, hypoxic cancer cells release

exosomes enriched with lncRNAs such as lncROR, which inactivate

the Hippo-YAP pathway in recipient PaCSCs and thereby enhance

chemoresistance and stem-like features (60).
3.2 Association between PaCSCs and
angiogenesis

PaCSCs orchestrate angiogenesis through multiple

mechanisms, underlining their role in shaping the tumor vascular

niche and contributing to therapeutic resistance. One key

mechanism involves the activation of STAT3 signaling (14, 61).

STAT3 activation in pancreatic cancer cells, including those with

stem-like traits, directly binds to the VEGF promoter, upregulates

VEGF expression, and enhances endothelial cell proliferation and

migration, leading to increased angiogenesis and tumor growth in

vivo (62). Further mechanistic studies demonstrate that STAT3

cooperates with Sp1 and HIF-1a at the VEGF promoter to amplify

expression of angiogenic factors such as VEGF and bFGF (63).

PaCSCs also influence the vascular niche through recruitment and
Frontiers in Immunology 05
activation of stromal cells. TAMs and mesenchymal stem cells

(MSCs), often within CSC niches, secrete VEGF-A and PDGF,

augmenting endothelial proliferation and vessel formation (64).
3.3 Association between PaCSCs and TAMs

TAMs play a crucial role in supporting PaCSCs by promoting

stemness, therapy resistance, and immune evasion. For example,

the coexistence of CD44+/CD133+ PaCSCs with CD204+

TAMs is associated with worse prognosis, indicating that

macrophage infiltration supports the CSC niche and contributes

to poor outcomes. Additionally, TAM-derived CD51 enhances

PaCSC properties by activating the TGF-b1/Smad2/3 signaling

axis, leading to increased self-renewal and tumorigenic

potential (65). Similarly, exosomes derived from M2-polarized

macrophages deliver microRNA-21-5p to PaCSCs, promoting

their differentiation and activity by targeting KLF3, a known

tumor suppressor (66).

TAMs also contribute to chemotherapy resistance. After

chemotherapy-induced apoptosis, macrophages polarize toward

an M2 phenotype and secrete factors such as 14-3-3z that

enhance PaCSC resistance to drugs like gemcitabine and

abraxane. These chemoresistant cells show increased sphere

formation and tumorigenesis, confirming enrichment in CSCs (67).
FIGURE 2

Hyaluronan engagement with CD44 activates PI3K/AKT and induces matrix metalloproteinase release. Integrin signaling through FAK drives a PI3K/
AKT–mTOR–SOX2 axis that sustains CSC maintenance. Increased ECM stiffness inactivates the Hippo pathway, allowing YAP/TAZ and TEAD to
upregulate CTGF and CYR61 and TGF−breceptor signaling via Smad2, Smad3 and Smad4 promotes EMT and reinforces CSC stemness.
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3.4 Association between PaCSCs and
CAFs/ECM

PaCSCs interact intricately with CAFs and ECM, shaping a

TME that sustains tumorigenesis, therapy resistance, and immune

evasion. CAFs are key players in forming the ECM that supports

PaCSC stemness and survival. This matrix is often assembled via

fibronectin-binding integrins (a5b1 and avb3) on CAFs, and

targeting these integrins can disrupt ECM assembly and reduce

stemness of PaCSCs (68). CAFs also secrete various ECM proteins

and remodeling enzymes that reinforce ECM stiffness and provide

biochemical signals to PaCSCs, promoting their resistance to

chemotherapeutics and enhancing their metastatic potential (69).

Beyond mechanical support, CAFs contribute to metabolic

reprogramming in the TME, which benefits PaCSCs by providing

alternative nutrients and promoting immune evasion (70, 71).

Furthermore, CAF-derived ECM components such as fibronectin

and laminin trigger NADPH oxidase mediated ROS production in

PaCSCs, enhancing their survival through prosurvival pathways

including 5-lipoxygenase signaling (72).

It is important to note that the structural and functional

heterogeneity of CAFs means that some subtypes may suppress,

while others promote, tumor progression. Specifically, the TME

comprises three major subtypes of CAFs, namely myofibroblastic

CAFs (myCAFs), inflammatory CAFs (iCAFs), and antigen-

presenting CAFs (apCAFs), each with unique spatial localization

and functional roles (73–75). These insights indicate that simply

eliminate CAF population may hinder treatment efficacy.
3.5 The association between PaCSCs and
exosomes

PaCSCs actively engage in bidirectional communication with

components of the TME through exosomes, thereby driving tumor

progression, modulating immune responses, and promoting

therapeutic resistance. PaCSC-derived exosomes are key vehicles

for horizontal gene transfer and intercellular communication. They

carry proteins, mRNAs, miRNAs, and other bioactive molecules

that influence stromal and immune cells in the TME (76). PaCSC-

secreted exosomes have been found to contain CD133, a well-

known CSC marker, indicating their role in maintaining stemness

and potentially predicting chemoresistance in advanced pancreatic

cancer (77). Furthermore, bone marrow mesenchymal stem cell

(BM-MSC)-derived exosomes can suppress PaCSC stemness by

delivering circular RNAs such as circ_0030167, which inhibits the

Wnt/b-catenin signaling pathway (78).

Although research on the roles of exosomes in PaCSCs remains

limited, their functions have been more extensively characterized in

other cancer types, providing valuable insights into their likely

relevance in PaCSCs. For example, in breast cancer, CSC-derived

exosomes enriched with miR-21 and miR-155 have been shown to

induce fibroblast transformation into CAFs, promoting tumor

invasion and chemoresistance (79). In thyroid cancer, hypoxic

CSCs secrete exosomes containing LINC00665, which enhances
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EMT and stemness traits in recipient tumor cells, thereby

accelerating metastasis (80). In prostate cancer, exosomes from

CSCs can reprogram MSCs into myofibroblast-like cells that

facilitate angiogenesis and tumor growth (81). Moreover, in

colorectal cancer, CSC-derived exosomes have been shown to

deliver Wnt signaling components to neighboring cells, sustaining a

pro-stemness microenvironment and enhancing metastatic capability

(82). These findings across tumor types collectively suggest that CSC-

derived exosomes are powerful mediators of intercellular

communication and could play similar roles in PaCSCs, such as

contributing to immune suppression, therapeutic resistance, and

metastatic potential. Future studies focusing on PaCSC-specific

exosomal profiles and their functional roles are essential to develop

novel diagnostic markers and targeted therapies.
4 Targeted therapy

4.1 Targeting CSC biomarkers

CSC-specific surface antigens and epigenetic vulnerabilities are

leveraged for precision therapies. CAR-T/NK therapies targeting

Claudin18.2 and CD133 demonstrate clinical promise:

Claudin18.2-directed CAR-T cells reduce ALDH1A1+ CSCs in

metastatic PDAC (83), while CD133-targeted CAR-NK cells

suppress metastasis in preclinical models (84). To overcome

stromal barriers, these therapies are combined with hyaluronidase

or FAK inhibitors, enhancing intratumoral penetration and survival

(85, 86). Epigenetic approaches include EZH2 inhibitors that force

CSC differentiation by silencing stemness genes, and HAD

inhibitors that activate STING-dependent immunity via viral

mimicry (87, 88). Besides, antibody–drug conjugates and

bispecific T-cell engagers (BiTEs) against CD133 or CD44 are

under preclinical, with anti-CD133 ADCs and CD133+CD3+

BiTEs showing efficient CSC killing and sphere‐formation

blockade (89, 90). Radioimmunotherapy against tuft-cell marker

DCLK1 is being explored to deliver localized radiation to CSC

niches, further illustrating the therapeutic promise of biomarker-

guided approaches (91). Furthermore, Anti-CD47 antibody therapy

disrupts the signal on CD34+CD38- leukemic stem cells, enhancing

macrophage-mediated phagocytosis and achieving durable

remissions in preclinical Acute Myeloid Leukemia (AML) models

(92, 93). Collectively, these strategies exploit PDAC and other

malicious tumor CSC vulnerabilities to improve eradication of the

cells driving tumor recurrence and therapy resistance.
4.2 Targeting key signaling pathways

Critical pathways driving CSC-stroma crosstalk are

pharmacologically targeted. Wnt/b-catenin and Hedgehog

inhibitors block desmoplasia and CSC stemness but face adaptive

resistance via TIM-3 upregulation, necessitating combination with

dual checkpoint inhibitors (anti-CD47 plus anti-PD-1) to enhance

phagocytosis and T-cell cytotoxicity (92, 94, 95). Hypoxia-HIF-1a
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targeting (PX-478) and YAP/TAZ inhibition reverse metabolic

reprogramming and ECM-driven chemoresistance, with

verteporfin plus losartan reducing metastases (96, 97). Metabolic-

immune synergy is exemplified by MCT1 inhibitors combined with

anti-CTLA-4, normalizing extracellular pH and reversing lactate-

driven immunosuppression, enhancing survival time (98).

Emerging data indicate that MLKL-mediated necroptosis in

PDAC fosters an immunosuppressive niche by recruiting TAMs

and upregulating the CD47 signal, while necroptosis-induced

macrophage extracellular traps degrade the ECM and activate

CXCL8 to drive EMT and ICAM-1–dependent endothelial

adhesion. Dual inhibition of MLKL and CD47 in preclinical

PDAC models markedly reduces liver metastases (99).
5 Conclusion

PaCSCs play a central role in therapy resistance, metastasis, and

immune evasion in PDAC. Their dynamic interaction with TME,

including CAFs, TAMs, hypoxia, and ECM, creates a protective

niche that reinforces stemness and limits treatment efficacy.

Monotherapies targeting single pathways have largely failed due

to compensatory mechanisms and the plasticity of CSCs. Emerging

multimodal strategies that simultaneously target CSCs and

reprogram the TME show greater promise. Approaches such as

CAR-T/NK cell therapies, metabolic inhibitors, and epigenetic

modulators offer new avenues for durable responses. Future

efforts should integrate spatial omics and biomarker-guided

precision to optimize treatment timing and sequencing, ultimately

transforming the management of this aggressive malignancy.
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