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insights from machine learning,
WGCNA, and immune cell
infiltration analysis
Leilei Zhai1, Huiyue Pan1, Ziyi Guo1, Wei Zhou2, Qi Ding1,
Haikun Wang1, Qian Chen1 and Ping Yao1*

1The First Department of Gastroenterology, The First Affiliated Hospital of Xinjiang Medical University,
Urumqi, Xinjiang Uygur Autonomous Region, China, 2Department of Nephrology, The Children’s
Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health,
Hangzhou, China
Background: This study aimed to investigate ferroptosis-related biomarkers and

their potential molecular basis in UC.

Methods: UC datasets (GSE87466 and GSE47908) from the Gene Expression

Omnibus database were merged as the training set, and batch effects were

removed. Ferroptosis-related differentially expressed genes (DE-FRGs) were

selected to construct a diagnostic risk model in UC. Machine learning (lasso

regression and SVM-RFE), Weighted Gene Co-expression Network Analysis

(WGCNA) and PPI were then used to obtain candidate hub genes. After

identifying common DE-FRGs, functional enrichment analysis, GSEA and GSVA

functional enrichment analysis and immune cell infiltration were performed to

explore the pathogenesis of UC. Besides, the correlation of hub gene expression

and ferroptosis signature markers (GPX4 and ACSL4) was validated in external

validation (GSE92415) and in vitro experiments. Finally, we employed the human

intestinal epithelial Caco-2 cell to establish an in vitro inflammatory model by

treatment with LPS (1 mg/ml) for 24 hours. This model was used to validate the

correlation between the expression levels of ferroptosis-related essential genes

(ACSL4 and GPX4) and pro-inflammatory cytokines (TNF-a, IL-6, and IL-1b).
Furthermore, to confirm ferroptosis involvement, Caco-2 cells were co-treated

with RSL3 (a ferroptosis inducer) or Ferrostatin-1 (Fer-1, an inhibitor), followed by

measurement of GSH, MDA as an indicator of lipid peroxidation, and cellular iron

load. Mitochondrial ultrastructure was assessed via transmission electron

microscopy (TEM) to detect ferroptosis-associated morphological changes.

Results: MFN2 and CBS were identified as hub genes after further validation.

Functional estimation, gene set enrichment analysis, and immune infiltration

signature identification showed notable associations of the hub genes with

macrophages, mast cells resting, and follicular helper T cell levels. In vitro, we

observed that treatment with LPS/RSL3 obviously activated ferroptosis in Caco-2

cells, as indicated by altered expression of key ferroptosis-related genes (down-

regulation of GPX4, CBS, and MFN2; up-regulation of ACSL4) and the levels of

surrogate ferroptosis markers (elevated MDA and iron levels, along with reduced
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GSH). In addition, LPS-induced ferroptosis in Caco-2 cells could be reversed by

Fer-1.

Conclusions:MFN2 andCBSmay represent potential therapeutic targets and could

serve as biomarkers for immune regulation in UC, warranting further investigation.
KEYWORDS

ulcerative colitis, machine learning, ferroptosis, WGCNA, immune infiltration,
MFN2, CBS
Introduction

The etiology of ulcerative colitis (UC), a chronic inflammatory

disorder primarily affecting the colon and characterized by recurrent

cycles of inflammation and remission, remains unclear (1). Typically

initiated in the rectum, the inflammation may extend proximally along

the colon. A multitude of factors, including genetic predisposition,

dysfunction of the intestinal barrier, dysregulated immune responses,

and environmental triggers, are believed to contribute to the

pathogenesis of UC (2). Notably, the rising prevalence of UC in

developing countries poses a significant public health concern (3).

Ferroptosis, a regulated form of cell death characterized by the iron-

dependent accumulation of intracellular lipid reactive oxygen species

(ROS) leading to membrane damage (4), is intricately linked to various

biological processes, such as amino acid, iron, and polyunsaturated

fatty acid (PUFA) metabolism (5). While the precise role of ferroptosis

in UC pathogenesis remains unclear, emerging evidence suggests its

involvement in intestinal barrier injury and immune activation (6).

This immune activation further damages the intestinal barrier, creating

a vicious cycle of inflammation and barrier dysfunction. Researchers

have found that ferrostatin-1 (Fer-1), a specific ferroptosis inhibitor,

can effectively ameliorate DSS-induced UC by negatively regulating the

Nrf2/HO-1 signaling pathway (7).

Additionally, the interplay between ferroptosis and the immune

system is significant in UC (8). The majority of the intestinal wall’s

lamina propria macrophages during the active phase of UC have the

M1 phenotype. M1 causes the epithelial barrier to be destroyed, tight

junction proteins to be broken down, epithelial cells to undergo

apoptosis, and inflammation to become excessive (9). The infiltration

of macrophages and the release of pro-inflammatory factors promote

the carcinogenesis of epithelial cells (10). Neutrophils play a primary

function in the development and maintenance of intestinal

inflammation. Chemokines and reactive oxygen species (ROS) are

produced, the epithelial barrier is disrupted, other immune cells are

recruited and activated, and redox-sensitive inflammatory pathways

are activated (11). The death of epithelial cells due to ferroptosis can

trigger an immune response, leading to the activation of immune cells

and the release of pro-inflammatory cytokines. The gut microbiota

also plays a role in this process, as dysbiosis can exacerbate ferroptosis

and immune activation, contributing to the progression of UC (12,

13). Additionally, investigating immune infiltration in UC and how it
02
relates to ferroptosis will aid in the analysis of the pathophysiology of

ferroptosis in UC. Inhibiting ferroptosis may be a novel way to stop

the disease from getting worse. Although its precise

pathophysiological significance is yet unknown, ferroptosis has a

substantial correlation with several disorders, including UC (14).

Therefore, a better understanding of the molecular basis of ferroptosis

is crucial for improving targeted ferroptosis-based treatment options.

However, related biomarkers that regulate intestinal epithelial cell

(IEC) ferroptosis in UC have not been fully elucidated.

The expression profile and relationship of ferroptosis-related

genes (FRGs) in UC remain unknown. Therefore, this study

intended to identify key FRGs and evaluate their value for UC

diagnosis. We intersected these differentially expressed genes

(DEGs) from the GEO database in UC with FRGs to find

ferroptosis-related DEGs (DE-FRGs). A risk model was

constructed using the DE-FRGs via machine learning methods,

and a PPI network and Weighted Gene Co-expression Network

Analysis (WGCNA) were constructed to assess the diagnostic hub

genes. Moreover, the correlations between the key DE-FRGs with

immune infiltration and relevant networks were explored.

Furthermore, the identified potential biomarkers will be

systematically validated through external cohort analysis and in

vitro functional experiments. To elucidate the role of ferroptosis in

this process, cells will be subjected to treatment with either

lipopolysaccharides (LPS), RSL3 (a ferroptosis inducer), or

Ferrostatin-1 (Fer-1, a ferroptosis inhibitor), followed by a

comprehensive assessment of key ferroptosis markers, including

glutathione (GSH), malondialdehyde (MDA), and intracellular iron

concentrations. Ultimately, this study aims to identify and

characterize novel ferroptosis-related biomarkers, which may

facilitate the development of targeted biotherapies for UC.
Materials and methods

GEO datasets downloading and
preprocessing

Datasets were downloaded from the GEO databases (https://

www.ncbi.nlm.nih.gov/geo/). We performed a systematic search

and filtered them according to the following criteria: 1) Homo
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sapiens; 2) expression profiling by array; 3) UC patients and normal

controls were included in the samples; 4) the sample was from

colonic mucosal tissue; 5) there was no statistically significant

difference in baseline data between the groups. Subsequently,

GSE87466 (87 UC, 21 controls) and GSE47908 (45 UC, 15

controls) were combined as a training set (Table 1). The comBat

function of the “sva” R package was performed to eliminate the

batch effect in the gene expression profiles (15, 16). We then

obtained the UC-related data set and the expression matrix of the

Principal Component Analysis (PCA). PCA is the preferred method

to reduce the data dimension and analyze the effect of batch effect

removal. GSE92415 was designated as the validation set. The

flowchart is shown in Figure 1. Background calibration, data

normalization, and log2 transformation were performed on the

included datasets using “affy” in R software (version 4.1.2, https://

www.r-project.org/).
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Ferroptosis-related DEGs identification

Differential expression analysis was carried out on the elected

datasets using the R software’s “limma” package (17). The DEGs

were then classified according to the criteria of adjusted P value

<0.05 (18). The ggplot2 package was utilized to visualize the

heatmaps and volcano maps of DEGs. Ferroptosis-related genes

(FRGs) were searched in the Ferrdb database (http://

www.zhounan.org/ferrdb/) (19). The database contains four types

of ferroptosis-related genes: Driver, Suppressor, Marker, and

Unclassified. Genes associated with ferroptosis were retrieved

from each category and duplicates were removed before creating

a consolidated list.
Function enrichment analysis

To evaluate the interactions between proteins and genes,

pathways, co-expression, co-localization, and protein domain

similarities, GeneMANIA (http://genemania.org) analyses were

conducted (20). GO is a database set up by the Gene Ontology

Consortium, which aims to define and describe the functions of

genes and proteins for a variety of species. GO functional

enrichment analysis and KEGG pathway enrichment analysis

were carried out to elucidate the functions and the enriched

pathways of the potential DEGs.
TABLE 1 Microarray information.

GEO
ID

Platform UC Controls
Source
tissue

Attribute

GSE87466 GPL13158 87 21 colon Training set

GSE47908 GPL570 45 15 colon Training set

GSE92415 GPL13158 162 21 colon
Validation
set
GEO, Gene Expression Omnibus; UC, ulcerative colitis.
FIGURE 1

Demonstrates the flowchart of this study.
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Weighted gene co-expression network
analysis

To identify potential disease biomarkers or therapeutic targets,

WGCNA is used to discover modules of highly correlated genes and

describe the relationships between modules and correlations with

external sample features (21). The differential gene expression data

of merged UC-related are analyzed using WGCNA and R software

(version 4.3.1). First, the optimal soft threshold was established, and

an unscaled network was built. This network was converted to a

weighted network at a soft threshold power of 5, and modules were

found using hierarchical clustering (minModuleSize = 30,

mergeCutHeight = 0.25). Subsequently, the adjacency relationship

was converted into a topological overlap matrix (TOM), which

demonstrated the shared neighboring genes’ concurrence. It was

also determined what the relevant dissimilarity degree (1-TOM)

was. Ultimately, dynamic tree-cut algorithms and hierarchical

clustering were used to discover modules. A network cluster

dendrogram was used to illustrate the clustering. To ascertain the

relationship with UC, typical gene expression levels were computed

and displayed from co-expressed merging modules indicated by

color. In order to identify important linkages in UC, the analysis’s

main goal is to compute the correlation between these modules and

sample groups.
Identification of hub genes by lasso
regression and SVM-RFE

In this study, the least absolute shrinkage and selection operator

(LASSO) in conjunction with support vector machine-recursive

feature elimination (SVM-RFE) machine learning algorithm was

applied to screen for UC-related characteristic genes. With the

“glmnet” package in R (15), LASSO is a regularized regression

technique. A method of supervised machine learning called SVM-

RFE may prioritize features according to recursion in order to

prevent overfitting (16, 17). The genes that show up as overlaps

between the genes examined by the two machine learning techniques

are potential bio-diagnostic indicators. Protein-protein Interaction

(PPI) network analysis. The PPI network was derived based on the

STRING database (https://string-db.org) (22). The selecting

interaction threshold was “highest confidence (0.4)”. Visualization

of these results was performed with “Cytoscape” (version 3.10.0).

Subsequently, we identified densely connected network

components using the cytoHubba plugin and degree algorithm.
Screening hub genes and external
validation

Ultimately, a Venn diagram was drawn to identify as diagnostic

biomarkers the intersection between the DE-FRGs obtained from

the LASSO, SVM-RFE, PPI, and WGCNA. The external testing

cohorts provided additional confirmation of the biomarkers’

differential expression and predicted reliability (GSE92415).
Frontiers in Immunology 04
Receiver operating characteristic (ROC) curves were drawn by

pROC, and the predictive usefulness of the discovered biomarkers

was estimated by computing the area under the ROC curve (AUC)

value. Using a box plot, we demonstrate the hub DE-FRG

expression between the UC populations and controls. Scatterplots

were made to show the correlation between the hub genes and

ferroptosis markers such as ACSL4 and GPX4.
GSEA, ssGSVA function enrichment analysis
and immune infiltration enrichment
analyses

GSEA is a computational method used to assess whether there is a

statistically significant and consistent difference between two biological

data sets in a preset gene set. We used the clusterProfiler package to

analyze GSEA gene functional enrichment in hub genes (grouped by

median expression level). The single-sample GSEA (ssGSEA)

algorithm and single-sample gene set variation analysis (ssGSVA)

were utilized to evaluate signaling pathways associated with signature

genes (23). The relative content and dynamic regulatory process of each

of the 22 immune cell types was determined using the CIBERSORT

method (24). Immunoinfiltration analysis was performed using the

CIBERSORT algorithm with 1,000 permutations on the variations in

immune cell expression between UC and healthy controls. Statistical

significance was assessed by permutation test, using P < 0.05 to screen

for significant infiltration between subsets. To visualize the correlation

between the enrichment levels of 22 infiltrating immune cells and the

expressions of the diagnostic genes, use the “linkET” package to create

correlation heat maps. To view the differences between the immune

cells in the UC group and the controls, use the “boxplot” package to

create a violin chart. Spearman’s correlation analysis was conducted to

explore the association between the diagnostic biomarkers and

immune cell infiltration in the colon tissue.
Cell culture and cell viability assay

The STR analysis was conducted to verify the authenticity of

human epithelial cells line Caco-2 obtained from Procell (Procell

Life Science & Technology Co., Ltd., China). During the culture,

cells were maintained in MEM supplemented at 37°C in a

humidified environment with 5% CO2, 20% FBS, penicillin (100

U/mL), and streptomycin (100 mg/mL). Caco-2 cells were seeded

into 96-well microplates at a density of 1×10^5 cells/mL. Using the

CCK8 assay, the viability of lipopolysaccharides-treated (LPS) doses

of 0.1, 0.25, 0.5, 1, 2.5, 5, and 10 µg/mL was detected to determine

the appropriate concentration to use in subsequent experiments.

After a 24-hour exposure to LPS, cells underwent a 2-hour

incubation with CCK8 at a 10% concentration. At 450 nm, the

absorbance (OD) was calculated utilizing a microplate reader

(Thermo Scientific, Waltham, United States). In order to observe

the effect of LPS on ferroptosis, Caco-2 cells were separated into 4

groups: control group, model group (LPS, 1 mg/mL) (25), RSL3

group (15mM) (26), and LPS+Fer-1 group (4 mM) (27), and
frontiersin.org

https://string-db.org
https://doi.org/10.3389/fimmu.2025.1615186
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhai et al. 10.3389/fimmu.2025.1615186
Malondialdehyde (MDA), glutathione (GSH), and iron load levels

were measured. LPS derived from Escherichia coli O55:B5 (HY-

D1056), Ferrostatin-1 (Fer-1, HY-100579), and RSL3 (HY-

100218A) were obtained from MedChemExpress (Monmouth

Junction, NJ, USA).
Measurement of MDA, GSH, and Fe2+

levels

Caco-2 cells were lysed with the corresponding lysis buffer, and

the supernatant was used in the assay kit after sonication and

centrifugation. MDA content was measured using the MDA

Content Assay Kit (BC6415, Solarbio, China). Fe2+ levels were

quantified with the Ferrous Ion Content Assay Kit (BC5415,

Solarbio, China). GSH concentration was assessed using the

Reduced Glutathione (GSH) Assay Kit (A006-2-1, Jiancheng

Bioengineering Institute, Nanjing, China).
Transmission electron microscope

Caco-2 cells were trypsinized, washed twice with PBS, and fixed

for 30 minutes in ice-cold glutaraldehyde. After being washed with

PBS, the cells underwent post-fixation in 1% osmium tetroxide and

were dehydrated in graded ethanol and Epon embedded. Cut

sect ions measur ing 60–80 nm in thickness wi th an

ultramicrotome. Thin sections were examined under a

transmission electron microscope (H7700, Transmission Electron

Microscope; Hitachi, Japan).
The RNA extraction and real-time
quantitative PCR

Total RNA was extracted using Foregene RNA isolation kit

(Foregene Co.Ltd, China). RNA extracts were reverse-transcribed

into cDNA with PrimeScript RT Reagent Kit (Takara, Shiga, Japan).

RT-qPCR was performed by using SYBR Green PCR Master Mix

(TransGen Biotech, China), and the detection of qPCR was

performed on an ABI QuantStudio5 using GAPDH as an internal

control. All primers were crafted and manufactured by Sangon

Biotech, located in Shanghai, China, and Supplementary Table 1

contains their sequences. The 2-DDCT method was used to analyze

the relative data, while statistical analysis was conducted using

T-tests.
Western blotting

After lysing the Caco-2 cells in ice-cold RIPA buffer (PC101,

Epizyme, Shanghai, China). Using a combination of protease and

phosphorylase inhibitors (Epizyme, Shanghai, GRF103), total protein

was extracted from cells using RIPA buffer, and the BCA protein assay

kit (ZJ102L, Epizyme) was used to quantify the protein. Subsequently,
Frontiers in Immunology 05
the total protein was then separated using sodium dodecyl sulfate-

polyacrylamide gel electrophoresis (SDS-PAGE). Preparation of the gel

involved a 10% polyacrylamide gel electrophoresis kit (PG112,

EpiZyme). Following their separation, the proteins were put onto

PVDF (polyvinylidene fluoride) membranes (IPVH00010, Millipore,

USA) in order to be further immunoblotted using certain antibodies.

Primary antibodies were as follows: MFN2 (1:1000, CST #9482), CBS

(1:1000, CST #14782), GAPDH (ABclonal #A19056, 1:50000), GPX4

(ABclonal #A11243, 1:1000) and ACSL4 (ABclonal #A20414, 1:1000).

Incubation with primary antibodies overnight was followed by

incubation with HRP-conjugated secondary antibodies at room

temperature for an hour (ABclonal #AS014). The eBlot Touch

Imager (eBlot, Shanghai, China) was employed to detect protein

bands using Omni-ECL enhanced chemiluminescence reagent kit

(SQ101, Epizyme, Shanghai, China). Gray values were analyzed

using ImageJ software, and protein relative expression was calculated

by comparing the certain protein gray values to internal

reference proteins.
Statistical analysis

Data analysis and visualization were performed using

GraphPad Prism software (Version 8.0, San Diego, CA) and R

software (version 4.1.2). The results were expressed as the mean ±

SD of three independent experiments. The comparison between

the two groups was performed by an unpaired, two-tailed

Student’s t-test or chi-square tests. Two-way analysis of variance

(ANOVA) with a post-hoc test was applied for multigroup

comparisons. Asterisk * denoted the statistical significance

threshold of p < 0.05, ** denoted p < 0.01, and # denoted p < 0.001.
Results

Screening of DE-FRGs in UC

The gene expression matrices GSE87466 and GSE47908 were

acquired from the GEO database and merged as the training set,

which available for gene level data of 132 UC patients and 36

control samples. PCA showed clear differences between these two

clusters (Figure 2A). After correction, as displayed in Figure 2B, all

samples in the dataset achieved acceptable homogeneity following

PCA analysis. The distribution and variations of all gene expression

between the UC and control groups are displayed in boxplots

(Supplementary Figure 1). DEGs were visualized using a volcano

map (Figure 2C) showing the top 50 DEGs in the heatmap

(Figure 2D). By intersecting DEGs and FRGs, we identified 72

DE-FRGs linked to UC (Figure 2E).
Weighted correlation network analysis

After removing the aberrant samples and filtering genes,

WGCNA was constructed, containing 4111 genes and 168
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samples. When the scale-free fit index was 0.85, the minimum soft-

thresholding power was 5 (Figures 3A, B), indicative of an

approximate scale-free topology. The samples and each module

were analyzed using heat maps (Figures 3C, D). In total, dynamic

tree cutting yielded nine distinct co-expression modules that were

merged and identified by a unique color (Figure 3E). The eigengene

adjacency heatmap is shown in Figure 3F. Subsequently, the

association between each module and the clinical features was

examined, which indicates that the MEtan module (1,175 genes)

was the most associated with UC (r = 0.63; P = 7e-20), whereas it

was selected for additional research (Figure 3G). Sample clustering

and more details are provided in Supplementary Figure 2.
Screening for diagnostic biological markers

Two machine learning algorithms were employed to identify hub

genes in DE-FRGS, incorporating lasso regression and SVM. Utilizing

the LASSO algorithm in conjunction with 10-fold cross-validation, the

number of genes corresponding to the minimum cross-validation error
Frontiers in Immunology 06
was determined (Figures 4A, B). The optimal number of genes

corresponding to the minimum cross-validation error was selected

by employing the SVM-RFE algorithm and conducting 10-fold cross-

validation (Figures 4C, D) (Supplementary Table 4). The PPI network

was then utilized to identify hub genes including 66 nodes and 229

interactional pairs (Figure 4E). The identification of hub genes was

subsequently carried out using the CytoHubba plugin (Figure 4F). To

visualize and screen the top 30 hub genes, the constructed PPI network

was imported into Cytoscape and analyzed with the Degree algorithm

(Figure 4G). WGCNAwas then used to screen the Mtan cluster in UC.

Finally, the intersection of the four aforementioned algorithms yielded

the optimal gene signature, consisting of two diagnostic genes, MFN2

and CBS (Figure 4H).
GO and KEGG function enrichment
analysis of DE-FRGs

Finally, we explored two hub genes (CBS and MFN2) and their

20 interacting genes using the GeneMANIA database (Figure 5A).
FIGURE 2

Eliminating the batch effect between different sequencing platforms. (A) The PCA plot before elimination of batch effect, (B) is the PCA plot with batch
effect elimination; (C) the volcano map of DEGs in UC, and (D) the top 50 up-regulated and down-regulated genes of UC, (D) the veen plot of DE-FRGs.
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The gene-gene interaction network for hub genes was analyzed

using the GeneMANIA database.

GO and KEGG enrichment analyses of the DE-FRGs were

conducted. The results are illustrated in Figures 5B, C. Response to

oxidative stress (GO:0006979) was tightly related to UC biological

processes (Figure 5B). The main disease-related terms in cellular

components consisted of peroxisome (GO:0005777), microbody

(GO:0042579), and peroxisomal matrix (GO:0005782).

Concerning molecular functions, more significant enrichment was

found in peroxidase activity (GO:0004601). Meanwhile, as

suggested by KEGG enrichment, the top 10 pathways were

visualized in the bubble chart, such as the glutathione

metabolism, ferroptosis, biosynthesis of unsaturated fatty acids,
Frontiers in Immunology 07
and fatty acid metabolism pathway (Figure 5C) More enrichment

analysis results are in Supplementary Tables 2, 3.
GSEA analysis and immune cell infiltration

We assessed signaling pathways associated with signature genes

via GSEA analysis. The top signaling pathways are displayed in

Figure 6. The expression of CBS significantly correlated with cell

cycle, complement and coagulation cascades, endocytosis, antigen

processing and presentation, pathogenic Escherichia coli infection,

and p53 signaling pathway. While MFN2 was significantly

correlated with complement and coagulation cascades, antigen
FIGURE 3

Results of the WGCNA analysis. (A) analysis of the scale-free fit index for various soft threshold powers (b); (B) analysis of the mean connectivity for
various soft threshold powers; (C) heatmap of the correlation of modules; (D) cluster dendrogram of modules; (E) cluster dendrogram of genes; (F)
adjacency heatmap of eigengenes; (G) correlations between different modules and clinical traits.
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processing and presentation, the JAK-STAT signaling pathway,

cytokine receptor interaction, natural killer cell-mediated

cytotoxicity, cell adhesion molecules (CAMs), toll-like receptor

signaling pathway (Figures 6A, B).

The ssGSVA analysis was conducted to investigate the

characteristics of each feature gene regulatory pathway between

UC and normal samples. We discovered after a thorough

investigation that these genes were abundant in the cell cycle,

immunological response, protein synthesis, and metabolic

pathways, all of which were linked to ferroptosis in UC. The

findings demonstrated that the overexpression of MFN2

transcription in the butanoate metabolism, O-glycan biosynthesis
Frontiers in Immunology 08
valine, leucine and isoleucine biosynthesis pathway, and the

decreased level of it might induce the ferroptosis of UC by

activating the arachidonic acid metabolism and natural killer cell-

mediated cytotoxicity pathway (Figure 6C). While the high

expression of CBS activated selenoamino acid metabolism glycine,

serine and threonine metabolism, galactose metabolism pathway,

and inhibited the keratan sulfate glycosaminoglycan biosynthesis,

RNA degradation and cell cycle pathways (Figure 6D).

The signature genes were verified, the ROC curve was drawn,

and AUC was compared to judge its diagnostic value. The AUC

values of CBS and MFN2 were 0.854 and 0.797, which had certain

diagnostic values. At the same time, through the comprehensive
FIGURE 4

Narrowing down candidate biomarkers by LASSO analysis and SVM-REF. (A, B) LASSO analysis. (C, D) SVM-REF analysis to identify signature genes;
(E) PPI network module results; (F) PPI network established by using CytoHubba; (G) PPI network constructed by using Degree algorithm; (H) Venn
diagram of intersecting genes by LASSO, SVM-REF, WGCNA, and PPI network.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1615186
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhai et al. 10.3389/fimmu.2025.1615186
analysis of feature genes, the logical regression model was obtained,

and the ROC curve was also drawn. We discovered that the

complete model’s AUC value was 0.892, which was significantly

higher than that of a single gene and suggested that it was more

effective at predicting illnesses (Figures 6E, F).

Immunological features were evaluated according to immune

cell infiltration. The relative content and dynamic regulatory

process of each of the 22 immune cell types was determined

using the CIBERSORT method (23). Analysis was also done on

the variations in immune cell expression between UC and healthy

controls. Compared with the healthy control group, immune cells

had differential infiltration in UC patients, including lower T cells

gamma delta (P = 0.025) and resting dendritic cells (P = 0.040) and

more B cells memory (P = 0.018) and NK cells resting (P = 0.041)

(Figure 6G). MFN2 was positively correlated with Macrophage M1,

T cells follicular helper and Mast cells activated, while was

negatively correlated with Mast cells resting (Figure 6H). Relative

Percent of different immune infiltration among 22 immune cells

showing in Figure 6I.
Validation of hub gene expression

We chose the UC dataset GSE92415 as an external validation set

to verify the expression of the candidate hub genes. Spearman’s
Frontiers in Immunology 09
correlation analysis was conducted to explore the association

between the diagnostic biomarkers and immune cell infiltration in

the colon tissue. Scatterplots show a significant, moderate

correlation between the hub genes and ferroptosis markers such

as ACSL4 and GPX4 (Figures 7A-E). Consistent with the results of

the training set, MFN2 and CBS were significantly downregulated in

the UC group (Figures 7F, G).

The LPS-stimulated Caco-2 cell line from human intestinal

epithelial cells served as an in vitro model for the intestinal

epithelium to check the association between the essential gene

expression levels. As shown in the cytotoxicity assay, the viability of

Caco-2 cells was significantly inhibited at RSL3 group (15mM), neither

LPS group (1 mg/mL) nor Fer-1 group (4 mM) produced statistically

significant changes in viability compared to controls (Figure 7H). For

the obvious inhibition of cell viability at LPS doses of 2.5, 5, and 10 mg/
mL after 24-hour exposure (0, 0.1, 0.25, 0.5, 1, 2.5, 5, and 10 mg/mL).

In contrast, 1 mg/mL LPS did not exhibit significant cytotoxicity while

still ensuring effective inflammatory stimulation (Supplementary

Figure 3). Therefore, a subsequent experimental condition of 1 mg/
mL LPS incubation for 24 hours was selected.

TEM revealed distinct ferroptotic morphology in LPS groups

compared to controls, notably featuring shrunken mitochondria

with disrupted cristae (Figure 7I). After 24 hours of induction of

LPS, enteritis cells could secrete higher inflammatory factors TNF-

a, IL-6 and IL-1b. RT-qPCR demonstrated that LPS exposure
FIGURE 5

(A) The gene-gene interaction network of hub genes was analyzed by GeneMANIA. (B) Circos diagram of enriched GO terms. (C) Circos diagram of
the KEGG pathways enrichment analysis.
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markedly decreased MFN2 and CBS mRNA expression but

increased ACSL4 levels (Figure 7J).

Compared to control cells, LPS-treated Caco-2 cells exhibited

significantly elevated iron levels and MDA accumulation, along

with reduced GSH content - changes consistent with those observed

in RSL3-induced ferroptosis (positive control). However, co-

treatment with Fer-1 effectively attenuated these LPS-induced

effects, as evidenced by decreased MDA content, reduced iron
Frontiers in Immunology 10
accumulation, and restored GSH levels. These findings

demonstrate that LPS triggers ferroptosis in Caco-2 cells, which

can be rescued by Fer-1 treatment (Figures 7K, L). Gene expression

alterations were in agreement with the WB protein analysis results

(Figures 7N-R). LPS treatment significantly upregulated ACSL4

expression while downregulating GPX4, MFN2, and CBS levels in

Caco-2 cells. Notably, Fer-1 treatment effectively reversed these

alterations by suppressing the LPS-induced ACSL4 overexpression
FIGURE 6

GSEA and GSVA enrichment analysis of hub genes: (A) GSEA results for MFN2; (B) GSEA results for CBS, (C) GSVA analysis of MFN2, (D) GSVA analysis of
CBS. (E) ROC curve analysis of single differentially feature genes. (F) ROC curve analysis of the combined differential trait genes. (G) Split violin presented the
different immune infiltration of 22 immune cells: lower T cells gamma delta (P = 0.025), resting dendritic cells (P = 0.040) and more B cells memory (P =
0.018) and NK cells resting (P = 0.041). (H) The association between signature genes and significantly different immune cell infiltration. (H) Displayed in a bar
chart are the relative percentages of 22 immune cell subsets.
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FIGURE 7

Validation of the hub genes: (A-E) Scatterplots of correlation between hub genes and characteristic ferroptosis markers (ACSL4 and GPX4). (F, G). The
expression level of hub genes in the validation sets (GSE92415). Cell viability of Caco-2 cells incubated with LPS (1 mg/mL), RSL3 (15mM), and Fer-1(4 mM) for
24h. (I) Representative TEM images of mitochondria: Red arrows indicate mitochondria with intact cristae, while black arrows highlight pathological
mitochondrial alterations including vacuolization and cristae swelling. (J) The quantitative mRNA expression levels of TNF-a, IL-6, IL-1b, MFN2, CBS, ACSL4
andGPX4 in induced enteritis cells. The levels of MDA (K), GSH (M), and total iron (L) were quantified in Caco-2 cells following treatment with LPS, RSL3, or
LPS+Fer-1. (N). Representative protein expression bands: quantified expression levels of (O) ACSL4 (P) MFN2 (Q) CBS (R) GPX4 (n = 3, *P < 0.05, **P < 0.01,
#P < 0.001, ns, no significance, significantly different as indicated).
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and restoring GPX4, MFN2, and CBS expression. These results

demonstrate that LPS-mediated downregulation of MFN2 and CBS

activates the ferroptosis pathway and exacerbates inflammatory

responses in intestinal epithelial cells. Fer-1 exerts its anti-

ferroptotic effects at least partially through modulation of MFN2

and CBS signaling pathways.

In addition, it was determined that up-regulated ACSL4

expression, and had significant down-regulation effect on GPX4.

These results suggest that down-regulation of MFN2 and CBS can

activate the ferroptosis pathway and aggravate the inflammatory

response of intestinal epithelial cells.
Discussion

Ulcerative colitis is an intestinal inflammatory condition caused

by genetic predisposition and environmental factors and is

becoming more prevalent. It is known for its lengthy clinical

progression and recurrent relapses (28, 29). Finding accurate

molecular diagnostic biomarkers remains a challenge for UC. In

this study, we performed an in-depth analysis of three GEO-derived

datasets (GSE87466 and GSE47908 as training set and GSE92415 as

validation set) to identify DEGs in UC patients. DE-FRGs were

selected to construct a diagnostic risk model in UC. Next, machine

learning (lasso regression and SVM-RFE), WGCNA, and PPI were

screened to obtain candidate hub genes. Comprehensive functional

analyses (GeneMANIA, GO, KEGG pathway enrichment, GSVA,

GSEA function enrichment analysis) revealed several key biological

processes and pathways associated with hub genes, including

glutathione metabolism, ferroptosis, as well as the biosynthesis of

unsaturated fatty acids and fatty acid metabolism pathways.

CIBERSORT analysis highlighted a significant elevation in T cells

gamma delta, dendritic cells resting, B cells memory, and NK cells

resting within the colon tissues of UC patients. Finally, the

expression of hub genes and ferroptosis feature changes were

verified in external validation and in vitro.

To recap, we utilized a variety of bioinformatics tools to identify

the two hub genes in UC, and their expression was confirmed in

Caco-2 cells treated with LPS for 24 hours. These findings have the

potential to help us better understand and explore the mechanisms

behind the pathogenesis of UC. This could also aid in exploring

potential biomarkers for identifying and treating patients with UC.

Mitofusin 2 (MFN2) is a widely expressed mitochondrial

transmembrane GTPase critical for mitochondrial fusion, and

also contributes to maintaining the interorganelle contact sites

between the endoplasmic reticulum and mitochondria.

Mitochondrial fusion is mainly regulated by mitofusin 1 (MFN1),

MFN2, and optic atrophy 1 (OPA1), whereas dynamin-related

protein 1 (Drp1) and fission 1 (Fis 1) play an important role in

mitochondrial fission (30). At present, emerging evidence has

linked mitochondria to ferroptosis. Mitochondria are the major

organelles for ROS generation and are responsible for iron

metabolism and homeostasis (31). Simultaneously, mitochondria

display decreased membrane potential and reactive oxygen species
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(ROS) accumulation due to damage to mitochondrial function (32).

Impaired mitochondrial function leads to extensive production of

ROS and free iron, promoting lipid peroxidation (33). Besides,

mitochondria play a crucial role as an integrative platform for signal

transduction, deciding whether cells undergo programmed cell

death or continue to survive (34). Recent studies highlight the

essential role of mitochondrial processes in the initiation and

execution of ferroptosis, commonly referred to as mitochondria-

dependent ferroptosis (35). Emerging evidence demonstrates that

MFN2 serves as a multifunctional regulator capable of activating

diverse signaling pathways. Notably, mitochondrial-targeted HO-1

has been shown to promote autophagy by facilitating Drp1

translocation to mitochondria. Furthermore, activation of the

PKC-a /HO-1 pathway has been found to upregulate

mitochondrial fusion proteins (Mfn1, Mfn2, and OPA1) while

downregulating fission factors (Drp1 and Fis1) (36).

Cystathionine b-synthase (CBS) is a crucial enzyme in the

transsulfuration pathway, which facilitates the conversion of

homocysteine and serine into cystathionine. This cystathionine is

subsequently transformed into cysteine by the enzyme

cystathionine g-lyase (CTH) (37). Cell proliferation and

glutathione (GSH) synthesis are both dependent on cysteine (38),

which is a non-essential amino acid. The reverse transsulfuration

pathway is utilized by mammalian cells to synthesize cysteine in

addition to acquiring exogenous cystine through system Xc− (39,

40). The cysteine-limited tumor microenvironment necessitates

cancer initiation and progression, and tumor cells utilize cysteine

biosynthesis through the transsulfuration pathway to support

growth (41). The central role of CBS in the transsulfuration

pathway and metabolism of sulfur-containing amino acids under

physiological conditions is the regulation of CBS in cancer cells, but

CBS possesses the capacity to resist the process of ferroptosis that is

the consequence of an increase in the level of cellular oxidative

stress (42). H2S has been implicated in a plethora of physiological

and pathological processes. Recent findings indicate that

endogenous H2S exerts anti-inflammatory and pro-healing effects

on intestinal epithelial tissue. Endogenous H2S is mainly produced

enzymatically by CBS and cystathionine g-lyase (CSE) in intestinal

epithelial cells (37). In IL-10-/-mice, a well-established model of

spontaneous colitis, impaired H2S synthesis is involved in the

exacerbation of colitis associated with hyperhomocysteinemia

(43). Accumulating studies have investigated the protective effect

of H2S on intestinal barrier injuries caused by inflammatory

cytokines and lipopolysaccharide in both Caco-2 monolayers (44)

and DSS-induced colitis in mice (45, 46).

Our results demonstrate that LPS treatment in Caco-2 cells

significantly increases the secretion of pro-inflammatory cytokines

(IL-1b, IL-6, TNF-a) and promotes ferroptosis in colonic epithelial

cells. TEM revealed characteristic mitochondrial alterations,

including swelling and cristae disappearance. Furthermore, hub

gene analysis revealed regulatory effects on ferroptosis pathways.

Notably, LPS treatment mirrored the effects of the specific

ferroptosis inducer RSL3 (a known GPX4 inhibitor that is often

used to construct a ferroptotic cell death model) (47), showing
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elevated iron levels, GSH depletion, and MDA accumulation

indicative of lipid peroxidation. Importantly, these effects were

reversed by Fer-1 treatment, restoring redox homeostasis and

mitochondrial function. These results collectively establish

ferroptosis as a key pathological mechanism in LPS-induced

enteritis, while highlighting MFN2/CBS signaling as a potential

therapeutic target.

Emerging evidence supports the involvement of mitochondrial

membrane oxidation in ferroptosis execution (48). Additionally,

mitochondria contain 20–50% of total cellular iron, with the

mitochondrial iron pool consisting of redox-active iron that

exacerbates mitochondrial ROS (mtROS) and lipid peroxidation

(LPO) (49). However, the precise mechanisms by which MFN2

modulates ferroptosis remain unclear. Previous studies have shown

that MFN2 overexpression inhibited mitochondrial translocation of

ACSL4, which ultimately suppressed mitochondria-related iron

death (50). Lycopene alleviates multiple-mycotoxin-induced

toxicity by inhibiting mitochondrial damage and ferroptosis in

the mouse jejunum (51).In contrast, intervention of Chang’an

decoction could improve the mucosal barrier integrity and

colonic inflammatory response effectively through inhibiting ER

stress response mediated by MFN2 (52). Chen et al. demonstrated

that MFN2 suppresses ferroptosis by restoring mitochondrial

dynamics and bioenergetic homeostasis. Gain-of-function

experiments revealed that MFN2 overexpression in CMECs

enhanced cell viability, attenuated ROS accumulation, elevated

SOD activity and GSH levels, and concurrently decreased iron

overload, lipid peroxidation, and LDH release, collectively

underscoring the anti-ferroptotic potential of MFN2 (50).

Notably, MFN2 likely serves as a critical node linking between

mitochondrial integrity, iron metabolism, mitochondrial-ER

crosstalk and ferroptosis in IECs.

Liu et al. reported that the activation of the transcription factor 3

(ATF3) has a positive regulatory effect on the CBS in the context of

ferroptosis under conditions of cystine deprivation stress. Conversely,

the suppression of CBS renders colorectal cancer (CRC) cells more

susceptible to ferroptosis by targeting the mitochondrial tricarboxylic

acid (TCA) cycle (53). Consequently, the present study hypothesizes

that CBS could serve as a viable target to enhance ferroptosis-based

therapy. Understanding this biochemical cystine metabolism is

essential for studying metabolic functions and potential health

implications related to amino acid metabolism.

In addition, the results revealed a significant positive correlation

between MFN2 and CBS expression, as well as between different

immune cell types, including M1 macrophages, T follicular helper

cells and macrophages, in UC. Analysis of immune infiltration

patterns revealed an association between elevated expression of the

pivotal gene and M1 macrophage activation, given the well-

established role of immune cell dysfunction in UC pathogenesis

and the importance of ferroptosis in immune cell homeostasis

(particularly in T cells and macrophages) (54). The involvement

of MFN2 in crosstalk between macrophages and intestinal epithelial

cell (IEC) ferroptosis may play a crucial role in the pathogenesis of

UC, and this warrants further investigation. Co-culture systems
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between Caco-2 cells and human mononuclear macrophages could

elucidate whether MFN2/CBS knockdown modulates immune cell

polarization or cytokine secretion. The molecular mechanisms

underlying epithelial-macrophage crosstalk could be clarified by

such experiments, which might result in the identification of new

therapeutic targets for UC immunotherapy.

Ultimately, bioinformatics analysis and experimental validation

revealed that the ferroptosis pathway played a key role in UC

response. We also found MFN2 and CBS to be promising

candidates for predictive markers, which could be used as a

therapeutic target for treating patients with UC.
Conclusions

In conclusion, this research discovered two genes (MFN2 and

CBS) linked with Ferroptosis and could be used as diagnostic

markers for UC. Furthermore, these hub genes have been

discovered to be interconnected with diverse immune cells,

hinting at their potential significance in shaping the

immune microenvironment.
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