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Protein regulatory network
mediated by palmitoylation
modifications in the pathological
progression of Parkinson’s
disease: a narrative review
Jingjing Liu1†, Shanshan Wang2†, Lei Fan3, Xin Zhou1,
Sen Zhang1, Qinglu Wang1, Panpan Dong4* and Bo Yu1*

1Graduate School of Education, Shandong Sport University, Jinan, China, 2Department of Neurology,
Zibo 148 Hospital, Zibo, Shandong, China, 3Department of Rehabilitation, Liuzhou People’s Hospital,
Liuzhou, China, 4College of Basic Medicine, Qilu Medical University, Zibo, Shandong, China
Palmitoylation is a reversible lipid modification regulated by palmitoyl

transferases and acyl-protein thioesterases, in which palmitic acid is attached

to protein cysteine residues. This modification plays a pivotal role in modulating

membrane localization and protein stability, and its dysregulation is closely

associated with various neurodegenerative diseases, including Parkinson’s

disease (PD). In PD, synaptotagmin-11, encoded by the PD risk gene SYT11, has

been shown to reduce physiological a-synuclein (a-syn) tetramer formation

while promoting the aggregation-prone monomeric form in a palmitoylation-

dependent manner. In the context of PD, inflammation generally precedes the

abnormal aggregation of a-syn and the degeneration of dopaminergic neurons

(DA). Microglial activation, regarded as an inflammatory state, is facilitated by the

palmitoylation-dependent localization of NLRP3 to the trans-Golgi network,

which promotes the activation and expression of the NLRP3 inflammasome,

leading to DA neuron loss. Additionally, the DJ-1 protein, encoded by the risk

gene PARK7, and the dopamine transporter both undergo palmitoylation and

may contribute to disease progression. This review summarizes the emerging link

between protein palmitoylation and PD pathogenesis. Understanding the

dynamic regulatory mechanisms of palmitoylation and depalmitoylation may

facilitate the development of targeted therapeutic strategies for PD.
KEYWORDS

Parkinson’s disease, palmitoylation, a-synuclein, synaptotagmin-11, NLRP3 inflammasome
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2025.1615001/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1615001/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1615001/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1615001/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1615001/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2025.1615001&domain=pdf&date_stamp=2025-07-09
mailto:18364346430@163.com
mailto:yubo@sdpei.edu.cn
https://doi.org/10.3389/fimmu.2025.1615001
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2025.1615001
https://www.frontiersin.org/journals/immunology


Liu et al. 10.3389/fimmu.2025.1615001
Introduction

Parkinson’s disease (PD) is a progressive neurodegenerative

disorder characterized by motor symptoms resulting from a-
synuclein (a-Syn) deposition and the loss of dopaminergic neurons

(DA), which also contribute to non-motor and cognitive impairments

(1). The incidence and prevalence of PD increase considerably with age,

thereby greatly contributing to the global public health burden (2).

Although substantial progress has been made in elucidating the genetic

and molecular physiology underlying PD pathogenesis, a definitive

cure has yet to be developed (3). Within the nervous system, protein

palmitoylation, a critical post-translational modification (PTM), has

gained increasing attention in recent research (4). S-palmitoylation, a

lipid modification, serves as a key mechanism facilitating protein

translocation to cellular and organelle membranes (5, 6). Qiangqiang

He and colleagues proposed that mitochondria-associated membranes

(MAMs), which are involved in regulating protein palmitoylation,

could serve as potential therapeutic targets for neurodegenerative

disorders (7). Among the various proteins involved in palmitoylation

regulation, synaptotagmin-11 (Syt11), a member of the 17-protein

synaptotagmin family, plays a distinctive role in PD pathogenesis. It

has been demonstrated that the palmitoylation levels of synaptic

proteins significantly influence the aggregation of pathological

proteins in PD (8). Research by Ho and colleagues showed that

when Syt11 undergoes palmitoylation within neurons, it becomes

selectively anchored to digitonin-insoluble membrane regions. This

modification confers resistance to lysosomal degradation and facilitates

a-Syn binding to intracellular membranes, thereby promoting its

pathological aggregation in PD (8).

Furthermore, approximately 10% of proteins in the human

body undergo palmitoylation and are involved in numerous

intracellular physiological functions (9). The thioester bond

formed by palmitoylation can be cleaved by depalmitoylating

enzymes known as acyl-protein thioesterases (APTs), rendering

the process reversible and responsive to extracellular signals (10,

11). Overall, palmitoylation is implicated in key cellular functions

including signal transduction, differentiation, transcriptional

regulation, and metabolism (12). Therefore, a comprehensive

understanding of protein palmitoylation may provide new

insights into the mechanisms underlying neurodegenerative

diseases such as PD.
Palmitic acid

Palmitic acid (16:0; PAM) is a saturated fatty acid with 16 carbon

atoms, comprising approximately 50% of the total saturated fatty acids

in the human brain (13). It provides structural support to membrane

phospholipids, serves as an energy source, and contributes to protein

stabilization (14). Recent evidence suggests that both exogenous dietary

intake and endogenous biosynthesis of fatty acids can serve as sources

of substrates for protein palmitoylation, thereby influencing protein

function (14). Palmitoylation, a reversible PTM, involves the covalent

attachment of palmitic acid to cysteine residues on proteins. This

process is regulated by palmitoyl transferases (PATs), which catalyze
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the addition of PAM, and APTs, which mediate its removal (12, 15).

Although the brain is rich in PAM, investigations into its metabolic

levels remain limited. In mammals, the primary PAT family comprises

23 DHHC (Asp-His-His-Cys motif) proteins, which are essential for

palmitoylation activity (16).

Studies have quantified palmitic acid methyl ester (PAM) levels

in postmortem human brains, including those of individuals with

PD. One study found no significant differences in PAM levels in the

occipital and temporal cortices between PD patients and controls

(17), However, another study reported a 28% increase in PAM

levels in the gray matter of the frontal cortex in sporadic PD cases

compared to controls (18). suggesting altered PAM expression in

PD-affected regions. In a separate experiment, m-Thy1 transgenic

mice (a PD model) fed a PAM-rich diet exhibited increased

expression of a-Syn and tyrosine hydroxylase in the brain,

accompanied by a decrease in DA levels (19). Hence, increased

PAM supply might impact the levels of proteins and

neurochemicals, which are crucial for many neurodegenerative

diseases (19). These findings imply that elevated PAM intake may

influence the expression of key proteins and neurotransmitters

involved in neurodegenerative processes. Specifically, increased

PAM consumption may upregulate a-Syn and reduce DA levels,

both of which are critical factors in the development and

progression of PD. The deposition of a-Syn, abnormal PTMs,

and DA depletion collectively play pivotal roles in PD pathology.

As a biologically important fatty acid, PAM has physiological

functions beyond its established roles in energy metabolism and

membrane structure formation. Recent studies have demonstrated

that PAM plays a critical role in neurodegenerative diseases by

modulating transcription factor activity (20). PAM may exert its

influence either through direct modification of transcription factors,

such as Nrf2 and CLOCK, or through indirect regulation of

inflammatory and oxidative stress pathways, including NF-kB
and IRF3, both of which are implicated in neurodegenerative

disease mechanisms. On the one hand, excessive intake of PAM

has been associated with enhanced inflammation and metabolic

dysfunction (21). On the other hand, therapeutic modulation of

palmitoylation dynamics, such as inhibiting ZDHHC enzymes or

enhancing depalmitoylase activity, has emerged as a potential

strategy for disease intervention (22). Future studies should aim

to elucidate the transcriptional regulatory networks associated with

PAM in specific brain regions and across distinct disease stages.

Thus, it is important to investigate whether alterations in PAM

expression can dynamically influence protein palmitoylation and

thereby contribute to the pathophysiology of PD.
Correlation between a-synuclein and
synaptotagmin-11 with palmitoylation

Effects of palmitoylation on a-synuclein

In the central nervous system, a-Syn is a small cytosolic protein

that is abundantly expressed and closely linked to several

neurodegenerative diseases, including PD (23). Research indicates
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that a-Syn plays a broad regulatory role in signal transduction and

contributes to downstream neuroinflammatory processes (24, 25).

The absence of a-Syn has been shown to impair PAM uptake by

astrocytes, which in turn leads to enhanced secretion of pro-

inflammatory cytokines by microglia (26). Moreover, a-Syn
deficiency results in elevated cholesterol and cholesterol ester

levels in astrocytes and brain tissues (27). Functionally, a-Syn is

known for its role as a molecular chaperone during vesicle fusion

and neurotransmitter exocytosis. However, the precise toxic

mechanisms of a-Syn in PD remain controversial. Membrane

binding is central to a-Syn’s physiological role, as it influences

the balance between physiological tetramers and aggregation-prone

monomers (28, 29). Dysregulation of a-Syn has been implicated in

multiple pathogenic pathways, particularly those involving vesicular

transport (30). Although a-Syn plays a role in vesicle trafficking, it

cannot be directly palmitoylated due to the absence of cysteine

residues (31). Therefore, palmitoylation likely influences a-Syn
homeostasis indirectly via intermediary proteins. Notably,

research indicates that increased palmitoylation of Syt11 in

neurons enhances Syt11 abundance and promotes a-Syn
membrane binding, contributing to its pathological aggregation (8).
Palmitoylation of Syt11 at Cys39 and Cys40
enhances its stability

Synaptotagmins (Syt) are distributed throughout neurons and

play essential roles in initiating vesicle fusion with the plasma

membrane and mediating neurotransmitter release (32). Syt11, a

member of the 17-protein synaptotagmin family, contains a short

luminal domain, a transmembrane segment, and two C2 calcium-

binding domains (32). Studies have confirmed that Syt11 undergoes

palmitoylation in both mouse and human brain tissue, as well as in

cultured cortical neurons, and this modification disrupts a-Syn
homeostasis in neurons (8). Synaptotagmin-11, encoded by the PD

risk gene SYT11, has been shown to reduce physiological a-Syn
tetramer formation in a palmitoylation-dependent manner (8).

Within neurons, palmitoylation of Syt11 increases its protein

stability and enhances a-Syn’s binding to cellular membranes,

thereby decreasing tetramers and promoting the accumulation of

aggregation-prone monomers. Notably, this effect is reproduced by

overexpression of wild-type Syt11, whereas palmitoylation-deficient

mutants do not exhibit the same influence (8). These findings

suggest that palmitoylation-induced upregulation of Syt11

contributes to a-Syn pathology in PD (Figure 1A).

Two other synaptotagmins, Syt1 and Syt7, are also subject to

post-translational modification at cysteine residues (33). One study

reported that Cys117 (corresponding to human Cys188) is a

palmitoylation site in Syt11 in the mouse forebrain (34).

However, a different result was obtained in a separate

investigation. In that study, human wild-type Syt11 tagged with

FLAG (Syt11-wt-FLAG) was mutated at Cys39 and Cys40, which

were replaced with serine residues and transfected into human

embryonic kidney (HEK) cells. Wild-type Syt11 preserved a stable

palmitoylation signal (8). Individual mutation of Cys39 or Cys40
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weakened the signal but did not abolish it entirely, suggesting that

palmitoylation at these sites may occur cooperatively. In contrast,

regulation of the Cys188 site had no detectable effect on the

palmitoylation signal (8).

While it is established that palmitoylation promotes the stability

of Syt11, the underlying mechanisms remain incompletely

understood. This review proposes several possible mechanisms by

which palmitoylation may enhance Syt11 stability. First,

palmitoylation decreases the proportion of cytoplasmic Syt11 and

enhances its membrane localization. This shift reduces its exposure

to the ubiquitin-proteasome system (UPS), as the cytosolic form is

more susceptible to ubiquitination and subsequent degradation

(Figure 1B). Second, palmitoylation may induce conformational

changes in Syt11 that either mask key ubiquitination sites or hinder

recognition by E3 ubiquitin ligases (Figure 1C). However, this

remains speculative and lacks definitive experimental

confirmation. Third, palmitoylation appears to enhance the

binding of Syt11 to heat shock protein 70 (HSP70), supporting

proper protein folding and promoting complex formation within

specialized membrane domains, thereby conferring resistance to

UPS-mediated degradation (Figure 1C).

Experimental findings support the functional importance of

these mechanisms. In both rat and human induced pluripotent stem

cells, expression of Syt11 was found to be five-fold higher when its

cysteine residues (Cys39 and Cys40) remained unmutated,

indicating that palmitoylation enhances protein stability (8). In

contrast, models expressing serine-substituted Syt11 mutants

exhibited reduced protein levels, likely due to accelerated

degradation. In rat neurons, the half-life of exogenously expressed

Syt11-wt-FLAG protein treated with the protein synthesis inhibitor

cycloheximide (CHX) was approximately 16 hours (8). However,

the half-life dropped dramatically in the palmitoylation-deficient

mutant (CS mutant), with over 80% of the protein degraded within

4 hours (8). These results suggest that palmitoylation is crucial for

maintaining Syt11. Although it is known that palmitoylation

requires enzymatic activity from palmitoyltransferases, the

specific DHHC enzyme responsible for catalyzing Syt11

palmitoylation remains unidentified. Given the review ’s

subsequent discussion on NLRP3 inflammasome regulation, it is

plausible that different DHHC enzymes target specific cysteine sites,

mediating distinct biological outcomes. Identifying the regulatory

factors and specific DHHC enzymes involved in Syt11

palmitoylation is therefore critical for understanding and

precisely modulating its function in PD.
Syt11 regulates a-synuclein homeostasis
through palmitoylation

Palmitoylation not only regulates the biochemical properties of

proteins but also alters the biophysical characteristics of membranes.

By interacting with membrane phospholipids through its fatty acid

chains, palmitoylation can induce local curvature of the lipid bilayer

via hydrophobic interactions and steric effects, thereby influencing

membranemicroenvironments (35, 36). a-Syn preferentially binds to
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highly curved membranes, such as those found on vesicle surfaces, via

its amphipathic helical structure. This interaction is integral to its role

in vesicle trafficking and membrane dynamics (37–39). Considering

the known influence of Syt11 on a-Syn function, several studies have

investigated whether a direct interaction exists between the two

proteins. Current evidence suggests that Syt11 may not physically

interact with a-Syn. Instead, Syt11 appears to regulate the

membrane-binding capacity and homeostasis of a-Syn indirectly

through a palmitoylation-dependent mechanism. This regulation

likely involves changes to local membrane properties, such as lipid

composition or curvature, rather than direct protein-protein

interaction (8).

Importantly, Syt11 is also known to play a role in vesicle transport,

and its palmitoylation is emerging as a potential molecular link to a-
Syn function (40). Through multidimensional molecular mechanisms

—including membrane anchoring, oligomerization regulation, and

vesicle transport remodeling—palmitoylation is a key regulator of a-
Syn-mediated cytopathology in PD (41). Additionally, palmitoylation

regulates the membrane targeting of essential vesicle-associated

proteins such as SNAP25 (22), which function synergistically with a-
Syn to ensure proper synaptic vesicle fusion and dynamics.
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Syt11 degradation and depalmitoylation

The dynamic attachment and removal of palmitic acid from

proteins are mediated by palmitoyl acyltransferases (PATs) and

APTs, respectively (42). This reversibility makes palmitoylation a

compelling target for drug development and gene therapy. Recent

studies show that palmitoylation-deficient mutants of Syt11 undergo

rapid degradation via the endolysosomal pathway, and proteasome

inhibition does not rescue protein levels, suggesting the proteasome is

not involved in this context (Figure 1D) (8). This finding contrasts with

earlier work indicating that Syt11 is ubiquitinated by parkin and

degraded via the proteasome pathway (43). In other neurological

diseases, preclinical and clinical studies suggest that mimicking the

activity of depalmitoylating enzymes—such as palmitoyl-protein

thioesterase 1 (PPT1)—may offer therapeutic benefit. Treatments

using the depalmitoylating agent N-tert-butylhydroxylamine

(NtBuHA) or gene therapy approaches to replace defective PPT1

variants have demonstrated success in disease models (44). For

instance, a six-month PPT1 mimetic treatment significantly reduced

microglial activation in Ppt1−/− mice, a model of Infantile Neuronal

Ceroid Lipofuscinosis (45). Several inhibitors have been developed to
FIGURE 1

The related mechanisms of synaptic binding protein-11 palmitoylation. (A) DHHCs are palmitoyl transferases responsible for palmitoylation. Syt11 undergoes
palmitoylation at Cys39/Cys40; however, the specific catalytic DHHC remains unknown. The palmitoylation of Syt11 increases the tetrameric form of a-Syn,
which promotes membrane localization and reduces the abundance of a-Syn tetramers. Palmitoylation of Syt11 facilitates the conversion of a-Syn tetramers
to the monomeric form of a-Syn, which is more prone to aggregation and ultimately leads to the formation of Lewy bodies and accelerating the
progression of Parkinson’s disease (PD). (B) Syt11 is degraded by the ubiquitin-proteasome system (UPS).
(C) Palmitoylation may promote the proper folding of Syt11 by aiding its association with the membrane, facilitating complex formation with HSP70, and
potentially resisting UPS degradation. APTs are acyl-protein thioesterases that mediate depalmitoylation, but the specific APT responsible for Syt11
depalmitoylation remains unknown. (D) Recent studies have shown that palmitoylation-deficient mutants of Syt11 are degraded by the endolysosomal
system.
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target depalmitoylation: palmostatin B inhibits both APT1 and APT2,

while ML348 and ML349 selectively inhibit APT1 and APT2,

respectively (46, 47). However, blocking APT1 and APT2 does not

impair palmitate removal from postsynaptic density protein PSD-95.

Instead, the hydrolase domain-containing protein ABHD17 serves as

the specific depalmitoylase for PSD-95 (48). New members of the APT

family, such as ABHD10 and ABHD17, belong to the a/b hydrolase

superfamily, suggesting a broader depalmitoylase landscape beyond the

canonical APT1 and APT2 (48). Depalmitoylases display organelle-

specific localization. APT1 andABHD10 function withinmitochondria

(49, 50), while ABHD17 isoforms (A/B/C) localize to the plasma

membrane and endosomal compartments (48). Future research

should aim to identify the specific APT(s) responsible for regulating

Syt11 depalmitoylation and to elucidate their mechanistic roles. This

may offer novel insights for targeted PD therapy.
Palmitoylation promotes NLRP3
inflammasome assembly

The activation of the NLRP3 inflammasome
triggers inflammation in microglial cells

The NLRP3 inflammasome plays a central role in microglial-

mediated inflammation in PD. As early as 1988, McGeer and

colleagues identified HLA-DR+ reactive microglia in postmortem

brain tissue of PD patients, establishing a foundational link between

inflammation and PD pathogenesis (51). The core pathological features

of PD include abnormal aggregation of a-Syn and the loss of DA (52).

Increasing evidence suggests that excessive microglial activation and

the pathological release of pro-inflammatory mediators contribute to

neuronal degeneration (53). Remarkably, microglial activation begins

early in PD, preceding both a-Syn aggregation and Lewy body

formation, and may persist throughout disease progression (54, 55).

Consequently, therapeutic strategies aimed at modulating

inflammation in PD have garnered significant interest. One proposed

mechanism for microglial activation involves lysosomal dysfunction

caused by PD-related gene mutations, which impairs glial phagocytic

capacity and amplifies inflammatory responses (56).

Moreover, structural alterations and mutations in extracellular a-
Syn can directly trigger microglial activation (57). As innate immune

cells of the central nervous system, microglia are particularly efficient at

internalizing and degrading a-Syn. The NLRP3 inflammasome has

been implicated in a-Syn-induced inflammation, acting as a molecular

hub for the amplification of neuroinflammatory signaling (58, 59). In

microglia, the NLRP3 inflammasome is a multiprotein complex

composed of a sensor (NLRP3), an adaptor (ASC), and an effector

(caspase-1). Structurally, NLRP3 comprises an N-terminal pyrin

domain (PYD), a central nucleotide-binding oligomerization (NOD)

domain, and a C-terminal leucine-rich repeat (LRR) domain (60).

Upon assembly, the inflammasome activates caspase-1, which cleaves

gasdermin D (GSDMD) and promotes the maturation and release of

pro-inflammatory cytokines such as interleukin-1b (IL-1b) and IL-18

(Figure 2A) (61). This cascade culminates in pyroptosis, a form of lytic,

inflammation-driven cell death.
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Palmitoylation as a novel activation
pathway for the NLRP3 inflammasome

The release of NLRP3 inflammasomes and downstream

inflammatory cytokines has been detected in both the substantia

nigra pars compacta (SNpc) and the peripheral plasma of PD

patients (58). This highlights the important role of the NLRP3

inflammasome in PD pathogenesis and underscores the need to

investigate its activation mechanisms in microglia. NLRP3

activation occurs via canonical and non-canonical pathways (59),

and in PD, a-Syn is known to initiate the activation of microglial

NLRP3 inflammasomes. Disruptions in intracellular ionic

homeostasis—including reactive oxygen species (ROS), sodium

(Na+), calcium (Ca2+), and potassium (K+)—as well as

mitochondrial and lysosomal dysfunction, also contribute to

NLRP3 activation (62–65) (Figure 2A).

Despite advances in understanding NLRP3 activation, existing

pathways have not yet succeeded in fully regulating microglial

inflammatory states. Emerging research indicates that, in its

inactive form, NLRP3 can oligomerize into a double-cage

structure and is localized to the trans-Golgi network (TGN) in a

palmitoylation-dependent manner (66). Furthermore, fine-tuning

of NLRP3 inflammasome activation via palmitoylation has been

shown to modulate pyroptotic signaling cascades (67). In vitro

experiments using 2-bromo-palmitate (2-BP), a competitive

palmitate analog that inhibits palmitoylation, demonstrated that

caspase-1 activation is negatively correlated to 2-BP concentration

in already activated NLRP3-expressing cells. Interestingly, the

addition of exogenous palmitate restored caspase-1 activity (68)

(Figure 2B). These findings suggest that while 2-BP inhibits NLRP3

inflammasome activation, palmitate supplementation can reverse

this effect and promote inflammasome-mediated caspase-1

expression. These results reveal a regulatory mechanism that may

also be applicable within the nervous system.
Temporal and spatial mechanisms of
NLRP3 palmitoylation

In its resting state, NLRP3 is translocated to the TGN via

palmitoylation at the Cys130 residue, a process catalyzed by

DHHC1, DHHC3, DHHC5, and DHHC7 (Figure 2C). The

thioesterase APT2 inhibits this localization by removing palmitoyl

groups (69–71). The NLRP3 polypeptide alone lacks the ability to

recruit the protein to the TGN; however, DHHC1-mediated

palmitoylation at Cys958 enhances NLRP3’s recruitment to this

compartment (71). Upon activation, palmitoylation occurs at the

Cys901 site via PAT activity, prompting TGN disassembly

(Figure 3A). Activated NLRP3 is then recruited to the dispersed

TGN (dTGN) via ionic interactions between its polypeptide region

and phosphatidylinositol-4-phosphate (PtdIns4P) (72). The dTGN

serves as a platform for NLRP3 aggregation and facilitates its

transport to the microtubule-organizing center (MTOC) (73),

where NLRP3 assembles with NEK7 and ASC to form the active

inflammasome complex (74) (Figure 3B). Following recruitment,
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palmitoylation supports inflammasome assembly and stabilizes

NLRP3-NEK7 interactions, enhancing caspase-1 activation and

the subsequent release of mature IL-1b and IL-18. Notably, the

thioesterase ABHD17 can counteract the DHHC5-mediated

palmitoylation of NLRP3, highlighting a reversible regulatory step

in inflammasome assembly (75) (Figure 3C). Furthermore,

DHHC17 mediates palmitoylation at the Cys419 site of NLRP3,

allowing re-binding via the NACHT domain and contributing to

inflammasome stability (68).
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After inflammasome activation, additional palmitoylation at

Cys844—catalyzed by DHHC12—promotes NLRP3’s interaction

with HSC70, targeting the complex for lysosomal degradation via

chaperone-mediated autophagy (CMA) (Figure 3D) (76). Recent

studies have also demonstrated that palmitoylation at Cys126 by

DHHC5 is critical for proper subcellular localization and activation of

the NLRP3 inflammasome (77). These findings collectively indicate

that palmitoylation is essential for both the assembly and degradation

of the NLRP3 inflammasome and that a-Syn-mediated microglial
FIGURE 2

NLRP3 inflammasome activation pathway. (A) NLRP3 consists of an N-terminal PYD domain, a central ATPase domain (known as the nucleotide-
binding oligomerization domain, NOD), and a C-terminal leucine-rich repeat (LRR) domain. In PD, the NLRP3 inflammasome is activated via
intracellular ion homeostasis imbalances such as a-Syn, reactive oxygen species (ROS), sodium (Na+), calcium (Ca2+), and potassium (K+). The
assembly of the NLRP3 inflammasome leads to the activation of caspase-1. This, in turn, induces the maturation and release of IL-1 and IL-18, as
well as the cleavage of gasdermin D (GSDMD), promoting cell death. (B) Notably, using 2-bromopalmitate (2-BP) to block palmitoylation results in
reduced caspase-1 activation, a phenomenon that can be reversed by the addition of exogenous palmitate. (C) In the resting state of NLRP3,
DHHC1/3/5/7 can facilitate its transfer to the trans-Golgi network (TGN) at Cys130, with the thioesterase APT2 inhibiting this process (70–72).
Typically, resting-state NLRP3 is insufficient to recruit itself to the TGN. DHHC1 adds a PAM group at the Cys958 site to assist in the additional
recruitment of NLRP3 to the TGN.
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activation promotes DA neuron degeneration via this pathway.

Current knowledge of DHHC protein localization is primarily

derived from co-expression analyses. At least 23 mammalian

DHHC enzymes display distinct subcellular localization patterns

(78, 79). These spatial and temporal differences may serve as

auxiliary evidence supporting the regulatory role of palmitoylation

in NLRP3 inflammasome dynamics.
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Potentially relevant proteins
undergoing palmitoylation

DA neurons

Parkinson’s disease is characterized by the progressive loss of

DA neurons in the SNpc, which project to the striatum. This
FIGURE 3

The mechanism by which palmitoylation activates the NLRP3 inflammasome. (A) Under the action of PAT, NLRP3 undergoes palmitoylation at the
Cys901 site, which leads to the dispersion of the TGN. NLRP3 is recruited to the dispersed TGN (dTGN) via ionic bonds between its polybasic region
and phosphatidylinositol-4-phosphate (PtdIns4P). The dTGN acts as a scaffold for NLRP3, transporting it to the microtubule-organizing center
(MTOC). The palmitoylation of NLRP3 at the cysteine Cys126 site, catalyzed by DHHC5, is also a modification required for inflammasome activation.
(B) DHHC17 triggers the palmitoylation of NLRP3 at Cys419, promoting the formation of the NLRP3-NEK7 complex and recruiting ASC and Caspase-
1 at the MTOC to form the NLRP3 inflammasome. After the NLRP3-NEK7 complex is formed, DHHC17 mediates palmitoylation at Cys419, allowing
NLRP3 to be re-associated with the opposite site of NEK7. (C) The thioesterase ABHD17 can reverse the catalytic effect of DHHC5 on NLRP3.
(D) After inflammasome activation, DHHC12 triggers the palmitoylation of the NLRP3 Cys844 residue, promoting its binding to HSC70. This
transports the substrate to lysosomes and facilitates the degradation of NLRP3 through the chaperone-mediated autophagy (CMA) pathway.
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neurodegenerative loss results in a deficiency of DA in the

nigrostriatal pathway, a critical component of motor control,

thereby leading to the hallmark motor symptoms of PD (80).

Current treatment strategies primarily aim to alleviate motor

symptoms through DA replacement therapy, including carbidopa/

levodopa and dopamine agonists (81). However, prolonged

pharmacological intervention can result in debilitating motor

complications in a subset of patients (82). Emerging cellular

therapies, such as the use of induced pluripotent stem cells, show

considerable promise in PD treatment, although patient responses

remain variable (83). Advancing our understanding of DA

regulation and signaling could uncover novel therapeutic

strategies to enhance DA production or release in surviving

SNpc neurons.

Research has demonstrated that the dopamine transporter

(DAT) undergoes palmitoylation, and defects in this modification

reduce both its stability and function (84). Among 12 tested PATs,

DHHC2, DHHC3, DHHC8, DHHC15, and DHHC17 were found

to promote DAT palmitoylation, with the modification localized to

Cys580 (85). In human DAT (hDAT), palmitoylation at Cys581

facilitates the formation of stable, energetically favorable dimers

that influence dopamine uptake efficiency (86). Functionally, DAT

palmitoylation increases the maximum rate of dopamine uptake

(Vmax) and decreases its degradation, while depalmitoylation

enhances dopamine efflux, reduces Vmax, and promotes

lysosome-mediated degradation. DAT is depalmitoylated by

APT1 and APT2, members of the serine hydrolase superfamily,

and degraded by lysosomal pathways involving PPT1 (85, 87). In

the striatum, ZDHHC15 has been identified as a mediator of DAT

palmitoylation (88). Deficiencies in this process compromise DAT

function and reduce DA reuptake at synapses, although this

impairment is typically transient and reversible (88, 89). Further

investigation is required to clarify the regulatory mechanisms

involving ZDHHC15 and to determine whether targeting this

enzyme may offer a therapeutic strategy to enhance dopamine

transport in PD.
DJ-1

Although palmitoylation of proteins encoded by PARK genes

and PD-associated risk loci has not been extensively studied,

available evidence suggests that certain PARK proteins undergo

palmitoylation. One such protein is DJ-1, encoded by the PARK7

gene, which has been shown to be palmitoylated (90). Under basal

conditions, DJ-1 is predominantly localized in the cytoplasm but is

also present in mitochondria and the nucleus (91, 92). DJ-1

contains three cysteine residues at positions 46, 53, and 106 in

the N-terminal region (93).

DJ-1 is associated with membrane lipid rafts (LRs) in both

astrocytes and neurons, a process that depends on the

palmitoylation of its cysteine residues. Furthermore, palmitoyl-

proteomic studies conducted in human cell lines have identified

palmitoylation in additional PD-related proteins, including

ubiquitin C-terminal hydrolase L1 (UCHL1), encoded by PARK5,
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and lysosomal acid b-glucosidase (GBA1), a known PD risk factor

(94). However, the palmitoylation status of UCHL1 and GBA1 has

not yet been validated through follow-up experiments.
Discussion and outlook

a-Synuclein is a small, highly expressed cytosolic protein

whose pathological aggregation contributes to the progression of

PD. Its membrane fusion activity and affinity for vesicular

membranes are key to its physiological function, as they

influence the dynamic equilibrium between physiological

a-Syn tetramers and aggregation-prone monomers (8). While

a-Syn lacks cysteine residues and therefore cannot be directly

palmitoylated, recent findings suggest that its membrane-binding

stability is modulated by the palmitoylation of synaptotagmin-11

(Syt11), a synaptic binding partner. Palmitoylated Syt11 has been

shown to reduce a-Syn tetramers, a change potentially linked to

PD pathogenesis (8). The palmitoylation of Syt11 requires intact

cysteine residues at positions Cys39 and Cys40. Although these

sites are critical for maintaining a-Syn homeostasis, their

individual functional contributions remain indistinguishable (8).

While it is established that palmitoylation enhances the stability

of Syt11, this post-translational modification depends on catalysis

by a palmitoyl acyltransferase (DHHC). To date, the specific

DHHC enzyme responsible for Syt11 palmitoylation has not

been identified.

From a therapeutic standpoint, modulating the palmitoylation

cycle of Syt11 may provide a novel approach for PD treatment.

Inhibiting or silencing the DHHC enzyme involved in Syt11

palmitoylation could potentially restore physiological a-Syn tetramer

formation. One promising direction is the targeting of GNS561, a

selective inhibitor of PPT1, currently under investigation for cancer

therapy (95). Although GNS561 has demonstrated the ability to cross

the blood-brain barrier (BBB) (95), its impact on the cerebral

palmitoyl-proteome remains to be validated. The development of

highly selective agents capable of modulating protein-specific

palmitoylation and depalmitoylation within the brain is a critical step

toward advancing therapies for neurodegenerative disorders.

In parallel, the palmitoylation of NLRP3 has been shown to

regulate its localization to the TGN. The use of 2-BP, a palmitate

analog, competitively inhibits palmitoylation and thereby

modulates inflammasome activity (68). Notably, caspase-1

activation decreases with reduced 2-BP concentration, while the

subsequent addition of palmitate restores its expression. This

finding underscores the role of palmitoylation in controlling

NLRP3 inflammasome activation. The resting state of NLRP3 is

regulated by palmitoylation at Cys130, catalyzed by DHHC1,

DHHC3, DHHC5, and DHHC7. Simultaneously, DHHC1

facilitates recruitment of NLRP3 to the TGN through

palmitoylation at Cys958 (71). Upon activation, NLRP3 is

palmitoylated at Cys901, triggering the fragmentation of the TGN

into the dTGN. This structural transformation enables NLRP3 to

interact with NEK7 and ASC at the MTOC, forming the

inflammasome complex (74). These observations reinforce the
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idea that palmitoylation is not a uniform process but rather one that

exhibits protein- and context-specific effects.

Despite these advances, several critical questions remain. For

instance, although palmitoylation at NLRP3 Cys901 has been shown

to facilitate its translocation to the dTGN and promote inflammasome

activation (72), the PAT responsible for this site-specific modification

has yet to be identified. Understanding how each of the 23 mammalian

DHHC family members selectively recognize and modify distinct

cysteine sites on NLRP3 could refine therapeutic targeting strategies.

Additionally, the spatial and temporal sequence of palmitoylation

events on NLRP3, and their respective biological consequences,

deserve further detailed investigation.

Selective inhibition of PSD-95 depalmitoylation has been

proposed as a viable therapeutic strategy in the context of

Alzheimer’s disease (AD) (96). Although PSD-95’s specific role in

PD remains unexplored, its critical involvement in synaptic

function suggests that it may also serve as a potential therapeutic

target for PD. In addition to postsynaptic proteins, dopamine

transporters (DATs) also contain modifiable cysteine residues.

Palmitoylation of DAT enhances the maximum velocity (Vmax)

of dopamine uptake, while depalmitoylation increases dopamine

efflux and reduces Vmax. Although the precise mechanisms remain

unclear, these functional changes underscore the regulatory

potential of palmitoylation in DA neurotransmission.

Moreover, several PD-associated risk genes encode proteins

that are either directly or indirectly influenced by palmitoylation. In

summary, palmitoylation is increasingly recognized as a key

regulatory mechanism in PD pathogenesis. A comprehensive

understanding of its molecular functions and dynamics could

facilitate the development of novel interventions by targeting the

palmitoylation–depalmitoylation cycle, thereby offering new

therapeutic strategies for PD.
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