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infiltration in bladder cancer:
prognostic implications and
immunotherapy response
Jinxia Cao1 and Wang Zheng2*

1Department of Hematology, Changde Hospital, Xiangya School of Medicine, Central South University
(The First People’s Hospital of Changde City), Changde, Hunan, China, 2Department of Organ
Transplantation, Changde Hospital, Xiangya School of Medicine, Central South University (The First
People’s Hospital of Changde City), Changde, Hunan, China
Background: Immunotherapy has progressively gained prominence as a

cornerstone therapeutic modality across diverse oncological contexts, with its

clinical efficacy intricately linked to the dynamic interactions between the tumor

microenvironment (TME) and neoplastic cells. Central to this paradigm is

angiogenesis—a quintessential hallmark of cancer—which not only sustains

tumor growth but also orchestrates immunomodulatory networks within the

TME, thereby profoundly influencing therapeutic responsiveness. However, in

the field of bladder cancer (BC), the relationship among angiogenesis and

prognosis, immunotherapy response, and immune cell infiltration remains to

be further explored.

Methods: To systematically uncover this relationship, we carried out an

exhaustive assessment of 36 genes linked to angiogenesis (AAGs) and explored

the relationship between angiogenesis and transcript, prognostic outcomes, as

well as the infiltration of immune cells. By constructing an AAG_score, we

quantified the angiogenic subtype characteristics of each patient.

Subsequently, we evaluated the value of these characteristics in foreseeing BC

prognosis and the response of treatment, and concurrently analyzed the

performance of AAGs in diffuse large B-cell lymphoma for comparative study.

Through RT-qPCR, CCK8 and other experiments, we verified the role of NID2 in

bladder cancer.

Results: This study explored different types of AAGs mutations in BC samples at

the genetic level and elucidated the expression patterns of AAGs. Through in-

depth analysis, we identified two distinct molecular subpopulations and found

significant associations between AAGmutations and patients’ clinicopathological

features, prognosis, and invasive TME. We found that patients with low

AAG_score showed increased microsatellite instability, high mutation

tendency, and immune motivation, and had a better prognosis. NID2 plays a

role in promoting proliferation in bladder cancer and evaluate in diffuse large B-

cell lymphoma. In addition, our study found a significant correlation between

index of cancer stem cell and AAG_score in drug sensitivity.
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Conclusion: In summary, our study successfully identified prognosis-related

AAG characteristics in BC patients. These characteristics not only contribute to

a clearer understanding of TME properties but also provide an important basis for

exploring more effective immunotherapy strategies.
KEYWORDS

angiogenesis, tumor microenvironment, TME, immunotherapy response,
bladder cancer
1 Introduction

Tumor chemotherapy, as a therapeutic strategy that utilizes

chemical drugs to suppress or eliminate cancer cells, occupies a

pivotal position in the comprehensive treatment system of cancer

(1, 2). Its core mechanism lies in the skillful use of drugs to precisely

interfere with the DNA replication, protein synthesis, and metabolic

processes of cancer cells, thereby effectively blocking their growth

and division (3–5). TME is a multipart network interwoven by

numerous cellular and molecular components, playing a decisive

role in tumor initiation, response to treatment, and progression (6,

7). In the TME, the dense extracellular matrix and abnormal tumor

blood vessels act as barriers, severely impeding the penetration of

chemotherapeutic drugs into tumor tissues (8, 9). Meanwhile, in the

TME, tumor-associated fibroblasts and immunosuppressive cells,

including myeloid-derived suppressor cells (MDSCs), regulatory T

cells (Tregs), and M2-type tumor-associated macrophages (TAMs),

release signaling substances such as TGF-b and IL-6 that promote

drug resistance (10, 11). These signaling molecules not only activate

the anti-apoptotic pathways in cancer cells, enabling them to evade

apoptosis, but also suppress the body’s anti-tumor immune

response, impairing the immune system’s capacity to eradicate

neoplastic cells (12). While new blood vessels provide the

necessary nutrients for tumor growth, their leaky nature can lead

to interstitial hypertension and promote extracellular matrix (ECM)

remodeling, thereby creating a microenvironment conducive to

tumor metastasis (13, 14). Previous studies have demonstrated

that anti-angiogenic therapy can effectively inhibit tumor growth

by suppressing tumor angiogenesis (15, 16). Given this, a

comprehensive analysis of the intrinsic link between the TME

and angiogenesis may help uncover diverse tumor immune

phenotypes, thereby improving the abil i ty to predict

immunotherapy efficacy and providing a stronger theoretical

foundation and practical guidance for precision cancer treatment.

Bladder cancer (BC), as one of the predominant malignant

neoplasms in the urological system, also ranks among the ten most

prevalent tumors in the body (17). In China, BC consistently has the

highest incidence rate among genitourinary tumors (18). This

condition can manifest at any stage of life, and its incidence is

directly correlated with advancing age, peaking notably in the 50–

70-year age group (19). Regarding gender disparities, the
02
occurrence of BC is roughly three to four times more prevalent in

males compared to females (20). Pathologically, BC comprises

several types, including adenocarcinoma, urothelial carcinoma,

and squamous cell carcinoma of the bladder (21). Notably,

urothelial carcinoma is the most frequent, representing over 90%

of all BC cases. The treatment approach for BC varies according to

disease stage. For patients with muscle-invasive urothelial

carcinoma, a standard treatment strategy involves neoadjuvant

chemotherapy combined with surgery (22). For metastatic

bladder cancer, chemotherapy is the primary treatment modality

(23). Although there are currently numerous personalized

chemotherapy regimens, the treatment outcomes remain

unsatisfactory, with limited efficacy. Therefore, exploring new

therapeutic targets has become a critical focus in the current field

of BC treatment.

Once BC loses growth constraints, it will proliferate

uncontrollably, and this process relies on nourishing blood vessels

to deliver essential nutrients. The formation of new blood vessels

significantly increases the vascular surface area available for tumor

cells to invade (24). As a result, tumor cells are more likely to reach

an effective number sufficient for metastasis through the

bloodstream. Therefore, angiogenesis holds significant importance

in the progression of tumor metastasis. In recent years, anti-

angiogenic therapy has emerged as a prominent area of focus in

anti-tumor treatment research (25, 26). This therapy focuses on

inhibiting blood vessel formation in tumors, fundamentally

weakening the tumor’s progression and spread capabilities by

cutting off its nutrient supply and metastatic pathways, thereby

achieving the goal of tumor treatment. In the practice of BC

treatment, anti-angiogenic therapy has also demonstrated

promising application prospects and has achieved certain

research progress.

Currently, research on the association between angiogenesis-

related genes and BC remains limited. With this in mind, we

collected transcriptomic and single-cell data on angiogenesis-

associated genes and BC, and performed an integrative analysis to

explore disease progression, prognosis, TME characteristics, and

treatment response in BC patients. In this study, we identified two

distinct angiogenic subpopulations in BC. We therefore

comprehensively evaluated the prognostic significance, molecular

characteristics, and extent of immune cell infiltration in these two
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clusters. In addition, through a series of in-depth analyses, we

developed a highly valuable AAG_score system capable of

accurately predicting clinical outcomes and immunotherapy

response in BC patients. We anticipate that our study will provide

robust support for the development of effective immunotherapy

strategies against BC.
2 Materials and methods

2.1 Data achievement

This study was conducted from the National Cancer Institute

(NCI) and the National Human Genome Research The Institute

(NHGRI) obtained Bulk transcriptome data for bladder cancer

(BLCA cohort) and diffuse large B-cell lymphoma (DLBCL

cohort). The BC single-cell transcriptome data (8 cases of tumors

and 3 cases adjacent to cancer) were downloaded from

PRJNA662018. Obtain CNV files, somatic mutation data, as well

as the corresponding clinicopathological information from the

BLCA and diffuse large B cell lymphoma(DLBC) project of

National Cancer Institute (NCI). Angiogenesis-related gene set

(AAGs) from the Molecular Signatures Database (MSigDB,

h t t p s : / / www . g s e a -m s i g d b . o r g / g s e a /m s i g d b / c a r d s /

HALLMARK_ANGIOGENESIS) Database for a total of 36. The

flowchart of this study was generated using Biorender.
2.2 Comprehensive characterization of
AAGs in BC: expression, PPI network, and
genomic alterations

Firstly, we used the limma package to conduct differential

expression analysis of AAGs in cancer and adjacent tissues of the

BLCA dataset. The screening criteria for differentially expressed

AAGs were: log2 |Fold Change| >1.5 (log2 |FC| >1.5), P<0.05. And

visualize the volcano map and box plot. To explore the interaction

relationships of these genes, the protein-protein interaction

network (PPI) of these genes was constructed using the STRING

database. Subsequently, the single nucleotide mutations of these

genes in the BLCA dataset were explored and a waterfall chart was

created to visualize the mutation types and composition. We also

used lollipop charts to present and explore the copy number

variation (CNV) of AAGs in the BLCA dataset. Finally, we

explored the expression of correlation in the BLCA cohort by

AAGs and made a network graph for visualization.
2.3 AAGs-based consensus clustering
analysis

Utilize algorithm of consensus clustering(k-means method) to

identify unique AAGs profiles. Next, determination of both the

optimal number(k values) of clusters and the consensus level was

facilitated by “ConsensuClusterPlus” package. To ensure the
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robustness and stability of these clusters, perform 1,000 iterations

of the clustering process (27). Subsequently, a consensus clustering

matrix was drawn to visualize the clustering effect. To verify the

grouping efficacy of the clustering results, we used principal

component analysis (PCA) to observe the dispersion of the two

clusters on the mathematical two-dimensional plane. Furthermore,

Kaplan-Meier analysis, facilitated by the R packages “survminer”

and “survival”, is employed to evaluate disparities in OS across

distinct clustering patterns (28). We also analyzed the expression of

AAGs and the age distribution among different clusters and

generate heat map for visualizations. We also used GSVA to

analyze the differences in biopathway enrichment among

different clusters.

Then, we evaluated the differences in the abundance of 23

immune cell infiltrations among different clusters and visualized

them with box plots. Subsequently, we compared the expression

level differences of CD274, CTLA4 and PDCD1 among the clusters.

We evaluated the differences in tumor microenvironment (TME)

scores among clusters based on the ESTIMATE algorithm (29).
2.4 Unsupervised clustering based on
prognostic AAGs

We calculated the differential genes between Cluster_1 and

Cluster_2 based on the Limma R package and screened the

prognosis-related genes using unicox. Then, Gene Ontology (GO)

and Kyoto Encyclopedia of Genes and Genomes (KEGG)

enrichment analyses were conducted based on these genes, and

the pathway enrichment was visualized using bubble plots.

Subsequently, based on the prognosis-related differences AAGs

obtained through screening, unsupervised cluster analysis was

conducted again to obtain gene_clusters. First, we explore the

differences in overall survival (OS) among clusters. Subsequently,

we analyzed the distribution differences of AGE, STAGE and gene

expression levels among the clusters and visualized them with heat

maps. Finally, we made a box plot to show the expression

differences of AAGS among gene_clusters.
2.5 Establishment of the angiogenesis-
associated gene score

Based on the prognostic differences AAGs obtained through 2.4

screening, we used the Least Absolute Shrinkage and Selection

Operator (LASSO) +multiCox algorithm to establish a prognostic

model for the BLCA dataset. The parameter is selected as

lambda.min, and finally the AAGs score is formed. The formula

of the relevant algorithm is as follows:

AAG_ score =o
n

i=1
½Expgenei � bi�

Among them, Expgenei represents the expression level of the

model gene, and bi represents the coefficient corresponding to the

model gene. After the calculation model was established, we
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calculated the scores for each patient in the cohort. Based on the

median score, we classified all patients into high-risk groups and

low-risk groups. Subsequently, we drew a Sankey plot to observe the

composition relationship among the AAG cluster, gene cluster and

risk group, as well as their composition in the survival state. We also

compared the differences in risk scores between different AAG

clusters and gene clusters and represented them with box plots.

Subsequently, we conducted a survival curve to demonstrate the OS

differences between the two risk groups in the BLCA dataset. To

verify the test efficacy of the model, we plotted receiver operating

characteristic (ROC) curves for one year, three years and five years

on the BLCA dataset, and calculated the area under each curve

(AUC). We took an AUC greater than 0.6 to indicate that the model

has good test efficacy. In addition, we have also drawn heat maps of

the gene expression of patients under different risk scores

and conditions.
2.6 Correlation analysis of AAG score and
immunity

We analyzed the correlation between the risk score and the

infiltration of 12 types of immune cells. Using the Pearson correlation

coefficient method, we considered that there was a high correlation

between the two when the absolute value of the correlation coefficient

R was greater than 0.2. Subsequently, we calculated the estimate

scores for the two risk groups, including stromal score, immune score

and estimate score. Next, we will conduct a random forest analysis.

We use a bar chart to show the relative importance of each feature in

the prediction model. Select features with an importance greater than

0.4 for subsequent correlation analysis. We selected genes with an

importance greater than 0.4 to analyze their correlation with the

abundance of immune cell infiltration, using the Pearson correlation

coefficient method and conducting heat map visualization. In

addition, we also analyzed the expression differences of immune

checkpoint related genes between the two risk groups.
2.7 Other comprehensive analyses of AAG
score

First, we analyzed the differences in tumor mutational burden

(TMB) between the two risk groups, and then analyzed the

correlation between TMB and risk score and visualized it with a

scatter plot. Next, we gave each patient a TMB score and divided

them into a high TMB group and a low TMB group based on the

median score. We conducted a survival curve analysis to examine

the prognostic differences between the two groups. Subsequently,

we alternately grouped the TMB and AAG score risk groups and

compared the OS differences among these four groups. In addition,

we separately analyzed the correlations between microsatellite

instability (MSI), RNAss and AAG score, using the Pearson

correlation coefficient method and conducting scatter plot

visualization. Finally, we analyzed the somatic mutation

characteristics of the high and low AAG_scores groups.
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2.8 Analysis of drug sensitivity

First, we conducted an Immunophenoscore analysis between the

two risk groups to assess their sensitivity to CTLA4 and PD1. Then

we analyzed between the two groups. The sensitivity differences of the

eight chemotherapy drugs were visualized by violin plots (30).
2.9 The processing and visualization of
single-cell sequencing data

First, download the BC single-cell dataset for this paper from

BioProject based on the project ID number: PRJNA662018. Cell

Ranger 9.0.1 is obtained from the 10x Genomics official website, and

the downloaded sra sequencing files are allied to the GRCh38 human

reference genome. Quality control 1: Consistent with the quality

control method in the original literature: Cells exhibiting UMI counts

of less than 1000 or mitochondrial-derived UMI counts exceeding

10% are deemed to be of low quality and are consequently excluded.

Additionally, to mitigate the potential presence of doublets, single

cells in which more than 6000 genes are detected are also filtered out.

Quality control 2: Remove RNA contamination using decontX,

remove doublets using scrublet, and perform batch integration

using harmony for multiple samples. We used UMAP to perform

dimensionality reduction clustering on single-cell sequencing data

and label their sources. Manual annotation is performed based on cell

type-specific markers reported in previous literature. Gene set

scoring: Based on the sc.tl.score_genes function in the Scanpy

Python software (31). We present the expression of specific marker

genes for each cell subpopulation through heat maps. Subsequently,

we calculated the AAG score for each cell and visualized the score

distribution through UMAP and bar charts.
2.10 Analysis of AAG score in non-solid
tumors

In non-solid tumors, diffuse large B-cell lymphoma, we attempt

to expand the application scope of AAG score. First, consistent

consensus clustering is carried out based on AAG. The optimal

number of clusters is selected based on delta area, cumulative

distribution function (CDF) curve and proportion of ambiguous

cluster, and heat map visualization is performed. Subsequently, a heat

map was created to display the age distribution and gene expression

among each cluster. We used PCA to verify the classification effect of

the cluster classification method and calculated the survival curve to

determine the survival differences among various clusters.
2.11 Cell culture and transfection

In this study, the human urothelial cell line SV-HUC-1 and the

human bladder cancer cell lines SW-1710, ECV-304, T24, and

BC-3C were selected for wet experimental verification. These cell

lines are all derived from the Cell Bank of the Chinese Academy of
frontiersin.org
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Sciences. The culture conditions were strictly standardized: The cell

lines SV-HUC-1, SW-1710 and ECV-304 were cultured in the

RPMI-1640 medium. The cell lines T24 and BC-3C were cultured

in Dulbecco’s Modified Eagle Medium (DMEM) medium. 10% fetal

bovine serum (FBS, KeyGEN, China) and 1% mixture of penicillin

and streptomycin (Procell, China) were added to all the culture

media. The cell culture flasks are placed in a cell incubator at 37°C

containing 5% CO2. To ensure that the cells are in the logarithmic

growth phase, we change the culture medium every 2 to 3 days.

For the two cell lines of SW-1710 and BC-3C, we conducted

transfection experiments. By using siRNA designed by a biological

company (GIMA Corporation, China), we knocked down the

expression of NID2 in different cell lines and used negative control

(NC) as a control. First, we used trypsin (KeyGEN, China) to isolate

the cells from the culture flask and suspend them in the culture

medium. Subsequently, the cells were counted and the concentration

was calculated. They were uniformly inoculated into 6-well plates at a

concentration of 3×104 per well, and the culture medium was

supplemented to 2ml in each well. After the cells have adhered,

mix siRNA and LipofectamineTM 3000 (Invitrogen, USA) in a

certain proportion, let it stand at room temperature for 15 minutes,

and then use a pipette to evenly add the mixture to the corresponding

Wells. The medium was replaced 6 hours after transfection, and the

subsequent experiment was conducted 48 hours after transfection.
2.12 RT-qPCR analysis

We detected the mRNA expression differences of NID2 among

human urothelial cell line SV-HUC-1, human bladder cancer cell lines

SW-1710, ECV-304, T24 and BC-3C by RT-qPCR. Meanwhile, the

mRNA expression differences between the NID2 knockdown group

and the NC group in the SW-1710 and BC-3C cell lines were compared

to verify the transfection efficiency. The specific experimental steps are

as follows: Firstly, the cells in the 6-well plate were digested using

trypsin (KeyGEN, China), and the cell precipitate was collected after

PBS washing and low-temperature centrifugation. Subsequently, follow

the instructions and add 800ml of Trizol (Takara, Japan) to the

precipitate for thorough cell lysis. After 5 minutes of ice bath, add

200ml of chloroform (SINOPHARM, China), equal volume of

isopropyl alcohol (SINOPHARM, China), and anhydrous ethanol

(SINOPHARM, China) in sequence. After each addition of an

organic solvent, it is necessary to let it stand at low temperature,

centrifuge and remove the upper layer of organic solution. After drying

in a laminar flow hood for 50 minutes, feather-like RNA precipitates

were obtained. The RNA precipitate was dissolved in 20ml of DEPC-
treated water, and the RNA concentration was determined using

Nanodrop2000 (purchased from Thermo, USA). Next, referring to

the instructions, the PrimeScript RT kit (TaKaRa, Japan) was used to

remove genomic DNA from RNA first, and then reverse transcription

reaction was carried out to obtain the cDNA solution. Pre-mix the

cDNA sample with the reaction reagent using the SYBR GreenER

Supermix (TaKaRa, Japan) kit to ensure that each tube of the reaction

system contains 18ml of reagent and 2ml of cDNA. Real-Time

fluorescence quantitative PCR was performed on the 7500 Real-time
Frontiers in Immunology 05
PCR System (Thermo Fisher Scientific, USA). Taking GAPDH as the

internal reference gene, a two-step amplification procedure was

adopted: pre-denaturation at 95°C for 10 minutes; Subsequently, 45

cycles of denaturation at 95°C for 5 seconds and annealing at 60°C for

30 seconds were carried out. Each group of samples contains three

duplicateWells. Based on the normalized relative expression of b-actin,
the relative expression of NID2 was calculated using the 2-DDct method.
2.13 CCK8 assay

We selected two cell lines, SW-1710 and BC-3C, and detected

the proliferation ability of the cells by CCK-8 assay. Forty-eight

hours after transfection, the cells were seeded into 96-well plates at a

density of 6,000 per well and then returned to the incubator for cell

adhesion. Three replicate Wells were set up for each group of

experiments. After discarding the original culture medium, mix the

CCK8 reagent (KeyGEN, China) with the complete culture medium

at room temperature as per the instructions, and quickly add it to

the 96-well plate with a pipette to ensure that the final volume of

each well is 200ml. Completely wrap the well plate with aluminum

foil to avoid light, incubate for 2 hours, and then measure the

absorbance of each well at a wavelength of 450nm using an enzyme-

labeled instrument. Repeat the above detection steps at the time

points of 24, 48, 72 and 96 hours respectively.
2.14 Flow cytometry

Forty-eight hours after transfection, in the SW-1710 and BC-3C

cell lines, we used flow cytometry to verify the effect of NID2 on

apoptosis. Firstly, the cells were digested with trypsin (Beyotime,

China) free of Ethylene Diamine Tetraacetic Acid (EDTA, Beyotime,

China), and the cell precipitate was obtained by centrifugation at 2,000

rpm. Wash the cells three times with PBS and then transfer them to a

flow tube. Based on the recommendations of the instruction manual,

an appropriate amount of Fluorescein Isothiocyanate (FITC, Sigma-

Aldrich, USA) and propidium iodide (PI, Biosharp, China) were added

to each group. After staining in a 37°C water bath in the dark for 15

minutes, the cells were aspirated by flow cytometry. Repeat the above

operations for each group three times.
2.15 Wound healing assay

After transfection treatment of the SW-1710 and BC-3C cell lines

for 48 hours, a vertical line was slowly and uniformly drawn in the well

using a 200ml pipette tip with the assistance of a ruler. Replace the tip

before each scratch. After scratching, discard the culture medium and

gently wash three times with PBS to discard the floating cells. Add 2ml

of the basic medium without FBS to each well. Subsequently, the

scratch was photographed with a microscope and the wound area was

recorded when it was defined as 0 at this time. After 24 hours of culture

in the cell incubator, take photos again and record the area of the

healed wound. Calculate the percentage of scratch healing.
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2.16 Statistical analysis

All the analyses in this article were conducted based on R

software (V4.3.1). Unless otherwise specified, the R packages used

for plotting are all plotted with ggplot2. The t-test was used for the

test between the two groups. One-way analysis of variance was used

for tests among multiple groups. The statistical significance P value

is defined as P less than 0.05.
3 Results

3.1 Landscape of genetic mutations of
AAGs in BC

Figure 1 illustrates the workflow of this study. By analyzing BLCA

transcriptome data and combining it with AAGs collected from the

Molecular Signatures Database (MSigDB) (Figure 2a), we successfully

screened out 11 differentially expressed angiogenesis-associated genes

(DE-AAGs) that regulate angiogenesis in BC (Figure 2b, p< 0.05). For

the purpose of gaining a more profound information of the

interrelationships among these genes, we developed a PPI network,
Frontiers in Immunology 06
which exhibited that there were relatively close connections among

five of these genes (APOH、VTN、LUM、SPP1、FSTL1)

(Figure 2c). Next, we investigated the copy number variations

(CNVs) and the frequency of somatic mutations in AAGs within

BC. Among 407 BC samples, 132 (accounting for 32.43%) had gene

mutations (Figure 2d). Among the 36 AAGs, the VCAN gene had the

highest mutation incidence, after that were the COL5A2 and ITGAV.

Moreover, we also investigated the incidence of CNV mutations,

which indicated that the 36 AAGs showed significant CNV

alterations (Figure 2e). This study provides compelling evidence of

significant alterations in the genomic landscape and the AAGs

expression levels when comparing BC specimens to normal

controls. This discovery indicates that AAGs could potentially play

a crucial role in the initiation and progression of BC.
3.2 Generation of angiogenesis subgroups
in BC

Subsequently, we constructed a correlation network (Figure 3a) to

present the interactions of AAGs in BC patients, the relationships

among regulatory factors, and the survival significance of these
FIGURE 1

Study workflow diagram.
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relationships. To explore the underlying connections between AAGs

and BC, we conducted an analysis focused on their expression levels,

aiming to classify BC patients. Analysis showed that when the optimal

number of clustering variables was set to 2 (Figure 3b), the BC patients

in the research were clearly distributed into two subsections. The results

of principal component analysis (PCA) further confirmed that there

were good inter-group distribution characteristics between these two

subgroups (Figure 3c). Furthermore, we conducted a comparison of the

OS durations between patients in the two clusters and noted substantial

disparities in survival outcomes——The prognosis of Cluster_1 is

significantly worse than that of Cluster_2 (Figure 3d, p = 0.031).
Frontiers in Immunology 07
Additionally, as depicted in Figure 3e, the comparison of genomic

expression patterns and clinical traits between the two clusters

uncovered notable distinctions in AAGs expression and

clinical characteristics.
3.3 Features of the TME across various
subgroups

Subsequently, we used GSVA and found that Cluster 1 showed

high activity in energy metabolism (such as arginine and proline
FIGURE 2

Genetic mutational landscape of AAGs in BC. (a) Volcano plot of differentially expressed genes (DEGs) between BLCA and normal tissues. (b)
Expression distributions of differentially expressed angiogenesis-associated genes (DE-AAGs) between BLCA and normal tissues. (c) The PPI network
acquired from the STRING database among the DE-AAGs. (d) Genetic alteration on a query of AAGs. (e) Frequencies of CNV gain, loss, and non-
CNV among AAGs. (p< 0.05 *; p< 0.01 **; p< 0.001 ***; p< 0.0001 ****).
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metabolism) as well as antigen presentation and apoptosis; while

Cluster 2 was more augmented in lipid metabolism and

tricarboxylic acid cycle-related pathways (Figure 4a). To elucidate

the association between AAGs and BC’s TME, we used the

CIBERSORT algorithm to investigate the infiltration levels of 23
Frontiers in Immunology 08
immune cell subsets in the two clusters. Figure 4b demonstrates

significant variations in the enrichment of most immune cell types

between the two clusters. Specifically, Cluster 1 exhibited

significantly higher infiltration levels of CD4+ memory T cells,

naive B cells, M0-type, M1-type, and M2-type macrophages, as well
FIGURE 3

Generation of Angiogenesis Subgroups in BC. (a) A network of correlations including AAGs in the NCI cohort. (b) Consensus matrix heatmap
defining two clusters (k = 2) and their correlation area. (c) PCA analysis indicating an obvious difference in transcriptomes between the two
subgroups. (d) KM survival analysis showing 36 AAGs correlated with OS. (e) Differences in clinicopathologic characteristics and expression levels of
AAGs between the two distinct subgroups.
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as neutrophils, compared to Cluster 2. Conversely, Cluster 2 was

predominantly characterized by higher levels of memory B cells,

CD8+ T cells, regulatory T cells, activated NK cells, monocytes,

and activated dendritic cells (p< 0.05). Furthermore, we observed

that the expression levels of three key ICPs, PD-1, PD-L1,

and CTLA-4, were significantly higher in Cluster 1 relative to

Cluster 2 (Figures 4c–e, p< 0.001). In this study, the tumor

microenvironment score was utilized to assess the abundance of

immune and stromal components within the TME. In addition, we

calculated the tumor microenvironment scores, including stromal,

immune, and estimate scores, for each cluster. The findings revealed

that patients in Cluster 1 exhibited higher scores across these tumor

microenvironment parameters (Figure 4f, p< 0.001).
3.4 Prognosis based on DEG-based gene
subgroup identification

To delineate the mechanistic involvement of angiogenesis-

associated genes (AAGs) in BC tumorigenesis and malignant

progression, differential expression profiling was conducted using

the limma computational framework, specifically quantifying

inter-subgroup heterogeneity within angiogenesis-related

molecular clusters.
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Through this analysis, we successfully screened out 234

AAG_DEGs related to the angiogenesis cluster and then conducted

functional enrichment analysis on these genes. The analysis results

showed that these DEGs related to the angiogenesis subgroup were

primarily enhanced in biological processes closely related to cell

adhesion, migration, proliferation, etc. (Figure 5a). Further KEGG

analysis showed that there were a large number of signaling

pathways that played important roles in maintaining homeostasis,

defending against pathogen infection, regulating immune responses,

and tissue repair (Figure 5b). Under specific conditions, abnormalities

in these pathways and biological behaviors may trigger the occurrence

and development of diseases, which fully proves that angiogenesis plays

a key function in regulating tumor metastasis and affecting the

progression of BC. In order to investigate the specific regulatory

mechanisms in greater detail, patients were classified into two distinct

clusters using an unsupervised clustering approach based on prognostic

genes. Kaplan-Meier survival analysis indicated that Group A patients

had the poorest overall survival (OS), while Group B patients exhibited

significantly better OS outcomes (Figure 5c, p = 0.01). Additionally, we

observed a significant association between angiogenesis gene cluster A

and the advanced stages (stages III and IV) of BC (Figure 5d).

Concurrently, the angiogenesis gene clusters exhibited notable

differences in the expression of AAGs, aligning with our initial

expectations for the angiogenesis subgroups (Figure 5e, p< 0.05).
FIGURE 4

Characteristics of TME in Different Subgroups. (a) GSVA of biological pathways between two distinct subgroups. (b) Abundance of 23 infiltrating
immune cell types in the two BLCA subgroups. (c–e) Expression levels of CD274, CTLA4, and PDCD1 in the two BLCA subgroups. (f) Correlations
between the two BLCA subgroups and TME score. (p< 0.05 *; p< 0.01 **; p< 0.001 ***; p< 0.0001 ****; ns, no significance).
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3.5 Creation and verification of the
prognostic AAGs_score

The AAG_score was derived from DEGs that were linked to

particular clusters. Initially, the univariate Cox (unicox) algorithm
Frontiers in Immunology 10
was employed to identify genes linked to prognosis. Subsequently,

LASSO regression and multivariate Cox (multiCox) analysis were

utilized to construct an optimal prediction model based on these

genes (Figure 6a). Using this prediction model, we assigned scores to

each sample within the BLCA dataset. As shown in Figure 6b, the
FIGURE 5

Prognosis Based on DEG-Based Gene Subgroup Identification. (a, b) GO and KEGG enrichment analyses of DEGs among two angiogenesis
subgroups. (c) Kaplan–Meier curves for OS of the two gene clusters. (d) Relationships between clinicopathologic features and the two gene clusters.
(e) Differences in the expression of 36 AAGs among the two gene clusters. (p< 0.05 *; p< 0.01 **; p< 0.001 ****; ns, no significance).
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distribution of patients is represented across two angiogenesis clusters,

two gene clusters, and two distinct AAG_score groups. Further analysis

revealed significant differences in the AAG_score between the

angiogenesis clusters and gene clusters (Figures 6c, d, p< 0.0001). In

particular, gene cluster A exhibited a higher AAG_score than gene

cluster B, indicating that a reduced AAG_score could be linked to traits

associated with immune activation. Based on the survival analysis

results, we observed that a higher risk score was associated with poorer

survival rates, regardless of whether the classification was based on

angiogenesis clusters or gene clusters. Kaplan-Meier survival analysis of

the training cohort further revealed that patients classified as low risk

experienced significantly improved overall survival (OS) compared to
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their high-risk counterparts. (Figure 6e, p< 0.0001). Simultaneously, the

area under the curve (AUC) for 1-year, 3-year, and 5-year OS was 0.75,

0.74, and 0.78, respectively (Figure 6f), indicating the model’s robust

predictive performance. The risk map based on the AAG_score

distinctly illustrated a negative correlation, with an increase in

AAG_score associated with reduced overall survival (OS) and

elevated mortality rates. Meanwhile, the expression heatmap of

model-related genes revealed a close correlation between gene

expression levels and prognosis time (Figure 6g). In summary, these

results strongly suggest that the risk score of this model is negatively

correlated with prognosis time and can accurately predict the prognosis

of BC patients.
FIGURE 6

Development and Validation of the Prognostic AAG_Score. (a) The LASSO regression analysis and partial likelihood deviance on the prognostic
genes. (b) Alluvial diagram of subgroup distributions in groups with different AAG_scores and clinical outcomes. (c) Differences in AAG_score
between the two angiogenesis clusters. (d) Differences in AAG_score between the two gene clusters. (e) Kaplan–Meier analysis of the OS between
the two groups. (f) ROC curves to predict the sensitivity and specificity of 1-, 3-, and 5-year survival according to the AAG_score. (g) Ranked dot and
scatter plots showing the AAG_score distribution and patient survival status. Expression patterns of selected prognostic genes in high- and low-risk
groups (p< 0.0001 ****).
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3.6 Evaluation of TME and checkpoints in
different groups

To interrogate the functional interplay between AAG_score and

immune microenvironment composition, we leveraged the

CIBERSORT deconvolution algorithm. Analytical outputs

revealed significant positive associations (threshold of p< 0.05)

between elevated AAG_score values and infiltration levels of

activated memory CD4+ T lymphocytes, M0/M1/M2 macrophage

polarization states (Figure 7a). Conversely, inverse relationships

were identified with naive CD4+ T cell populations, regulatory T

cells (Tregs), CD8+ cytotoxic T lymphocytes, and memory/plasma

B cell compartments. Notably, the AAG_score demonstrated

synergistic correlations with both stromal compartment activation

indices and immune microenvironment quantification metrics

(Figure 7b, p< 0.0001). At the same time, the bar chart shows the

relationship between gene expression levels and related risk scores

in the prediction model, among which XAGE2 presents the

strongest correlation (Figure 7c). Subsequently, we selected the

top seven genes with a closer correlation to the model risk score

and further explored their correlation with immune cell

enrichment. The results showed that, consistent with previous

analysis, the selected genes were closely related to the enrichment

of macrophages, regulatory T cells, and dendritic cells (Figure 7d,

p< 0.05). Furthermore, we evaluated the relationship between ICPs

and this prognostic feature. Figure 7e illustrates notable differences

in the expression of 23 immune checkpoints between the two risk

subgroups. The results showed that the high-risk group had a higher

level of immune infiltration (p< 0.05).
3.7 Association of AAG_score with TMB,
MSI, and CSC scores

A wealth of studies has established that both TMB and MSI

serve as critical predictors for tumor immune responses, with

patients exhibiting high TMB or MSI often showing greater

responsiveness to ICP inhibitor therapy. Comparative analysis

demonstrated marked reductions in tumor mutational burden

(TMB) levels within the low-risk cohort relative to high-risk

counterparts (Figure 8a, p< 0.01), suggesting enhanced

immunotherapy efficacy potential in high-risk patients.

Subsequent Spearman correlation modeling identified an inverse

association between AAG_score and TMB metrics (Figure 8b). To

delineate TMB-mediated prognostic stratification, we conducted

systematic survival evaluation across TMB-defined subgroups,

revealing statistically superior clinical outcomes in high-TMB

patients compared to low-TMB individuals (Figure 8c).

Following this, we performed a survival analysis incorporating

both TMB and AAG_score in BC patients, and observed that the

prognostic advantage associated with high TMB was neutralized

upon the inclusion of AAG_score (Figure 8d, p< 0.0001). The

correlation assessment results showed that there is no significant

correlation between AAG_score andMSI_score (Figure 8e, R = 0.033,

p=0.59). Cumulatively, these findings indicate enhanced
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immunotherapy susceptibility in high-risk patient cohorts. We

subsequently performed integrated analysis of AAG_score and

cancer stem cell (CSC) score to evaluate their correlative interplay

in BC biology. As graphically represented in Figure 8f, our

multidimensional analysis identified an inverse relationship

between AAG_score and RNAss, demonstrating that BC specimens

with reduced AAG_score values manifest marked stemness

characteristics and a poorly differentiated phenotypic state.

Moreover, we examined the differences in the distribution of

somatic mutations across various AAG_score patterns within the

BLCA dataset. As shown in Figures 8g, h, the mutation incidence of

AHNAK2 in BC patients was higher than 15% in both risk groups.

Remarkably, the high-risk group exhibited a significantly greater

likelihood of mutation in these genes when compared to the low-

risk group.
3.8 Relationships between AAG_score and
therapeutic sensitivity

In order to assess the immune response in BC patients, we

computed the immune phenotype score (IPS) as a predictor of their

response to immunotherapy. Figure 9a illustrates that the IPS score

was notably higher in the high-risk group, implying that these

patients may exhibit greater sensitivity to immunotherapy (p<

0.001). To further validate the AAG_score as a potential

biomarker for predicting treatment response in BC patients, we

assessed the half-maximal inhibitory concentration (IC50) values of

commonly prescribed first- and second-line clinical drugs used in

bladder cancer patients. The results showed that patients with a low

AAG_score showed high sensitivity to multiple chemotherapy

drugs, such as Nilotinib, the simulation analog of simvastatin,

Sorafenib, Linsitinib, Elephantin, Vorinostat, and Entinostat

(Figure 9b, p< 0.05). In summary, these research results indicate

that the AAG_score is closely related to drug sensitivity and can

provide valuable reference for clinicians to choose appropriate

chemotherapy drugs for patients.
3.9 AAG_score at single-cell levels of BC

We successfully obtained 11 cell subpopulations through

UMAP dimensionality reduction (Figure 10a). Based on cell type-

specific markers reported in previous literature, we conducted cell

clustering for all cells, eight types of cells were annotated

(Figures 10b, c). After that, we applied the prognostic model to

the single-cell samples, and the results showed that the AAG_score

was specifically elevated in the fibroblast population, while the score

was lowest in the epithelial cells, which are more common in

bladder tissue samples (Figures 10d, e). Among the various cell

types present in solid tumors, fibroblasts play a crucial role. They

combine with the extracellular matrix of connective tissue and are

the basis for maintaining the structural integrity of tissues. Tumor-

associated fibroblasts (CAFs) have been demonstrated in prior

research to significantly contribute to tumor progression by
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promoting various processes. The previous research results showed

that the high-score group had higher sensitivity to immunotherapy,

which means that this prognostic model can well predict the high

fibrosis of bladder tissue after the formation of BC, thereby

achieving the predictive effect on the progression of BC.
3.10 AAG subgroups and traits of 9 sample
subtypes in DLBC via clustering

Whether solid tumors or non-solid tumors, the rapid

proliferation of tumor cells relies on an abundant supply of

nutrients and oxygen. Although non-solid tumors (such as
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leukemia and lymphoma) do not form solid masses, they

still depend on angiogenesis to sustain their growth and

dissemination. Based on this, we conducted a joint analysis of

angiogenesis-related genes and transcriptome data from DLBC.

Initially, we performed LASSO regression and multivariate

regression analysis on the data (Figures 11a, b), followed by PCA

to classify the samples into nine clusters. Simultaneously, we

incorporated AAG scores and clinical data into each cluster to

observe their expression levels (Figures 11c–e). Additionally, we

analyzed the OS of the nine clusters, but no significant survival

differences were observed among them (Figure 11f, p = 0.7). This

phenomenon may be related to the fact that non-solid tumors

typically contain fewer fibroblasts.
FIGURE 7

Evaluation of TME and Checkpoints in Different Groups. (a) Correlations between AAG_score and immune cell types. (b) Correlations between
AAG_score and both immune and stromal scores. (c) Random forest analysis showing the relative importance of each feature in the prognostic
model. Features with importance over 0.4 were selected for subsequent correlation analysis. (d) Correlations between the abundance of immune
cells and selected genes in the prognostic model. (e) Expression of immune checkpoints in the high and low-risk groups. (p< 0.05 *; p< 0.01 **;
p< 0.001 ***; p< 0.0001 ****; ns, no significance).
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1615173
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Cao and Zheng 10.3389/fimmu.2025.1615173
3.11 NID2 played a carcinogenic role in
bladder cancer cells

For different cell lines, the RT-qPCR results showed that the

mRNA expression level of NID2 was at a high level in all four human

bladder cancer cell lines, and was significantly upregulated in the SW-

1710 and BC-3C cell lines (P< 0.01, Figure 12A). Furthermore, by

observing the bar chart, it can be found that in the SW-1710 and BC-

3C cell lines, the knockdown efficiency and targeting of NID2 are

both good (P< 0.0001, Figure 12B). The CCK-8 assay results showed
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that after knockdown of NID2, the proliferation ability of cancer cells

was significantly weakened, indicating that NID2 has a promoting

effect on the proliferation of bladder cancer cells (P< 0.0001,

Figures 12C, D). Meanwhile, Flow cytometry detection revealed

that when NID2 was knocked down, the percentage of apoptotic

cells in the cell line increased significantly (P< 0.0001, Figures 12E, F).

Finally, the Wound healing assay showed that the migration ability of

cells knocked down with NID2 was significantly weaker than that of

the NC group (Figures 12G, H). Based on the above experimental

results, NID2 plays a promoting role in bladder cancer.
FIGURE 8

Association of AAG_Score with TMB, MSI, and CSC Scores. (a, b) Relationships between AAG_score and TMB. (c) Kaplan–Meier analysis of the OS
between the low- and high-TMB groups. (d) Survival analysis among four patient groups stratified by both TMB and AAG_score. (e, f) Relationships
between AAG_score and MSIand CSC index. (g, h) The waterfall plot of somatic mutation features established with low and high AAG_scores. (p< 0.01 **).
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4 Discussion

Tumor growth and metastasis are highly dependent on

neovascularization to supply oxygen and nutrients (32). BC,

especially muscle-invasive BC, breaks through the basement

membrane by inducing angiogenesis, thereby invading surrounding

tissues or metastasizing to distant sites (33, 34). This process is finely

regulated by various angiogenic cytokines, such as VEGF, FGF, and

PDGF (35–37). Research has demonstrated that the concentration of

VEGF in BC tissues is notably elevated compared to normal bladder

mucosa, and its expression exhibits a positive association with tumor

stage and grade (38). The detection of VEGF in urine can even serve

as a non-invasive diagnostic marker, further highlighting the close

and inevitable link between angiogenic cytokines and BC (39).

Currently, interventions targeting angiogenesis have become a new

direction in BC treatment, such as anti-VEGF drugs (e.g.,

bevacizumab) and tyrosine kinase inhibitors (TKIs) (40–42).

However, the clinical efficacy of these drugs, which target only a

single pathway or specific immune cells, is extremely limited. Hence,

it is of utmost importance to further elucidate the comprehensive

impact of AAGs and the infiltration characteristics of the TME under

varying combinations of AAGs.
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This study involved a thorough examination of the transcriptional

changes and expression patterns of AAGs by leveraging data from the

BLCA cohort. Our results indicated that while the mutation rate of

AAGs is relatively low, there are significant differences in their

expression levels between cancerous and adjacent normal tissues,

which are closely tied to patient prognosis. Following this,

unsupervised clustering techniques were employed to categorize BC

patients into two distinct angiogenic subgroups, referred to as Cluster 1

and Cluster 2. Inter-subgroup analyses revealed marked divergence in

clinical trajectories, immune infiltration landscapes, and functional

pathway activation patterns. Critical to emphasize is the emerging

evidence^43,44 that BC-associated genetic mutations exert pivotal

regulatory influences on therapy-responsive immunomodulatory

mechanisms through underlying molecular cascades.

Leveraging subgroup-defining differentially expressed genes, we

computationally stratified two distinct genomic clusters exhibiting

divergent clinical profiles, immunomodulatory dynamics, and

pathway activation patterns. Through LASSO Cox regression feature

selection, we subsequently constructed the AAG_score quantification

system to characterize angiogenic subgroup heterogeneity.

Notably, a shorter OS was observed in patients with elevated

AAG_scores, implying that a high AAG_score could potentially act
FIGURE 9

Relationships between AAG_score and therapeutic sensitivity. (a) IPS in different AAG_score groups. (b) Relationships between AAG_score and
chemotherapeutic sensitivity. (p< 0.001 ***; ns, no significance).
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FIGURE 11

AAG subgroups and traits of 9 sample subtypes in DLBC via clustering. (a, b) Consensus CDF curves and PAC analysis indicating the optimal
clustering number of 9. (c) Consensus matrix heatmap defining nine clusters (k = 9) and their correlation area. (d) Differences in clinicopathologic
characteristics and expression levels of AAGs between the nine distinct subgroups. (e) PCA analysis indicating no obvious difference in
transcriptomes between the nine subgroups. (f) KM survival analysis of the nine subgroups in DLBC.
FIGURE 10

AAG_score at single-cell levels of BC. (a) UMAP visualization of single-cells from eleven samples of BLCA. Cells were colored by sample ID.
(b) UMAP visualization of single-cells from eleven samples of BLCA. Cells were colored by cell type. (c) Heatmap of cell marker of each cell type.
(d) UMAP visualization of AAG_score calculated by scanpy.tl.score_genes function of the Scanpy. (e) Bar plot showing the average AAG_scores of
each cell type.
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as a prognostic marker for poor outcomes. Angiogenesis is a key

driver of cancer progression, and its dysregulation is closely

associated with tumor aggressiveness, treatment resistance, and

adverse outcomes (43, 44). Our GSEA results further supported
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this notion, demonstrating significant enrichment of pathways

related to cancer, proliferation, and metastasis.

AAG_score exhibited a strong association with the

clinicopathological features of BC. Upon accounting for confounding
FIGURE 12

The proliferation, apoptosis and migration of cells after NID2 knockdown in bladder cancer. (A) The expression of NID2 mRNA in different cell lines was
detected by RT-qPCR. (B) The bar chart shows the expression of NID2 mRNA in the SW-1710 and BC-3C cell lines treated with siRNA. (C, D) The
proliferation of cells was detected by CCK8. (E, F) The apoptosis of cells was detected by Flow cytometry. (G, H) The migration of cells was detected by
Wound healing assay. A P value< 0.05 was considered statistically significant (** P<0.01; *** P<0.001; **** P<0.0001; ns, no significance).
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variables, our findings demonstrated that the AAG_score

independently predicts survival outcomes in BC patients. ROC curve

analysis validated its high accuracy in predicting 1-year, 3-year, and 5-

year overall survival. Moreover, a high AAG_score often corresponded

to a higher clinical stage. Therefore, the AAG_score likely possesses

reliable predictive capabilities for patient prognosis. The accumulation

of genetic mutations is a key factor in carcinogenesis, which is closely

linked to neovascularization. Intergroup genomic profiling identified

significant genomic disparity between low- and high-AAG_score

cohorts. Consistent with prior evidence^47, elevated TMB levels

demonstrated correlative enhancement of clinical prognosis in BC

populations. Notably, low-AAG_score specimens exhibited

significantly improved clinical trajectories compared to low-TMB

counterparts, establishing the AAG_score as an independent

prognostic determinant of immunotherapy responsiveness.

The role of immune interactions is pivotal in the tumorigenesis of

BC (45). Stromal cells and immune cells, as integral components of

the TME, are closely associated with the clinical characteristics and

prognosis of BC through related immune scores and stromal scores

(46, 47). In this study, we employed a specialized algorithm to

compute the immune and stromal scores. Analytical data

demonstrated that BC specimens with elevated AAG_score

displayed statistically elevated immune/stromal microenvironmental

indices compared to low-score counterparts. These collective

observations imply an intricate coupling between angiogenic

activation and tumor microenvironmental remodeling,

mechanistically modulating BC malignant transformation and

metastatic dissemination. Notably, the high-AAG_score cohort

manifested substantial infiltration of naive B lymphocytes, CD4+

memory T lymphocytes, M0/M1/M2 macrophage subtypes, and

neutrophil populations.

Previous research has demonstrated that these cells correlate

with poor clinical prognosis, a finding that aligns with the generally

worse clinical outcomes seen in the high AAG_score group in our

study (48–51). Several studies suggest that angiogenic factors may

function as immunomodulators, with the immune system playing a

role in carcinogenesis by promoting pathological vascularization

(52, 53). Consequently, targeting angiogenesis emerges as a

promising regulatory approach for BC immunotherapy.

Currently, the resistance of BC to chemotherapy is increasing

(54, 55). Additionally, for immunotherapy to be effective, specific

biomarkers are needed as predictive indicators. Currently, TIDE

and IPS scores have been developed to assess the therapeutic

response to ICIs. Based on this, we found that BC patients with

low AAG_scores had lower TIDE scores, indicating that they are

more sensitive to anti-PD-1 and anti-CTLA-4 therapies.

Meanwhile, patients with low AAG_scores also showed higher

sensitivity to most chemotherapy drugs.

BC exhibits high heterogeneity, which is one of the key

mechanisms underlying tumor survival and evolution (56, 57). In

the tumor microenvironment of BC, the distribution and functional

status of immune cells, fibroblasts, and other stromal cells

significantly impact BC progression (58, 59). Recent research has

emphasized the role of fibroblasts in critical physiological processes,

including tumor angiogenesis and the remodeling of the
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extracellular matrix. Moreover, the extent of fibroblast infiltration

in BC tissues is strongly associated with a poor prognosis in patients

(60, 61). We analyzed single-cell sequencing data of BC and applied

our constructed predictive model to this data. The results showed

that AAG_scores were significantly higher in fibroblasts than in

other cell populations. This result not only confirms previous

studies but also fully demonstrates the accuracy of our predictive

model. Meanwhile, to test the model’s generalizability, we applied it

to a non-solid tumor—diffuse large B-cell lymphoma. However, the

model did not show a close association with prognostic indicators.

This may be related to the lower number of fibroblasts in diffuse

large B-cell lymphoma. Finally, the wet experiment results

confirmed that NID2 promotes the proliferation and migration of

bladder cancer cells, inhibits apoptosis, and plays a pro-cancer role.

This study, for the first time, systematically revealed the pro-

cancer function of NID2 in bladder cancer models: it showed

significant mRNA high expression in bladder cancer cells, and

after specific knockdown by siRNA, the cell proliferation ability was

significantly inhibited. This provides a theoretical basis for

subsequent targeted therapy research.

This study has certain limitations. When exploring the clinical

value of the AAG_score, the study included a relatively limited

number of clinical variables. Subsequent studies should incorporate

more relevant clinical variables to more comprehensively and deeply

explore its clinical significance. In this study, functional experiments

focused on the assessment of cell proliferation and did not involve

studies of other tumor-related phenotypes, such as the aggressiveness

or apoptosis of tumor cells. Therefore, while cell proliferation

experiments provide important information for evaluating

treatment efficacy, they are not fully representative of the overall

characteristics of the tumor. Future studies need to consider

multifaceted tumor-related phenotypes and comprehensively

evaluate the effects and mechanisms of potential therapeutic

strategies. Additionally, to better elucidate the connection between

the risk score and the TME, and to further corroborate our findings, it

is essential to conduct in vivo and in vitro experiments in conjunction

with comprehensive prospective studies.
5 Conclusion

To summarize, we carried out a systematic and thorough

investigation of AAGs, uncovering a multifaceted regulatory

mechanism that profoundly influences the TME, prognosis, and

clinical features of BC patients. Simultaneously, we demonstrated

the utility of AAGs as biomarkers for predicting treatment response.

Our research underscores the substantial clinical relevance of AAGs

and lays the groundwork for personalized treatment strategies in

BC patients.
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