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Frontiers in Immunology 
Short-chain fatty acids: key 
antiviral mediators of gut 
microbiota 
Zhiqiang Xu, Tao Wang, Yanjin Wang, Yongfeng Li, Yuan Sun* 

and Hua-Ji Qiu* 

State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-
Reference Laboratory, National High Containment Facilities for Animal Diseases Control and 
Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 
Harbin, China 
The effects of gut microbiota on antiviral immunity have been well-documented 
in recent years, whereas a mechanistic understanding of microbiota-derived 
metabolite-related signaling pathways is still lacking. Short-chain fatty acids 
(SCFAs), key metabolites produced by gut bacterial microbiota via dietary fiber 
fermentation and amino acid metabolism, have been shown to facilitate host 
antiviral responses. In this review, we summarized the detailed mechanisms 
which could contribute to the regulation of antiviral immunity engaged and 
initiated by SCFAs, involving G-protein-coupled receptor (GPCR)-mediated, 
histone deacetylase (HDAC)-mediated, and metabolic pathways. We also 
discuss the implications of SCFAs for viral disease management and pandemic 
preparedness. This review provides novel insights into the antiviral activities of 
SCFAs and highlights the therapeutic potential of SCFA-producing bacteria. 
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GRAPHICAL ABSTRACT 
1 Introduction 

The microbe communities in the gastrointestinal tract, which are 
collectively called “gut microbiota”, include bacteria, fungi, viruses, 
archaea, etc., and bacteria are the largest component. In contrast, the 
“gut microbiome” encompasses the gut microbiota and their 
genomes (1, 2). The gut microbiota, especially short-chain fatty 
acid (SCFA)-producing bacteria, critically modulates gut antiviral 
immunity and the mucosal immune system (3, 4). It has been 
reported that Akkermansia muciniphila, or some genera, such as 
Ruminococcus and Bifidobacterium, which are SCFA-producers, are 
associated with improved clinical responses to immune checkpoint 
inhibitors (ICIs) therapy in cancer patients. This is correlated with an 
increased systemic immune tonus (5–8). These studies highlight the 
enormous potential of the gut microbiota in immunotherapy. 
Meanwhile, such gut microbiota also has significant potential in 
regulating the functions of immune cells to eliminate viruses (9, 10). 

Despite advancements in vaccines, viral diseases remain a 
significant threat to both humans and animals due to rapid virus 
mutation (11). The rapid and continuous mutation of epidemic 
strains makes the prevention and control of viral diseases 
intractable. Antivirals and vaccines are unable to fully contain 
emerging and re-emerging viral epidemics. The mucosal barrier, 
which viruses must penetrate when infecting host cells, is colonized 
by a large number of bacteria. These bacteria have a symbiotic 
relationship with the host and regulate antiviral immunity through 
Frontiers in Immunology 02 
intricate and diverse pathways (2, 12). Viral infections and other 
factors (e.g., antibiotic use) dynamically reshape the gut microbiota, 
thereby influencing viral disease outcomes (13–15). Sometimes, it is 
challenging to distinguish the cause-and-effect relationship between 
changes in the gut microbiota and the host’s susceptibility to 
viruses. It is crucial to properly understand the relationships 
between gut microbiota alterations and viral diseases and identify 
the constituents and effectors (e.g., bacterial metabolites and 
components) of the gut bacterial microbiota (16). 

Recently, SCFAs—primarily acetate, propionate, and butyrate— 
have garnered significant attention for their roles in regulating 
multiple human physiological systems, including the nervous, 
digestive, respiratory, cardiovascular, and immune systems, as well 
as their implications in tumor therapy (16–19). Among these, the 
immunomodulatory functions of SCFAs have been particularly well-
documented. Specifically, gut microbiota-derived SCFAs emerge as 
key regulators of antiviral immunity, as evidenced by their protective 
roles in infections caused by influenza virus, respiratory syncytial 
virus (RSV), and porcine epidemic diarrhea virus (PEDV) (Graphical 
Abstract). These effects are mediated through diverse immune 
regulatory mechanisms, including but not limited to enhancing 
interferon responses, modulating inflammatory cytokine 
production, and maintaining epithelial barrier integrity (20–24). 
Given the growing understanding of these SCFA-mediated antiviral 
pathways, leveraging their therapeutic potential—particularly 
through novel probiotic-based interventions—holds promise for 
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advancing viral disease containment strategies. The mechanisms 
underlying SCFA-mediated immune regulation have been 
continuously elucidated alongside technological advancements over 
the past decades, including metagenomics, untargeted metabolomics, 
and mass cytometry. In the present review, we aim to synthesize and 
discuss how gut microbiota regulates cellular antiviral functions, with 
a focused discussion of SCFAs’ roles in antiviral immunity— 
particularly those involving intracellular signaling pathways. This 
review will provide our insights into the antiviral mechanisms of gut 
microbiota and establish a foundation for therapies targeting 
microbiota modulation. 
2 The profile of SCFAs 

SCFAs, mainly acetate, propionate, and butyrate, are primarily 
produced in the gut by fermenting dietary fiber and certain amino 
Frontiers in Immunology 03 
acids by gut microbiota, especially symbiotic bacteria (Figures 1A, 
B) (25). Some microbial communities like Bacteroides spp., Blautia 
spp., etc., have been summarized in other reviews and are not 
further elaborated here (16, 26). The molar ratios of acetate, 
propionate, and butyrate in colonic contents are approximately 
60–70: 20–30: 10–20 (Figure 1B) (27, 28). More than 90% of SCFAs 
are absorbed from the intestinal cavity and utilized as an energy 
source by colonocytes or liver cells (29, 30). SCFAs provide 60–70% 
of the energy supply for colonocytes, and butyrate is a primary 
energy source for them (31). The SCFAs not metabolized by 
colonocytes reach the liver via the portal vein. Among these 
SCFAs, butyrate and propionate are almost entirely taken up by 
the liver with normal hepatic functions (27, 29, 32). In peripheral 
blood, the majority of SCFAs is acetate (33, 34), and the molar ratio 
of acetate, propionate and butyrate in human peripheral blood is 91: 
5: 4, as described previously (27). 

SCFAs modulate cellular physiology by binding to and activating 
SCFA-sensing G-protein-coupled receptors (GPCRs), commonly 
FIGURE 1 

The profile of SCFAs. The scheme illustrates the general processes of short-chain fatty acid (SCFA) production, absorption, metabolism, and intracellular 
signaling pathways, along with their concentration gradient and cellular accessibility under physiological conditions. (A, B) A high-fiber diet promotes the 
expansion of SCFA-producing bacteria, which ferment dietary fiber in the intestinal lumen to generate SCFAs. These SCFAs form a concentration 
gradient that influences various cell types, including goblet cells, Paneth cells, and T cells. (C) Panel C profiles SCFA-GPCR signaling pathways and SCFA 
metabolism. SCFAs are enzymatically transformed into acyl-CoA by CoA synthases. For instance, acetate is converted to acetyl-CoA in the cytoplasm by 
acetyl-CoA synthetase 2 (ACSS2) or in mitochondria by ACSS1. For a more comprehensive understanding of the details related to SCFA metabolism, 
please refer to Figure 4. The tricarboxylic acid (TCA) cycle and glycolysis supply adenosine triphosphate (ATP) for the NF-kB/MAPK/mTOR signaling and 
antiviral gene transcription. mTOR, mechanistic target of rapamycin. The figure was created using BioRender (https://BioRender.com). 
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referred to as SCFA receptors (SCFARs). This mechanism is discussed 
in detail in Section 3. Generally, SCFAs enter cells through primary 
mechanisms: (1) active transport via the monocarboxylate 
transporters (MCT1, MCT2, and MCT4) in relatively large amounts 
and the sodium-coupled monocarboxylate transporters (SMCT1, a 
high-affinity transporter, and SMCT2, a low-affinity transporter) in 
relatively smaller amounts; (2) passive diffusion (35–38). Moreover, 
after SCFAs are metabolized within cells, the remaining SCFAs are 
likely transported out of the cell across the basolateral membrane via 
Frontiers in Immunology 04
the SCFA-HCO3- antiport and the cation-SCFA anion symport. It is 
suggested that MCT4 or MCT5, both H+-dependent transporters, are 
responsible for these processes (Figure 1C) (39, 40). However, direct 
evidence  for whether  MCT5  can transport  SCFAs is still  lacking.
SCFAs (e.g., butyrate) inhibit histone deacetylases (HDACs), thereby 
modulating histone acetylation by regulating the balance between 
histone acetyltransferases (HATs) and HDACs (Figure 1C). This 
affects transcription by targeting distinct HDAC isoforms and 
further modulates cell functions (26, 41), as detailed in Section 4. 
TABLE 1 Receptors of SCFAs. 

SCFA 
receptors 

SCFA 
affinity 

Ga 
subunits 

Source 
animals 

Tissue distribution References 

GPR41 Propionate > Gai/o Human, Intestine, lymph nodes, neuron, bone marrow, spleen, lung, adipose, breast, (43, 45, 219–225) 
(FFAR3) butyrate > mouse, pancreas, renal tubule; L cells, dendritic cells (DCs), peripheral blood mononuclear 

acetate swine cells, and polymorphonuclear cells. 

GPR43 Propionate ≥ Gai/o, Gaq Human, Intestine, spleen, bone marrow, polymorphonuclear neutrophils (PMNs), pancreas, (43, 45, 219–225) 
(FFAR2) acetate ≥ mouse, renal tubule; L cells, peripheral blood mononuclear cells, and 

butyrate swine polymorphonuclear cells. 

GPR109A Only butyrate Gai/o Human, Colon, small intestine, retinal pigment epithelia; intestinal epithelial cells, colon (44, 46, 226) 
(HCAR2) mouse cancer cell lines, adipocytes, monocytes, macrophages, neutrophils, DCs, and 

epidermal Langerhans cells. 
 

This table summarizes the information of SCFA receptors, including their aliases, SCFA affinity, associated Ga subunits, source animals, tissue distribution, and references. 
2 FIGURE 

The SCFA-GPCR-G-protein signaling pathways. The schematic illustrates the detailed molecular mechanisms by which acetate, propionate, and 
butyrate activate short-chain fatty acid (SCFA)-sensing G-protein-coupled receptors (GPCRs) (including GPR41, GPR43, and GPR109A) and signal 
through distinct heterotrimeric G proteins, thereby initiating the mitogen-activated protein kinase (MAPK) signaling pathway. MKK, MAPK kinase; 
MAPKKK, MAPK kinase kinase; Ras, rat sarcoma viral oncogene homolog; Raf, rapidly accelerated fibrosarcoma; Ras GAP, Ras GTPase activating 
protein; JNK, c-Jun-NH2-terminal kinase; MEK, mitogen-activated protein kinase/extracellular signal-regulated kinase kinase; ERK, extracellular 
signal-regulated kinase. The figure was created using BioRender (https://BioRender.com). 
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3 The molecular mechanisms of 
SCFA-GPCR signaling pathways and 
their implications on host antiviral 
immunity 

3.1 Fundamental concepts and importance 
of SCFARs 

Upon reaching the cell periphery, SCFAs bind to and activate 
SCFARs, a subclass of GPCRs, which are the most abundant 
membrane protein family in mammals, with over 800 members 
identified (42). To date, three main types of well-characterized 
SCFARs have been identified: G-protein-coupled receptor 41 
(GPR41) (also known as free fatty acid receptor 3, FFAR3), 
GPR43 (free fatty acid receptor 2, FFAR2), and GPR109A 
(hydroxycarboxylic acid receptor 2, HCAR2). These receptors 
exhibit distinct ligand preferences: acetate preferentially activates 
GPR43, while propionate activates both GPR43 and GPR41, and 
butyrate shows higher affinity for GPR109A than GPR41 
(Figure 1C, Table 1) (26, 43, 44). SCFARs are differentially 
expressed in immune, endocrine, and epithelial cells, where they 
play a central role in regulating cellular metabolism in both humans 
and mice (Table 1). Accumulating evidence highlights the critical 
roles of SCFAs and SCFARs in host physiology and tumor 
Frontiers in Immunology 05 
suppression, particularly in colorectal cancer (45–47). Recent 
studies have also implicated the SCFA-GPCR axis in modulating 
inflammation and antiviral immunity (15, 22). However, the precise 
molecular mechanisms underlying receptor activation in different 
cell types remain incompletely understood. 
3.2 Structure and signaling of GPCRs 

Since the SCFARs belong to the GPCR family, we provide a 
brief overview of the structural features and signal transduction 
mechanisms common to GPCRs. Structurally, all GPCRs are 
characterized by seven transmembrane a-helical domains, 
separated by alternating intracellular and extracellular loops (42). 
Despite sharing these structural and activation mechanisms, GPCRs 
typically interact with specific heterotrimeric G proteins, which 
consist of a, b, and g subunits (48). GPCRs exhibit diverse signaling 
outputs, with individual receptors activating distinct combinations 
of G-protein-dependent and G-protein-independent pathways. 

The activation of canonical G-protein-dependent pathways in 
GPCRs follows a conserved mechanism: upon binding of an agonist 
(e.g., SCFAs) to its corresponding receptor, the agonist-bound 
GPCR recruits and activates heterotrimeric G proteins. Acting as 
a guanine nucleotide exchange factor (GEF), the activated GPCR 
catalyzes GDP–GTP exchange on the Ga subunits, inducing 
FIGURE 3 

The SCFA-GPCR-b-arrestin signaling pathways. This schematic depicts ligand-induced G-protein-coupled receptors (GPCRs) recycling, 
desensitization, and b-arrestin-biased signaling pathways of these receptors. GRK, G-protein-coupled receptor kinase; AP2, adaptor protein 2; PP, 
protein phosphatase. The figure was created using BioRender (https://BioRender.com). 
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dissociation of GTP-bound Ga from Gbg dimers (48). Based on 
sequence homology, Ga subunits are classified into four families 
(Gas, Gai/o, Gaq/11, and Ga12/13) (49). Both GTP-Ga and the 
Gbg dimer function as active signaling moieties, interacting with 
downstream effectors such as phospholipase C beta (PLCb), 
adenylyl cyclase (AC), and phosphatidylinositol 3-kinase (PI3K) 
(50, 51). These effectors subsequently propagate signals through 
pathways like Ras-ERK (Figure 2), ultimately regulating cellular 
metabolism and function. Signal termination occurs when GTP 
hydrolysis converts GTP-Ga to GDP-Ga, allowing both GDP-Ga 
and Gbg to disengage from the downstream effectors and 
reassemble into inactive heterotrimers, resetting the receptor for 
subsequent stimulation (52). 

In parallel, G-protein-independent pathways are initiated 
through G-protein-coupled receptor kinase (GRK)-mediated 
phosphorylation and b-arrestin recruitment. Following agonist 
binding, the dissociated G protein activates downstream G-
protein-dependent signaling, while GRKs phosphorylate the 
activated GPCR. This phosphorylation recruits plasma 
membrane-preassociated b-arrestin, which transiently couples to 
the receptor via lateral diffusion (53, 54). Membrane stabilization 
prolongs b-arrestin membrane-association, enabling its transient 
detachment from the activated GPCR and translocation to clathrin­
coated pits (Figure 3) (54). b-arrestin then facilitates GPCR 
internalization by interacting with adaptor protein 2 (AP2) and 
clathrin heavy chain (55). Internalized GPCRs exhibit two fates: (1) 
dephosphorylation by protein phosphatases (PPs) in endosomes 
promotes recycling to the plasma membrane (52, 56, 57); (2) 
ubiquitination targets receptors to late endosomes for lysosomal 
degradation, a process termed “GPCR desensitization” (53, 58). 
Notably, b-arrestin bound to internalized GPCR-endosome 
complexes can also trigger signaling: it scaffolds Src family 
proteins and mitogen-activated protein kinase (MAPK) 
components (e.g., Raf,  MEK, ERK)  to form a complex that

activates the ERK pathway, influencing cell proliferation, 
differentiation, and survival (59–61). This b-arrestin-mediated, G-
protein-independent signaling is termed “b-arrestin-biased 
signaling” (Figure 3). While these mechanisms were primarily 
characterized in b-adrenergic receptors, their conservation across 
GPCR subtypes—including SCFARs (GPR41, GPR43, GPR109A)— 
supports broad applicability. 

The G-protein-dependent and -independent signaling 
pathways of GPCRs work coordinately in cellular signal 
transduction. Next, we detail the interaction networks among the 
signaling pathways. 
3.3 Signaling characteristics of SCFARs 

The differences in intracellular signal transduction among 
SCFARs primarily stem from receptor-Ga coupling specificity and 
downstream G-protein-dependent pathways. Here, we use GPR41 as 
an example to detail its molecular mechanisms, with distinctions 
between GPR43/GPR109A presented separately. Key potencies of 
SCFAs in activating these receptors are summarized in Table 1. 
Frontiers in Immunology 06
GPR41 preferentially couples to the pertussis toxin-sensitive 
Gai/o family. Upon activation, Gai/o inhibits AC, reducing cyclic 
adenosine monophosphate (cAMP) synthesis (45, 62). Since AC 
converts adenosine triphosphate (ATP) to cAMP, this inhibition 
suppresses cAMP-dependent protein kinase A (PKA) activity (63), 
thereby dampening PKA-regulated pathways (e.g., metabolism, 
gene expression) (Figure 2). The cellular outcomes vary by 
context: in human airway smooth muscle, GPR41 activation 
contracts tissue by reducing cAMP and elevating intracellular 
Ca2+ (64); in mouse pancreatic islets, it inhibits glucose-
stimulated insulin secretion (65). 

Gai/o also directly modulates ion channels: it prevents Ca2+ 

channel closure, promoting extracellular Ca2+ influx (66), and 
enhances K+ channel  activity,  inducing  K+ influx  that  
hyperpolarizes the membrane and lowers Ca2+ channel activation 
thresholds (67). These effects regulate Ca2+-dependent functions 
(e.g., neurotransmitter release) (Figure 2) (68). Concurrently, 
dissociated Gbg activates PLCb, hydrolyzing phosphatidylinositol­
4,5-diphosphate (PIP2) to generate inositol-1,4,5-trisphosphate 
(IP3) and diacylglycerol (DAG) (67, 69). IP3 triggers Ca

2+ release 
from the endoplasmic reticulum via IP3 receptors (IP3R), elevating 
cytosolic Ca2+ (70, 71), which activates Ca2+-dependent kinases/ 
calmodulin kinase II (CaMKII) and the Ras-ERK pathway (72–74). 
DAG, remaining membrane-bound, recruits protein kinase C 
(PKC) in a Ca2+-dependent manner to phosphorylate substrates 
like Ras guanyl-releasing protein (Ras GRP), further activating Ras-
ERK (Figure 2) (72–74). Additionally, Gbg directly binds PI3Kg 
(highly expressed in leukocytes) (75, 76), converting PIP2 to 
phosphatidylinositol-3,4,5-trisphosphate (PIP3). PIP3 recruits and 
activates protein kinase B (AKT), indirectly promoting ERK1/2 
activation via the Src family kinases/Shc/Grb2/SOS-mediated Ras-
GTP conversion (77, 78). Activated Ras sequentially phosphorylates 
Raf–MEK–ERK1/2 (78). Gbg also directly binds and activates Src, 
initiating parallel Ras-ERK signaling (Figure 2) (79). Notably, PIP3 

recruits PH domain-containing proteins to amplify Ras-ERK 
activation via Src (80). This Gbg-PI3K axis may regulate 
leukocyte migration during viral inflammation, facilitating viral 
clearance (81). 

Unlike GPR41, GPR43 couples to both Gai/o and pertussis 
toxin-insensitive Gaq (45). Thus, it activates both Gai/o-mediated 
pathways (above) and a distinct Gaq-PLCb cascade: Gaq-GTP 
hydrolyzes PIP2 into IP3/DAG (Figure 2) (69), triggering Ca2+/ 
DAG-dependent signaling akin to Gbg. Furthermore, Gaq-GTP 
directly binds to the Src SH3 domain, inducing conformational 
changes that activate Ras-ERK (Figure 2). Despite shared Ras-ERK 
outcomes, GPR41 and GPR43 diverge in molecular steps. 

GPR109A primarily couples to Gai/o (like GPR41) and 
selectively binds butyrate among SCFAs (46, 82). Thus, its 
signaling closely resembles GPR41’s Gai/o-dependent pathways 
(Figure 2), though tissue-specific expression (Table 1) dictates 
functional differences. For example, GPR109A is upregulated in 
inflammatory bowel disease (IBD) patient epithelia and lamina 
propria macrophages (CD68+) (83). Silencing GPR109A in M1 
macrophages reduces IL-1b/IL-6/TNF-a mRNA and secretion (83). 
SCFA-mediated GPCR activation (GPR41/GPR43) broadly 
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modulates leukocyte functions, including cytokine production (TNF­
a/IL-2/IL-6/IL-10) and migratory capacity (81, 84). These cytokines 
are critical for early viral clearance and antiviral immunity. 
3.4 The roles of the MAPK signaling 
pathway in immune cells and the influence 
of SCFAs 

Activation of SCFARs enhances antiviral immunity by 
modulating the MAPK signaling cascade, which regulates both 
coordinately adaptive and innate immune responses. 

In T cells, MAPK pathways (ERK, JNK, and p38) are critical for 
activation, proliferation, and differentiation. Viral antigen 
stimulation triggers these pathways to prime T-cell effector 
functions and cytokine production—particularly interferon-
gamma (IFN-g)—thereby promoting antiviral adaptive immunity 
(85). ERK signaling predominantly enhances T-cell clonal 
expansion and survival (85, 86), while JNK and p38 govern 
differentiation and pro-inflammatory cytokine secretion, 
facilitating the generation of IFN-g-producing Th1 cells essential 
for viral clearance (85–87). Consistent with the role of MAPK 
pathways in T cells, dietary SCFAs have been shown to enhance 
CD8+ T cell effector functions during influenza virus infection. 
Specifically, butyrate—a key diet-derived SCFA—alleviated 
excessive tissue damage caused by neutrophil infiltration and 
potentiated CD8+ T cell-intrinsic antiviral responses by 
reprogramming cellular metabolism in a GPR41 (FFAR3)­
dependent manner (20). These findings underscore the critical 
role of GPR41 in mediating SCFA regulation of T cell responses 
during viral infections, as well as the impact of SCFA-induced 
metabolic reprogramming on antiviral immunity. Although 
Trompette et al. did not fully elucidate the role of the SCFA­
GPCR-MAPK axis in this context (20), existing evidence strongly 
suggests its involvement (Figure 2). 

Beyond T cells, SCFAs orchestrate innate immune cell 
responses to establish immune equilibrium. In allergic airway 
inflammation models, dietary SCFAs increased dendritic cell 
(DC) accumulation in the airways, which reduced allergen 
presentation to T cells and protected against pathology in a 
GPR41-dependent manner (88). Similarly, in influenza-infected 
mice, a high-fiber (HF) diet promoted the accumulation of 
alternatively activated macrophages that produced lower levels of 
CXCL1, thereby attenuating early neutrophil infiltration and tissue 
damage. This macrophage-driven suppression of excessive innate 
responses synergized with enhanced CD8+ T cell activity, ultimately 
improving viral clearance. Notably, oral butyrate administration 
alone was sufficient to confer protection against influenza, and this 
effect was dependent on GPR41 (20). These results highlight SCFAs’ 
ability to balance innate and adaptive immunity, resolving 
infections while preventing immunopathology. 

Given the established role of MAPK pathways in macrophage 
and DC function (e.g., TNF-a, IL-6, and type I IFN production) (89, 
90), it is plausible that butyrate-induced GPR41 activation is 
Frontiers in Immunology 07 
engaged in MAPK signaling to amplify antiviral responses 
(Figure 2). This hypothesis aligns with evidence that p38 MAPK 
activation enhances macrophage phagocytic and virucidal 
capacities by stimulating inflammatory cytokine secretion, directly 
contributing to viral clearance (86). 

Collectively, these findings position SCFAs as critical 
modulators of MAPK signaling in immune cells. SCFAs amplify 
MAPK activity, whereas deficiency of SCFARs abolishes their 
immunomodulatory effects (91, 92). Mechanistically, SCFAs alone 
do not induce significant MAPK phosphorylation in unstimulated 
cells; however, they potentiate cellular responsiveness to external 
stimuli (e.g., viral infection), enabling rapid MAPK activation upon 
pathogen encounter (92, 93). These findings suggest that SCFAs 
may prime immune cells to maintain a heightened state of readiness 
(“pre-activated state”) or operate through an intrinsic mechanism 
that optimizes their “utilization mode” in response to infections. 
Future research should elucidate the more detailed intracellular 
molecular mechanisms underlying SCFAR activation-induced 
regulation of the MAPK pathway and its impact on immune 
cell function. 
3.5 Multiple-ligand-coupling characteristics 
of GPCRs and research prospects 

Although early studies proposed that individual GPCRs 
preferentially couple to a single G protein subtype (94), subsequent 
research has demonstrated that most GPCRs exhibit promiscuous 
coupling to multiple G proteins (95–100). This multi-valent coupling 
capacity likely underlies the remarkable ability of GPCRs to orchestrate 
complex cellular responses. Such coupling diversity is an inherent 
property of GPCRs, determined by specific amino-acid residues on the 
GPCR surface that mediate interactions with the Ga subunit (95, 101). 
Notably, natural genetic variations in GPCRs—particularly missense 
mutations within Ga-binding residues—frequently alter Ga selectivity, 
with potential physiological consequences (101). Furthermore, 
signaling through distinct G proteins often occurs in a temporally 
regulated manner, enabling GPCRs to sequentially activate multiple 
signaling cascades (95, 102). 

As members of the GPCR family, GPR41, GPR43, and 
GPR109A likely operate within this framework, promiscuously 
coupling with Gai/o and Gaq to modulate cell physiology in 
response to diverse stimuli (Figure 2), including viral infection 
(45, 82). Although direct experimental evidence remains limited, 
this promiscuous coupling may contribute to the broad 
physiological effects of SCFAs. Future studies should investigate 
the mechanistic basis of G protein coupling promiscuity across 
SCFARs and the impact of epigenetic regulation on the 
spatiotemporal dynamics of G protein gene expression and their 
interaction with SCFARs. 

In summary, GPCRs regulate cellular functions through an 
intricate network of positive and negative feedback loops (98), with 
SCFAs serving as key initiators of relevant GPCR pathways. 
However, critical aspects—such as the temporal dynamics of G-
frontiersin.org 

https://doi.org/10.3389/fimmu.2025.1614879
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Xu et al. 10.3389/fimmu.2025.1614879 
FIGURE 4 

Schematic representation of SCFA metabolism and histone acylation equilibrium. Short-chain fatty acids (SCFAs) enter cells via monocarboxylate 
transporters (MCTs and SMCTs) or free diffusion. Acetate is converted to acetyl-CoA in the cytoplasm by acetyl-CoA synthetase 2 (ACSS2) or in 
mitochondria by ACSS1 (227, 228). Acetyl-CoA either enters the tricarboxylic acid (TCA) cycle or is converted to citrate. Citrate is exported from the 
mitochondria to the cytoplasm and metabolized to acetyl-CoA by ATP citrate lyase (229). Propionate is activated to propionyl-CoA by propionyl-
CoA synthase in the cytoplasm, which is further converted to succinyl-CoA through multistep reactions (230, 231). Butyrate is ligated to CoA by 
acyl-CoA synthase to form butyryl-CoA, which undergoes b-oxidation to generate acetyl-CoA that enters the TCA cycle (232). In mitochondria, 
propionyl-CoA and butyryl-CoA are converted to crotonate, which reacts with acetyl-CoA to form crotonyl-CoA (231, 233, 234). These acyl-CoA 
species (acetyl-CoA, propionyl-CoA, butyryl-CoA, and crotonyl-CoA) derived from SCFA metabolism provide acyl groups for lysine acylation of 
histone and non-histone proteins (235). Specifically, histone deacetylation mediated by histone deacetylases (HDACs) condenses chromatin and 
represses gene transcription, whereas histone acetylation by histone acetyltransferases (HATs) loosens chromatin and promotes transcription. 
RNAPII, RNA polymerase II. The figure was created using BioRender (https://BioRender.com). 
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protein selectivity, the relative efficiencies of distinct SCFA-SCFAR 
and SCFAR-G-protein interactions, and their integrated 
physiological impacts—require further investigation. 
4 The complex interactions and 
multifaceted functions of SCFAs and 
HDACs 

4.1 The butyrate paradox: context-
dependent dual effects of SCFAs on 
immune cells via HDAC inhibition and 
metabolic reprogramming 

While SCFA-GPCR signaling pathways are critical for antiviral 
immunity, the interaction between SCFAs and HDACs significantly 
modulates the functions of immune effector cells. Notably, SCFA 
functions are highly dependent on their intracellular concentration 
profiles. Arpaia et al. demonstrated that butyrate and propionate 
promote extrathymic regulatory T cell (Treg) generation, with 
bacterial SCFAs—particularly butyrate—influencing the balance 
between pro- and anti-inflammatory pathways (103). These dual 
effects were linked to HDAC inhibition by butyrate and propionate, 
but not acetate. 

Whitehead et al. first reported that butyrate suppresses 
proliferation and induces differentiation in colon carcinoma cell 
lines (104), a phenomenon replicated in other tumor-derived 
models (105–107). However, in vivo animal studies reveal a 
paradox: butyrate does not inhibit intestinal epithelial 
proliferation as observed in tumor cells; instead, it enhances 
epithelial renewal (108–110). Non-tumor colonic cell line 
experiments  further  show  that  butyrate  can  stimulate  
proliferation and suppress differentiation (111). This dichotomy— 
termed “the butyrate paradox”—highlights opposing effects of 
butyrate on healthy versus cancerous colonocytes or immune cells 
(103, 111, 112), extended to describe its context-dependent pro- or 
anti-inflammatory roles in immune cells. 

Salvi et al. proposed a mechanistic explanation: butyrate 
modulates chromatin structure via HDAC inhibition, altering 
cellular transcriptional phenotypes (113). In the absence of 
HDAC inhibitors (HDACis), HDACs deacetylate histones (e.g., 
histone  H3),  enhancing  DNA  binding  and  repressing  
transcription (Figure 4). Butyrate and propionate are natural 
HDACis (103, 114), but their efficacy depends on cellular 
metabolism. Differentiated intestinal epithelial cells rapidly 
metabolize butyrate for energy, limiting its accumulation and 
HDAC inhibitory capacity (113). In contrast, colon cancer cells 
exhibit the Warburg effect, prioritizing glycolysis over oxidative 
phosphorylation (OXPHOS) and glucose over SCFAs (115, 116). 
This metabolic preference allows butyrate to accumulate, act as an 
HDACi, and arrest cell cycle progression via transcriptional 
reprogramming. Additionally, butyrate induces metabolic 
reprogramming in colorectal cancer cells—modulating enzymes 
like pyruvate kinase M2 and pyruvate dehydrogenase complex 
(117–119)—thereby reversing the Warburg effect and exerting 
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anti-neoplastic effects. Notably, the Warburg effect also occurs in 
normally proliferating cells (120), though for distinct reasons than 
in cancer. Proliferative cells—including virus-infected cells and 
activated immune cells (e.g., CD8+ T cells)—adapt metabolism to 
prioritize nutrient uptake for biosynthesis of viral components, 
effector molecules, or new cells (116, 121, 122). 

Predicting SCFA functions requires integrating their 
production  sites,  concentration  gradients,  and  cellular  
accessibility. SCFAs are predominantly generated in the colorectal 
lumen by commensal bacteria (Figure 1B). Colorectal epithelial cells 
preferentially utilize SCFAs (especially butyrate) over glucose (123), 
whereas cancerous colonocytes, intestinal stem cells, small intestinal 
enterocytes, and T cells show reduced butyrate utilization due to 
lower local concentrations and accessibility (Figure 1B) (113, 124, 
125). These factors determine intracellular SCFA levels, HDAC 
inhibition efficacy, and ultimately, cellular outcomes. 

Consistent with this framework, studies have demonstrated 
context-dependent effects of butyrate mediated by HDAC 
inhibition and cellular metabolic state: for example, in a dextran 
sulfate sodium salt-induced colitis model, butyrate alleviated 
colonic inflammation by suppressing HDAC8 to blunt the NF-kB 
pathway (126). During influenza infection, SCFA supplementation 
tended to reduce intestinal inflammation and reverse barrier 
disruption, thereby attenuating bacterial enteric infections and 
enhancing survival in doubly infected animals (127). The anti-
inflammatory properties of SCFAs also mitigated symptoms 
following viral infection (22, 128). However, conflicting evidence 
suggests that butyrate may enhance viral replication under certain 
conditions: it increased cellular susceptibility to influenza virus, 
reovirus, and human immunodeficiency virus (HIV) infections by 
suppressing specific IFN-stimulated genes (ISGs) in human and 
mouse cells, with HDAC inhibition likely contributing to this 
regulation (129). Similarly, Yin et al. found that butyrate 
promoted transmissible gastroenteritis virus (TGEV) infection by 
inhibiting class I HDACs, which downregulated retinoic acid-
inducible gene I (RIG-I) expression. This suppression impaired 
mitochondrial antiviral-signaling protein (MAVS) aggregation, 
reduced type I IFN and ISG production, and facilitated TGEV 
replication in porcine intestinal epithelial cells (130). 

Notably, these studies used supraphysiological butyrate 
concentrations (2.5–5 mM)  (129, 130), which far exceed the 
human total serum SCFA concentration range (79–375 mM) (27). 
In contrast, Wang et al. employed lower concentrations (1 mM 
acetate, propionate, butyrate) in cell experiments (128), suggesting 
that cellular butyrate levels critically influence outcomes during 
viral infection. 

In brief, the butyrate paradox reflects a dynamic interplay 
between HDAC inhibition and metabolic competition: butyrate’s 
dual effects are dictated by its intracellular concentration, which is 
governed by cellular metabolic state (proliferative vs. differentiated) 
and SCFA accessibility. This framework not only resolves apparent 
contradictions in butyrate’s functions but also highlights the need to 
integrate metabolic and epigenetic perspectives in understanding 
SCFA-mediated regulation of immunity and epithelial homeostasis. 
Future studies should elucidate how physiological SCFA gradients 
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are established in vivo and how pathogens or inflammation disrupt 
these gradients to modulate host responses. 
 

4.2 Histone acylation by SCFAs: beyond 
acetylation and their multifaceted roles in 
cellular processes 

In addition to the canonical lysine acetylation mentioned above, 
several types of short-chain lysine acylations on histones, such as 
crotonylation (Kcr), propionylation (Kpr), and butyrylation (Kbu), 
have been recently identified (131–133). These acylations are 
associated with cellular metabolism and gene transcription 
regulation, and their levels are modulated by the availability of 
SCFAs and their coenzyme A (CoA) adducts in the cell (134, 135). 
SCFAs can be intracellularly metabolized into crotonate (2­
butenoate), a metabolic intermediate (136). Crotonate is then 
converted into crotonyl-CoA, which stimulates gene transcription 
through p300-catalyzed histone crotonylation at sites such as H4K5, 
H4K12, H3K14, and H3K18 (Figure 4) (133, 134). Alternatively, 
SCFAs (such as butyrate) and crotonate inhibit class I HDACs 
(mainly HDAC1-3), the major enzymes responsible for histone 
decrotonylation (the removal of crotonyl groups from histones). 
The crotonylation at lysine 18  of  histone H3 (H3K18cr)  is
associated with transcription start site (TSS). This modification is 
enriched in various pathways in colon epithelial crypts, including 
those related to cancer, adherens junctions, and the transforming 
growth factor-beta (TGF-b) signaling pathway, indirectly indicating 
that these genes are in a relatively active expression state. Cancer-
related pathways typically involve processes such as cell 
proliferation and differentiation, which require high-level gene 
expression for maintenance (133). This is consistent with the 
experimental finding reported by Peng et al. that SCFA treatment 
can maintain the integrity of the intestinal epithelial barrier and 
promote the proliferation of intestinal epithelial cells (126). 

Consistent with their role in modulating histone acylation, 
SCFAs have been implicated in regulating antiviral immune 
responses through both HDAC-dependent and -independent 
mechanisms: during influenza virus infection, Nagesh et al. 
demonstrated that the virus dysregulated HDAC1—a coactivator 
of the type I IFN response which normally inhibits viral replication 
—and that inhibition of HDAC1 activity increased influenza A 
virus (IAV) infection in a dose-dependent manner (137). This 
suggests that HDAC inhibition-induced histone acylation (e.g., 
crotonylation) may be critical for activating the type I IFN 
response to counteract viral infection. Furthermore, histone 
crotonylation has been shown to reshape local chromatin 
architecture at the HIV long terminal repeat (LTR) via acetyl-
CoA synthetase 2 (ACSS2)-mediated mechanisms, simultaneously 
reducing histone methylation. Notably, ACSS2 induction exhibited 
strong synergy with either a protein kinase C agonist (PEP005) or 
an HDACi (vorinostat) in reactivating latent HIV (138). These 
findings highlight specific chromatin sites of histone acylation as 
potential therapeutic targets for viral eradication strategies. 
Although the regulatory effects of SCFAs, HATs, and HDACs on 
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histone crotonylation during viral infections remain incompletely 
characterized, their involvement is predicted by existing evidence. 

Furthermore, emerging evidence suggests that SCFAs may 
directly modulate histone acylation independent of HDAC 
inhibition, thereby influencing viral latency and type I IFN 
responses: Nshanian et al. proposed a unique mechanism whereby 
SCFAs directly acylate lysine residues on histones in specific genomic  
regions, exerting antiproliferative effects in colorectal cancer (CRC) 
cells while promoting normal cell proliferation (CCD841 cells) 
without relying on HDAC inhibition (139). Specifically, propionate 
and butyrate are converted into propionyl-CoA and butyryl-CoA 
(Figure 4), which serve as cofactors for major HAT families to 
catalyze histone acylation with similar efficiencies (139–141). These 
CoA derivatives facilitate acylation at H3K18 and H4K12 (e.g., 
H3K18pr, H3K18bu, H4K12pr, H4K12bu) in CRC cells, leading to 
homeostatic dysregulation through hyperactivation of the Wnt/b­
catenin and TGF-b signaling pathways, oncogene activation (e.g., 
MYC, FOS, JUN), and increased chromatin accessibility. 
Consequently, proto-oncogenes involved in growth and 
differentiation are further overexpressed, potentially triggering 
apoptosis—particularly under elevated butyrate conditions (139). 
Conversely, in normal cells, propionate was found to enhance 
epithelial homeostatic gene-expression pathways without significant 
HDAC inhibition-mediated acetylation (139). While dynamic 
molecular-pathway evidence is needed to fully elucidate this model, 
it broadens the understanding of SCFAs as direct epigenetic 
regulators—not merely HDAC inhibitors—thereby enriching the 
theoretical framework of the “butyrate paradox.” 

As discussed above, SCFAs serve as critical regulators of histone 
acylation and HDAC inhibition (under higher intracellular 
concentrations, Section 4.1), deeply integrating into the balance 
between HAT and HDAC activities shaped by specific cellular 
metabolic states. This integration likely plays a pivotal role in 
regulating viral latency and type I IFN responses during viral 
infections. Nevertheless, the acylation-mediated effects of SCFAs 
in antiviral immunity remain to be fully elucidated. 
4.3 The complex interplay between SCFAs, 
HDACs, and NF-kB signaling in antiviral 
immunity and cellular regulation 

The interactions between SCFAs and HDACs significantly 
influence the antiviral functions of immune effector cells (26). 
HDACs possess the capacity to remove acetyl moiety from acetyl­
lysine residues on both histone and non-histone proteins (142). For 
instance, HDAC3-mediated deacetylation of NF-kB subunits (e.g., 
p65/RelA) stabilizes their association with IkBa, thereby inhibiting 
NF-kB transcriptional activity (Figure 5) (143, 144). HDACs can 
also bind to transcriptional repression complexes (TRCs) (e.g., 
Sin3A and NuRD) and recruits these complexes to the promoter 
regions of the NF-kB-regulated genes to suppress transcription. In 
ovarian cancer models, AT-rich interaction domain 1A (ARID1A) 
mutations impair HDAC complex recruitment, relieve NF-kB 
inhibition, and activate pro-inflammatory cytokine expression 
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FIGURE 5 

Schematic representation of SCFA-HDAC-HAT interaction on intracellular signaling pathways. The schematic illustrates the molecular mechanisms 
by which short-chain fatty acids (SCFAs), histone deacetylases (HDACs), and histone acetyltransferases (HATs) modulate toll-like receptor (TLR), G­
protein-coupled receptor (GPCR), B-cell receptor (BCR), and T-cell receptor (TCR) signaling pathways. Upon activation, these receptor cascades 
converge to regulate downstream networks, including NF-kB, JNK, p38, ERK, and mTOR, in a cell-context-specific manner. Notably, activated 
transforming growth factor b-activated kinase 1 (TAK1) contributes to the ERK signaling through a less characterized mechanism, potentially 
involving cross-talk with Raf kinases (236). Collectively, these pathways orchestrate effector T and B cell differentiation and antiviral immunity. RSK, 
ribosomal S6 kinase; AMPK, AMP-activated protein kinase; TSC, tuberous sclerosis complex; Rheb, Ras homolog enriched in brain; mTORC1, 
mammalian target of rapamycin complex 1; CREB, cAMP response element-binding protein; MSK, mitogen- and stress-activated protein kinase; 
STAT, signal transducer and activator of transcription; TRC, transcriptional repression complex. The figure was created using BioRender (https:// 
BioRender.com). 
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(145). By deacetylating histones, HDACs condense chromatin 
structure, blocking NF-kB binding to target gene promoters and 
reducing transcription of inflammation-related genes (e.g., il-6, tnf). 
Notably, in head and neck squamous cell carcinoma, NF-kB 
activation induces HDAC-mediated histone deacetylation, leading 
to chromatin compaction and reduced DNA repair capacity, which 
enhances chemotherapy resistance (146). Collectively, under 
physiological conditions, HDACs suppress the NF-kB signaling 
pathway, thereby decreasing the expression of antiviral genes, 
including ifnb1 and ISGs (147). This reduction in gene expression 
facilitates viral replication within host cells. 

However, some studies suggest that HDAC3 is necessary for 
NF-kB-dependent gene expression under special conditions (148, 
149). This might be attributed to the selective deacetylation of 
specific NF-kB subunit sites and genomic sites by HDAC3 (150). 
Moreover, the direct deacetylation of histone proteins, the 
important component of chromatin, by HDAC profoundly affects 
gene transcription (151). For instance, the tumor suppressor 
retinoblastoma (Rb) selectively binds to the ifnb enhancer region 
in vivo by interacting with c-Jun, a component of the IFN-b 
enhanceosome. Subsequently, Rb recruits HDAC1 and HDAC8, 
leading to a decrease in the acetylation of histone H3/H4 in the ifnb 
promoter and thus suppressing ifnb transcription (152). Chen et al. 
discovered that influenza A viruses (IAVs) utilize host HDAC1 to 
downregulate the acetylation level of NP. Specifically, the 
deacetylation at lysine 103 of NP promotes the replication 
efficiency of IAVs (153). Williams et al. demonstrated that NF-kB 
p50-HDAC1 complexes constitutively bind to the latent HIV LTR, 
inducing histone deacetylation and repressive changes in the 
chromatin structure of the HIV LTR. This impairs the 
recruitment of RNA polymerase II and transcriptional initiation, 
thereby promoting HIV latency (154). 

Notably, Adam et al. and Peng et al. found that HDACis can 
effectively inhibit NF-kB activation (126, 155). Peng et al. reported 
that in human colon cancer Caco-2BBe cells, HDAC8 is essential 
for NF-kB activation, which downregulates solute carrier family 26 
member 3 (Slc26a3) and tight junction (TJ) proteins like ZO-1, 
occludin-1, and claudin-1. Butyrate and other HDACis were found 
to greatly reduce NF-kB activation triggered by lipopolysaccharide 
(LPS) in Caco-2BBe cells by the decrease in the ratio of 
phosphorylated p65 (p-p65) to p65 and phosphorylated IkBa (p­
IkBa) to  IkBa. The research findings of Peng et al. suggest that 
butyrate exerts its effect mainly by suppressing HDAC8 activity. By 
inhibiting HDAC8, butyrate attenuates the NF-kB signaling 
pathways, thereby upregulating the expression of Slc26a3, which 
have been verified in vivo and is crucial for maintaining the integrity 
and function of the intestinal epithelial barrier (126). 

Furthermore, this regulatory mechanism may also play a role in 
defending against viral invasion. Since the intestinal epithelial 
barrier  acts as the  first line of defense against pathogens, the 
enhancement of its function by butyrate through the modulation 
of the HDAC8-NF-kB-Slc26a3 axis might potentially impede the 
invasion of certain viruses. For instance, rotavirus and PEDV infect 
intestinal epithelial cells by breaching the intestinal epithelial 
barrier. Moreover, the supplementation of SCFAs has been 
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associated with a reduction in viral load in vivo (21, 156, 157). 
However, the specific mechanisms through which the antiviral 
effect of SCFAs occurs remain to be fully elucidated, and further 
research is warranted to explore their potential as a therapeutic 
target against viral infections. 
4.4 The regulatory effects of SCFAs and 
HDACs on immune cell differentiation and 
related signaling pathways in antiviral 
immunity 

HDACs also engage in interactions with key proteins of other 
intracellular signal pathways to modulate the functions of immune 
cells, including B cells and T cells. Meanwhile, SCFAs are involved 
in these regulatory processes. As we know, anti-CD40 monoclonal 
antibody (mAb), CpG, and LPS signal through BCR, toll-like 
receptor 9 (TLR9), and TLR4, respectively (Figure 5), inducing B 
cells to differentiate into B10 cells (158–160). When stimulated by 
anti-CD40 mAb, CpG, or LPS, SCFAs, especially butyrate, can 
significantly increase the production ratio of mouse and human B10 
cells. Moreover, butyrate functions as an HDACi and its actions are 
independent of GPCRs activity. Both the treatment with butyrate 
and the HDACi vorinostat enhance the activity of ERK (p-ERK/ 
ERK) and p38 (p-p38/p38). Meanwhile, they inhibit the activity of 
JNK (p-JNK/JNK), which contributes to the high-efficiency 
induction of B10 cells (161). B10 cells are regulatory B cells 
capable of producing IL-10 and contribute to the maintenance of 
the immune homeostasis and immunological tolerance. 

Additionally, HDACs and p300/CBP (CREB-binding protein, a 
protein with HAT activity) modulate the acetylation status of p70 S6 
kinase (S6K). S6K phosphorylates ribosomal protein S6 (rS6), and 
this process modulates the mTOR-S6K pathway (Figure 5) (162, 163), 
which determines the differentiation direction of T cells. Park et al. 
found that SCFAs, such as acetate and propionate, could enhance the 
acetylation of S6K and the phosphorylation of rS6 as inhibitors of 
HDACs (164). Subsequently, they further affect gene transcription in 
T cells through the mTOR-S6K pathway. Ultimately, this induces T 
cells to differentiate into effector T cells, including T helper type 1 
(Th1) cells and T helper type 17 (Th17) cells, as well as IL-10+ Tregs, 
depending on the specific cytokine milieu and immunological 
context. Moreover, butyrate may act through the same pathway as 
acetate and propionate. This is because it similarly enhances the 
generation of Th1, Th17, and IL-10+ Tregs under all T-cell 
polarization conditions tested respectively (164). 

However, these studies only reveal the phenomenon in different 
cells treated with SCFAs and do not fully elucidate the detailed and 
intricate molecular interactions. For example, SCFAs and HDACs do 
not directly participate in the phosphorylation of ERK and p38 as 
MAPK substrates or phosphorylases. ERK and p38 are protein 
kinases that phosphorylate their target proteins in specific signaling  
pathways, such as theTLR-MyD88-STAT3 pathway in B cells (165). 
But the treatment of SCFAs increases the phosphorylation of ERK 
and p38 (161). Thus, it is inferred that there should be other molecule 
(s) mediating this phosphorylation process. In the induced 
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differentiation of T cells, SCFAs lead to enhanced phosphorylation of 
STAT3 and rS6 (164). This may be an indirect result of the inhibition 
of HDACs by SCFAs. Additionally, the epigenetic changes due to 
HDACs inhibition were not comprehensively considered in the 
above-mentioned studies. 

Notably, SCFAs enhance B and T cell differentiation during active 
immune responses, but not under homeostatic conditions (161, 164). 
This may suggest that the functions of SCFAs in these cells are related 
to the cell state. Fundamentally, SCFAs function by involving 
intracellular metabolism and epigenetic processes that vary with 
different stimuli, such as viral infection. This could explain why the 
functions of SCFAs vary depending on the cell state. Furthermore, the 
intracellular signal pathways related to the differentiation of B cells 
and T cells, including the NF-kB, TLR-MyD88-MAPK, and mTOR­

S6K signaling pathways, are usually activated by viral infection. For 
example, vesicular stomatitis virus glycoprotein G activates the TLR4­
TRIF-IRF7 pathway, which leads to a type I IFN response in myeloid 
DCs (mDCs) and macrophages rather than plasmacytoid DCs (166). 
Mouse mammary tumor virus (MMTV) infects and activates B cells 
through TLR4 in mice and also increases NF-kB activity  (167). In 
addition, viral components (such as viral nucleic acids and 
degradation products) are stimuli for TLR3, TLR4, TLR7, TLR8, 
and TLR9. The activation of these TLRs signals through downstream 
proteins such as NF-kB, JNK, ERK, and p38 to induce immune 
responses and cell differentiation (Figure 5). This process could 
enhance the antiviral immunity (165, 168). Moreover, butyrate 
directly suppresses the activity of HDAC in antitumor cytotoxic 
CD8+ T cells. Subsequently, it enhances CD8+ T cell  responses  both  
in vitro and in vivo in an ID2-dependent manner by promoting IL-12 
production. This indicates that butyrate may enhance the antitumor 
therapeutic efficacy through gene-transcriptional regulation of CD8+ 

T cells  (122). This effect may also play a role in viral infections. 
In summary, under normal cellular conditions, HDACs play a 

crucial role in cellular epigenetics by deacetylation modifications on 
both histone and non-histone proteins, such as by suppressing the 
production of inflammatory cytokines. Nevertheless, in the absence of 
HDACis, some viruses exploit this mechanism to enhance their own 
replication. Conversely, HDACis, such as trichostatin A (TSA), 
butyrate, and propionate, can counteract the effects of HDACs. 
Butyrate can inhibit HDACs by competitively binding to their active 
sites, as it has a similar structure to TSA and the acetyl-lysine on 
histones (169). The effects of butyrate and propionate still operate 
within the framework of the butyrate paradox mentioned above. 
5 The composite role of SCFAs in 
antiviral immunity 

5.1 The antiviral mechanisms of SCFAs in 
innate immunity: insights from acetate’s 
effects on respiratory syncytial virus 
infection 

Building upon the previously discussed molecular mechanisms of 
SCFAs in intracellular actions, here we turn to specific examples to 
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discuss the potential of SCFAs in modulating antiviral immunity. 
SCFAs regulate immunity and inflammatory responses in the gut and 
systemically (170, 171). Emerging evidence suggests they also directly 
influence the outcomes of viral infectious diseases through complex 
mechanisms. A HF diet promotes the growth of Lachnospiraceae 
family members, which are responsible for acetate production in the 
gut (22). Elevated acetate levels were shown to inhibit RSV replication 
in a manner dependent on type I interferon receptor (IFNAR) and 
GPR43, mediating IFN-b responses and upregulating ISGs in 
pulmonary epithelial cells (22). IFN-b is produced early during 
viral infection and acts through IFNAR to initiate inflammatory 
cytokine cascades critical for limiting viral replication and directing 
immune responses (172, 173). 

While the precise mechanisms by which acetate modulates type I 
IFN production via IFNAR and GPR43 activation remain 
incompletely understood, one plausible hypothesis posits that acetate 
may help pulmonary epithelial cells overcome RSV NS protein-
mediated inhibition of the type I IFN signaling pathway. This 
restoration of type I IFN production following  viral  invasion could

involve GPR43 activation and acetylation of histones by acetate, which 
regulates inflammatory cytokine signaling pathways (e.g., NF-kB and  
Ras-ERK pathways) to prevent hyperinflammation (26). For instance, 
Xu et al. demonstrated that inflammation-induced b-arrestin1 
promotes phosphorylation of NF-kB p65  (174). GPR43 activation 
may redirect b-arrestin toward alternative functions, such as GPCR 
desensitization and Ras-ERK pathway activation (Figure 3), thereby 
relatively reducing b-arrestin-mediated p65 phosphorylation. 
Furthermore, GPR43 activation initiates the Ras-ERK signaling 
cascade, which orchestrates cytokine production and apoptotic 
responses critical for viral clearance (86). Viral components (e.g., 
RNA) trigger TLR signaling, which converges with these pathways 
to amplify NF-kB activation and IFN production (Figure 5). 
Additionally, virus-induced IFN-b aided by acetate further enhances 
transcription of well-characterized antiviral ISGs Isg15 (encoding 
ISG15) and Oas1 (encoding oligoadenylate synthetase) in pulmonary 
epithelial cells (22, 175). Oligoadenylate synthetase (OAS) synthesizes 
2’-5’-oligoadenylate (2-5A), which induces viral RNA degradation via 
RNase L activation and directly inhibits viral replication (176, 177). 

Consistent with these findings, microbiota-derived SCFAs 
significantly alleviate RSV-induced pathological damage and 
enhance host clearance of the virus, even though oral acetate 
treatment alone does not prevent RSV infection (22). This 
suggests the potential clinical value of acetate as a therapeutic 
agent. However, critical gaps remain in understanding the 
spatiotemporal dynamics of molecular interactions following 
acetate-GPR43 activation, as well as the coordinated regulation 
among the acetate-GPR43-MAPK, NF-kB, and type I IFN 
pathways. Addressing these questions is essential to fully elucidate 
SCFAs’ antiviral mechanisms. 

Furthermore, propionate and butyrate also exhibit robust RSV 
replication inhibitory effects (22), likely through distinct immune 
cell activation mechanisms that warrant further investigation. 
Collectively, SCFAs serve as critical mediators of intracellular 
signaling, enhancing cellular function and strengthening the 
innate immune response to viral invasion. 
frontiersin.org 

https://doi.org/10.3389/fimmu.2025.1614879
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Xu et al. 10.3389/fimmu.2025.1614879 

 

5.2 The role of SCFAs in modulating CD8+ 

T cell metabolism and function during viral 
infections 

SCFAs not only exert effector functions in innate immunity but 
also act as critical regulators of adaptive immunity by engaging 
cellular metabolism. SCFAs, particularly in intestinal cells, are well-
established energy substrates (30, 34). Recent studies have 
highlighted their roles in adaptive immune cells, including CD8+ 

T cells (20, 178). Microbiota-derived SCFAs serve as precursors for 
intracellular acetyl-CoA, fueling OXPHOS and glycolysis to meet 
the energy demands of CD8+ T cell immune responses during viral 
infections (Figure 4) (15, 20). These responses—including viral 
antigen recognition, effector cell differentiation, and transcription of 
antiviral genes and enzymes—require rapid energy production 
when viruses invade the host (15, 178). 

In virus-infected tissues, immune cells often rely on glycolysis as 
a compensatory pathway when aerobic respiration is insufficient to 
meet energy demands (26, 179). Energy-related metabolic pathways 
and  metabol i tes  fundamental ly  influence  lymphocyte  
differentiation, function, and fate (179). SCFAs have been 
implicated in multiple such pathways (Figure 4). For example, 
microbiota-derived acetate enhances antiviral responses and 
restores IFN-g production in mucosal and peripheral CD8+ T 
cells by reprogramming their metabolism in a GPR43-dependent 
manner during IAV infection (15). Specifically, Blautia coccoides­
generated acetate reaches virus-specific CD8+ T cells via circulation, 
enters cells through MCTs (180), and is converted to acetyl-CoA by 
ACSS2 (Figure 4) (181). This acetyl-CoA replenishes the 
tricarboxylic acid (TCA) cycle pool, which is central to sugar, fat, 
and amino acid metabolism and energy production (182). The TCA 
cycle supplies ATP and electrons for antiviral gene transcription 
and protein synthesis, accelerating material cycling and transport 
(182, 183). Additionally, acetate treatment upregulates glucose 
transporter 1 (Glut-1) expression, enhancing glucose uptake for 
glycolysis (184). These metabolic changes are reflected in elevated 
oxygen consumption rate (OCR), mitochondrial mass, and 
extracellular acidification rate (ECAR) in virus-specific CD8+ T 
cells upon acetate exposure (15). 

However, acetate-mediated metabolic reprogramming is 
contingent on GPR43 expression. Fueled by OXPHOS and 
glycolysis, GPR43 activation promotes IFN-g and granzyme B 
production. IFN-g activates macrophages via the JAK-STAT 
pathway to regulate T cell function (185),  while granzyme B

induces apoptosis in virus-infected cells through proteolysis and 
caspase activation (186). Collectively, acetate enhances intracellular 
acetyl-CoA synthesis and energy supply, optimizing virus-specific 
CD8+ T cell responses (15). The precise mechanisms by which 
acetate-GPR43 signaling modulates metabolism and effector 
molecule secretion remain unclear. 

Butyrate, another SCFA, promotes cellular metabolism and 
memory potential in activated memory CD8+ T cells  (125). Unlike 
acetate, butyrate uncouples glycolysis from the TCA cycle despite 
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increasing glycolytic flux. Butyrate enters cells directly and is 
catabolized by activated CD8+ T cells, converted to acetyl-CoA via 
b-oxidation, and integrated into the TCA cycle (Figure 4) (187). This 
replacement of glycolysis-derived acetyl-CoA enables sustained 
OXPHOS through glutamine utilization and fatty acid catabolism, 
supporting long-term cell survival (125). Notably, butyrate-mediated 
metabolic reprogramming occurs independently of GPR41/43, 
whereas its role in enhancing memory CD8+ T cell differentiation 
during herpes simplex virus type 1 (HSV-1) infection is GPR41/43­
dependent (125). Collectively, these findings demonstrate that 
butyrate not only optimizes CD8+ T cell metabolism to enhance 
antiviral effector functions but also coordinates innate and adaptive 
immune responses to resolve influenza infection. Specifically, 
butyrate accumulates alternatively activated macrophages and 
amplifies influenza-specific CD8+ T cell activity in lungs in a 
GPR41-dependent manner (20), thereby potentiating systemic 
antiviral immunity, alleviating host pathological damage, and 
enhancing rapid viral clearance. These multifaceted roles highlight 
SCFAs as critical mediators that bridge metabolic adaptation with 
immune defense against viral infections. 

Qiu et al. did not explicitly distinguish whether acetate-mediated 
energy supply depends on GPR43 activation, whereas virus-specific 
CD8+ T cell differentiation induced by acetate is GPR43-dependent, 
consistent with findings by Bachem et al. (15, 125). This suggests that 
activation of the SCFA-GPCR-MAPK pathway plays a critical role in T 
cell differentiation, though further evidence is needed to characterize 
the mechanistic link between this pathway and cellular metabolism. 

Regrettably, these findings had not yet furnished a 
comprehensive investigation into the specific contributions of 
HDACs in cellular differentiation, viral recognition, and metabolic 
reprogramming. This limitation may stem from the scope of the 
research articles and the priorities and perspectives of the 
investigators, which may preclude an exhaustive elucidation of each 
potential mechanism. Such constraints are indeed comprehensible. 
Nonetheless, it is imperative to consider these overarching 
mechanisms to attain a more profound comprehension of the 
operational dynamics of SCFAs. 
6 Perspectives and limitations in 
understanding the gut 
microecosystem and SCFAs’ clinical 
applications 

The gut microbiota, a dynamic ecosystem shaped by dietary, 
environmental, and host factors, plays a pivotal role in host health 
and antiviral immunity. Among its functional components, SCFAs 
emerge as central mediators of microbiota-host interactions, 
exerting pleiotropic effects on immune regulation, barrier 
integrity, and pathogen defense. 

SCFAs, primarily produced by SCFA-producing bacteria, 
modulate immune responses through multiple mechanisms. By 
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activating GPR43 signaling, they promote Treg expansion and B cell 
IgA production, fostering a balanced immune microenvironment that 
suppresses excessive inflammation and constrains microbial 
overgrowth (91, 188). Furthermore, butyrate and propionate inhibit 
DC development via HDAC-mediated repression of pro-inflammatory 
transcription factors (e.g., PU.1, RelB), thereby reducing intestinal 
tissue inflammation (189). These effects collectively enhance mucosal 
integrity and antiviral defense, highlighting SCFAs as keystone 
metabolites in host-microbiota symbiosis. 

Disruptions to SCFA-producing bacteria—such as those induced 
by antibiotics—severely compromise these protective functions. 
Reduced SCFA availability impairs Treg and IgA-mediated defenses 
(91, 188), increases intestinal epithelial permeability, and elevates 
susceptibility to viral infections. This underscores the urgent need for 
microbiota-targeted interventions, including dietary diversification 
(190, 191), controlled environmental microbial exposure (192, 193), 
and strategies to restore SCFA-producing communities after antibiotic 
use, to mitigate infection risk and preserve gut homeostasis. 

Given the proximal colon as the primary site for endogenous 
SCFA absorption (194), optimizing SCFA delivery to this region is 
critical for maximizing their functional efficacy. As reviewed 
elsewhere (195), direct administration via rectal enemas or oral 
tablets offers viable strategies. Among formulation approaches, 
perfusion, microencapsulation, and enteric-coating significantly 
enhance blood-SCFA concentration, with the latter two 
demonstrating superior delivery efficiency and thus preferred 
clinical applicability (196–198). Alternative vehicles, such as high­
amylose maize starch and acetylated/butyrylated starch, have also 
shown promise in mouse models (199, 200). 

Dietary interventions provide a non-invasive route to elevate 
SCFA levels: fiber-rich diets and prebiotics (e.g., inulin, guar gum) 
enrich SCFA-producing bacterial communities (201–203). 
However, their efficacy varies with fiber type, structural 
properties, dosage, and host-specific factors, including gut 
microbiota composition (204). Probiotic supplementation with 
live SCFA-producing bacteria presents another viable option 
(205), while fecal microbiota transplantation (FMT) from healthy 
donors offers a direct yet risk-laden approach (206, 207). The 
unpredictability of FMT outcomes—particularly the potential 
introduction of opportunistic pathogens in immunocompromised 
individuals—necessitates caution. 

Current knowledge gaps underscore the need for further 
research on SCFA delivery systems, particularly regarding dosage 
optimization, recipient acceptance, and therapeutic efficacy in viral 
diseases. Advances in genetic engineering hold potential for 
designing synthetic symbiotic bacteria with enhanced SCFA 
synthesis capacity (208), though deciphering key SCFA synthesis 
genes remains a prerequisite. 

Collectively, these strategies—ranging from advanced delivery 
systems to dietary interventions and microbial therapeutics—laid a 
foundation for personalized SCFA-based medicine. By tailoring 
interventions to individual microbiome profiles, such approaches 
could revolutionize the management of infections and chronic diseases. 
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Beyond their roles in antiviral immunity, SCFAs have been 
implicated in metabolic disorders (obesity, diabetes), systemic 
inflammation, and cancer (84, 157, 209–215). Yet, critical gaps 
remain in understanding their systemic mechanisms. For instance, 
while SCFAs modulate epigenetic landscapes and immune cell 
responsiveness, their evolutionary rationale—whether co-opted 
from bacterial survival strategies or intentionally optimized for 
host benefit—remains unresolved (216, 217). Addressing these 
questions is essential for translating SCFA-based therapies into 
clinical applications. 

Future research should prioritize: (1) elucidating the multi-system 
effects of SCFAs through integrated omics approaches; (2) developing 
microbiota-based therapies to restore SCFA-producing communities in 
dysbiotic states (e.g., probiotics, prebiotics, fecal transplantation); and 
(3) investigating the establishment and maintenance of SCFA-
mediated symbiosis in early life,  particularly during neonatal

microbial colonization (218). These efforts will advance our 
understanding of host-microbiota co-evolution and pave the way for 
novel therapeutics against infectious and chronic diseases. 
7 Conclusion 

The health benefits of SCFAs and their microbial producers 
have been extensively documented, encompassing essential 
physiological functions such as digestion, immunity, and 
neurology. In the realm of immunity, the anti-inflammatory 
potential of SCFAs and their microbial producers has been well-
characterized, with current research achieving significant progress 
in elucidating the detailed mechanisms underlying their role in 
antiviral immunity. While all SCFAs share a common role in anti-
inflammatory processes, each SCFA can selectively and 
cooperatively activate unique pathways to combat viral invasion 
in specific cell types through HDAC-mediated, GPCR-mediated, 
and metabolic mechanisms. However, SCFAs exhibit context-
dependent mechanisms with their immunomodulatory effects 
shaped by cellular metabolic and signaling states. The precise 
mechanisms governing the allocation and action of SCFAs within 
cells remain enigmatic. Future research should focus on deciphering 
these intracellular allocation mechanisms and highlight the 
importance of developing maintenance or reseeding protocols for 
the core microbiota of SCFA-producing bacteria in patients. Such 
efforts are highly meaningful for mitigating the adverse outcomes 
associated with viral infections. 
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