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Topological data analysis
in single cell biology
Enrique Hernández-Lemus*

Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico
Single-cell technologies have revolutionized our ability to interrogate biological

systems at unprecedented resolution, revealing complex cellular heterogeneity

and dynamic processes that underlie development, disease, and immune

responses. However, the high dimensionality and nonlinear structure of single-

cell data present substantial analytical challenges. Topological data analysis offers

a powerful mathematical framework for capturing the intrinsic shape of data,

providing novel insights that complement and extend traditional statistical and

machine learning methods. By leveraging tools such as persistent homology and

the Mapper algorithm, TDA enables the detection of subtle, multiscale patterns –

including rare cell populations, transitional states, and branching trajectories –

that are often obscured by conventional approaches. In this review, we explore

the theoretical foundations of topological data analysis and examine its emerging

applications across single-cell transcriptomics, proteomics, and spatial biology.

We highlight how this approach can unveil previously unrecognized biological

phenomena, from alternative differentiation paths to complex tissue

architectures, and discuss the growing ecosystem of computational tools that

support its use. As single-cell datasets become increasingly large and

multimodal, topological data analysis stands out as a uniquely robust and

interpretable approach, with the potential to deepen our understanding of

cellular identity and function in health and disease. TDA is specially suited for

fields such as systems immunology since it can capture the complex, nonlinear

structures inherent in high-dimensional immune data helping to identify distinct

immune cell states, differentiation pathways, and dynamic responses to infection

or therapy. This topological perspective complements traditional statistical

approaches, providing a robust, scale-invariant framework for uncovering

hidden organization within the immune system’s complexity.
KEYWORDS

topological data analysis, single cell biology, persistence homology, simplicial
complexes, cell type assignment, systems immunology
1 Introduction

Topological data analysis (TDA) has emerged as a powerful mathematical framework

for uncovering the intrinsic geometric and topological structure of complex, high-

dimensional datasets (1–3). Originally rooted in algebraic topology, TDA provides tools

for describing the shape of data, allowing researchers to detect features such as clusters,
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loops, and voids that traditional statistical or dimensionality

reduction methods may overlook (4, 5). In recent years, the

application of TDA to biological systems has gained momentum

(6), particularly in the field of single-cell biology, where the

complexity and heterogeneity of data pose significant

analytical challenges.

Single-cell biology aims to dissect biological systems at the level

of individual cells, offering insights into cellular heterogeneity,

developmental trajectories, and rare cell populations that are

obscured in bulk measurements (7–9). Advances in technologies

such as single-cell RNA sequencing (scRNA-seq) (10–12), mass

cytometry (13–15), and spatial transcriptomics (16–19) have led to

the generation of massive, high-dimensional datasets that capture

the nuanced variation among thousands to millions of cells.

Traditional approaches for analyzing these datasets, including

clustering, principal component analysis (PCA), and t-distributed

stochastic neighbor embedding (t-SNE), while useful, often impose

linear or locally constrained assumptions that can distort the

underlying biological structure (20–22).

In contrast, TDA methods are model-independent and

inherently multiscale, making them particularly suited to capturing

the global organization and hidden structures within single-cell data

(23–26). One of the most widely used tools in this space is persistent

homology, which quantifies the persistence of topological features

across multiple scales, providing a robust summary of the data’s

shape (27–30). Another influential technique is the Mapper

algorithm, which constructs simplified representations of high-

dimensional data by identifying and linking regions of similar local

geometry. These methods can illuminate continuous and branching

processes, such as cellular differentiation and lineage trajectories, in

ways that conventional tools cannot (26, 31–33).

The application of TDA to single-cell biology has led to novel

biological discoveries and has complemented existing computational

approaches by providing alternative perspectives on the structure of the

data. For example, TDA has been used to identify rare or transitional

cell states (25, 34–36), to reconstruct developmental processes (23, 37–

39), and to map immune responses with high resolution (34, 40).

Furthermore, TDA-based visualizations and summaries often serve as

intuitive and interpretable models, enabling biologists to engage

directly with complex datasets.

Despite these advantages, the adoption of TDA in the broader

single-cell community remains limited, in part due to the

mathematical complexity of the methods and the relative scarcity

of user-friendly software implementations. However, ongoing

interdisciplinary collaborations between mathematicians,

computer scientists, and biologists are rapidly improving the

accessibility and applicability of TDA tools. Efforts to integrate

TDA with machine learning and graph-based methods are also

expanding the analytical repertoire available for single-cell data (6).

This review aims to provide a comprehensive overview of the

state-of-the-art in TDA methods as applied to single-cell biology.

We begin by introducing the mathematical foundations of TDA,

focusing on concepts such as simplicial complexes, persistent

homology, and topological signatures. We then survey key

applications of TDA in single-cell transcriptomics, proteomics,
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and spatial omics, highlighting case studies that demonstrate its

utility in revealing biological insights. Attention is also given to

software tools and computational frameworks that facilitate the use

of TDA in practice.

In addition to reviewing current applications, we discuss the

limitations and challenges associated with TDA in the single-cell

context, including issues of scalability, interpretability, and

integration with other analytical pipelines. We also explore

emerging trends and opportunities, such as the use of TDA in

multimodal and longitudinal single-cell studies, and the potential

for incorporating topological priors into deep learning models.

Ultimately, this review seeks to bridge the gap between theory

and practice by elucidating how TDA can enhance our

understanding of single-cell data. As single-cell technologies

continue to evolve and generate increasingly complex datasets,

the ability to capture and interpret the topological features of

these data will become increasingly essential. By highlighting the

contributions and future potential of TDA, we aim to encourage its

broader adoption and to inspire new avenues of research at the

intersection of topology, computation, and biology. While several

review articles have explored the application of topological data

analysis (TDA) to biological systems in general [e.g., (6, 41, 42)], a

comprehensive synthesis focused specifically on single-cell data

modalities—including transcriptomics, proteomics, and spatial

biology—is still lacking.

Our article addresses this gap by providing an integrative

overview of TDA tools tailored to the unique challenges and

opportunities presented by single-cell data: high dimensionality,

sparsity, nonlinearity, and multimodality. We further emphasize

biological interpretation, the use of TDA in realistic experimental

contexts (e.g., cancer immunotherapy), and integration with

established single-cell workflows. In doing so, we aim to offer

both a conceptual and practical framework that complements

prior general-purpose reviews, while providing actionable insights

for researchers working directly with single-cell data.

In particular, unlike prior reviews, which often treat TDA as a

generic tool across domains, our review examines how TDA

methods are adapted, implemented, and interpreted in the

context of specific biological use cases such as immune profiling,

tissue architecture, and rare cell state identification.
2 Concepts and definitions

We will, first of all, introduce some essential concepts and

mathematical notation that will be useful to develop understanding

of the tenets, assumptions and applications of topological data

analysis for the study of large complex data corpora (1, 2, 43) such

as those prevailing in single cell biology.
2.1 Topological space

A topological space is a set X along with a collection T ⊆ 2X of

subsets of X, called the topology, satisfying:
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Fron
1. ∅ ∈ T and X ∈ T,
2. The union of any collection of sets in T is also in T,
3. The intersection of any finite number of sets in T is also in T.
This structure defines notions of continuity and nearness

without requiring a notion of distance. This will be extremely

relevant in single cell biology analytics, for instance, in the

context of cell clustering and cell type annotation.
2.2 Simplicial complex

A simplicial complex is a set composed of vertices, edges,

triangles, and their higher-dimensional counterparts. Formally, a

finite abstract simplicial complex K is a collection of subsets of a

finite set V such that if s ∈ K and t ⊆ s, then t ∈ K. Elements s ∈ K

are called simplices.

In Figure 1 we can see some elementary simplices, namely:
• A 0-simplex is a point.

• A 1-simplex is an edge.

• A 2-simplex is a triangle.

• A 3-simplex is a tetrahedron.
2.3 Homology and Betti numbers

Homology is an algebraic method to detect holes in topological

spaces in different dimensions.

The k-th homology group, Hk(X), is an algebraic object (often a

vector space over a field, such as Z2) that describes the k-dimensional

holes in X. The Betti number bk is the rank of Hk(X), i.e.,
tiers in Immunology 03
bk = rank(Hk(X))

Interpretation:
• b0: is the number of connected components

• b1: is the number of 1-dimensional holes (loops)

• b2: is the number of 2-dimensional voids (cavities), etc.
In Figure 2 we present a set of points sampled from a circle

without noise (Panel A) and with some added noise (Panel B)

forming two algebraic topological objects (spaces) and XB,

respectively. By supplementing a simplicial complex structure we

can analyze their homology.

. and can represent two different sets of measurements. By

building the simplicial complexes and analyzing their related

homology groups, we can notice some structure that may not

evident just by looking at the sets of points.
2.4 Persistent homology

Persistent homology tracks the birth and death of topological

features (like connected components, loops, and voids) across a

filtration, which is a nested sequence of topological spaces:

∅ = X0 ⊆X1 ⊆⋯⊆Xn = X

Each topological feature appears (is born) at some scale eb and

disappears (dies) at a later scale ed. The persistence of a feature is ed-eb.
These are often visualized in two different and equivalent ways:
• Persistence diagrams: Multisets of points (eb, ed) ∈ R2

• Barcodes: Horizontal lines representing the lifespan of features
In Figure 2C, D we can see the barcode plots for the sets of

points in panels A and B of the same figure. WE can notice that in
FIGURE 1

Some elementary simplices. (A) a 0-simplex, (B) a 1-simplex, (C) a 2-simplex, (D) a 3-simplex.
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Figure 2C (corresponding to points sampled from a noiseless circle),

the only homology present is in dimension 0 (red bars)

corresponding to the homology of connected components.

Figure 2D presents a similar b0 homology (red bars), but also

presents dimension 1 homology (blue bars, at the top of Figure 2D),

corresponding to the presence of loops.

Figures 3A, B presents the persistence homology diagrams for

the data sets in Figures 2A, B, respectively. Persistence homology

diagrams convey similar information as barcode plots, however,
Frontiers in Immunology 04
some features are more evident in one visualization or the other.

Noise or short-lived features, for instance, are easier to see in

persistence diagrams.
2.5 Vietoris–Rips complex

Given a set of points P ⊂ Rn and a distance threshold e > 0, the

Vietoris–Rips complex VRe (P) is a simplicial complex where a k-
FIGURE 2

Using persistent homology to analyze two datasets. (A) presents a set of points sampled from a circle without noise, (B) presents another set of
points sampled from a circle with some added noise, (C, D) present the homology barcode plots for each of these sets of points respectively. Notice
the different scales of the x-axis in (C, D).
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simplex is included if all pairwise distances among its k + 1 vertices

are less than or equal to e:

VRe (P) = s ⊆ P ❘ ∥ xi − xj ∥ ≤ e for all xi, xj ∈ s
� �

This complex is widely used to build filtrations in

persistent homology.

Intuitively, a Vietoris–Rips complex is a way to turn a set of data

points into a geometric shape that reveals its underlying topological

structure. Given a distance threshold (e above), we connect points
whose pairwise distances are within e, forming edges. When sets of

three points are all connected pairwise, we fill in the triangle

between them; for four fully connected points, we add a

tetrahedron, and so on. This process builds a simplicial complex

(see above definition) that represents how the data is connected at

that scale.

By varying e, we get a sequence of these complexes – which is a

filtration –that captures how topological features like clusters (b0),
loops (b1), and voids (b2) appear and disappear as the scale changes.
Persistent homology uses this filtration to identify which features

persist across scales, helping distinguish true structure from noise.

In single-cell data analysis, Vietoris–Rips complexes help detect

clusters, developmental trajectories, or cycles in high-dimensional

gene expression space, making them a powerful tool to understand

complex biological relationships.
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Figure 4 presents the Vietoris Rips complexes for the datasets in

Figures 2A, B for four different values of e. Although subtle noise

was added, it was enough to change the homology features. It can be

seen that higher order simplices appear in Figure 4B, as it can also

been observed by the presence of b1 homology in Figures 2D, 3B.
2.6 Mapper algorithm

The Mapper algorithm is a method for summarizing high-

dimensional data by constructing a graph (or simplicial complex)

that reflects its topological structure. Steps include:
1. Apply a filter function f: X → R to the data.

2. Cover the range of f with overlapping intervals.

3. Cluster data points in the preimages of these intervals.

4. Build a graph whose nodes represent clusters and whose

edges represent shared data points.
Mapper outputs a compressed topological representation of the

data, capturing both local and global structure. The iterative

mapping used in Mapper, where data is partitioned along a filter

function and clustered locally, bears a superficial resemblance to

manifold learning methods such as UMAP or t-SNE, in that both
FIGURE 3

Persistence diagrams for the sets of points in Figure 2A and Figure 2B. (A) here presents the Persistence homology diagram for the 0-dimension
homology of the set of points sampled from the noiseless circle (Figure 2A), whereas (B) shows the Persistence homology diagram for the 0-
and 1- dimension homologies of the set of points sampled from the noisy circle (Figure 2B). In (A) only 0-dimensional homology is present (as in
Figure 2C), whereas in (B), 0- and 1- dimensional homology is shown (as in Figure 2D). (In both panels the diagonal is the identity line. Notice that
due to different ranges in the X and Y dimensions the angle appears distorted. In reality, it is a 45° angle as expected from an identity line). Points
closer to the diagonal are short lived (e.g. blue points here related to added noise), whereas points far from the identity line are persistent, likely
related to distinctive features of the data.
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aim to reveal low-dimensional structure in high-dimensional data.

However, the two approaches differ fundamentally in both goals

and methodology.

Figure 5 illustrates the core steps of the Mapper algorithm.

Panel A shows an example point cloud shaped like a noisy circle.

Panel B demonstrates applying a filter function (e.g., angle or a

principal component) that assigns scalar values to each point,

effectively ordering the data. Panel C depicts dividing the filter

range into overlapping intervals, within which local clustering

identifies coherent groups of points. Finally, Panel D shows the

resulting Mapper graph, where nodes represent clusters and

edges indicate shared points between overlapping intervals,

capturing the global topological structure of the data as a

connected loop.
2.6.1 Mapper versus UMAP
UMAP (UniformManifold Approximation and Projection), for

instance, learns a single global low-dimensional embedding of the

data by optimizing preservation of local neighbor relations across

the entire dataset. It excels at visualization, providing a 2D or 3D

layout that is highly interpretable for exploratory analysis. However,

UMAP embeddings can distort global topology (for example,

breaking loops or merging disconnected clusters), and they do

not offer a formal topological summary.

By contrast, Mapper does not produce a single embedding, but

constructs a graph reflecting the shape of the data across

overlapping intervals of a chosen filter function. The resulting

Mapper graph explicitly encodes connectivity and potential loops
Frontiers in Immunology 06
(i.e., 1-dimensional topological features), offering a compressed but

topologically-informed summary of the data structure.

This difference is particularly valuable in single-cell analysis,

where important biological variation can be cyclic or branched (e.g.,

cell cycle trajectories, lineage differentiation paths). Mapper and

other TDA approaches can capture these higher-order structures

more explicitly than UMAP, supporting hypothesis generation

about underlying biological processes.

Thus, while UMAP remains the standard for quick, intuitive

visualization, TDA-based methods provide complementary insights

that formalize and preserve topological features in a way that

projection-based embeddings may obscure.
2.7 Stability theorem (persistent homology)

The stability theorem for persistent homology ensures that

small changes in the input data lead to small changes in the

persistence diagram, measured using the bottleneck distance:

dB(D1,D2) = inf
g
sup
x∈D1

∥ x − g (x) ∥∞

where D1 and D2 are persistence diagrams, and g ranges over all
bijections between points in the diagrams (with points possibly

matched to the diagonal).

This property makes persistent homology robust to noise.

Stability Theorem ((44)): Let f, g: X→R be tame functions

defined on a triangulable space X, and let D(f) and D(g) be their

respective persistence diagrams.
FIGURE 4

Vietoris Rips complexes corresponding to four different e values (0.2, 0.4, 0.6 and 0.8) from the same datasets as in Figure 2. (A) presents the Vietoris
Rips complex for the noise-less circle (Figure 2A), whereas (B) shows the Vietoris Rips complex for the noisy circle (Figure 2B).
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Then: dB(D(f ),D(g)) ≤ ∥ f − g ∥∞
where dB is the bottleneck distance and ‖ · ‖∞. is the supremum

norm. This result ensures that small perturbations in the input data

(or filtering function) lead to small changes in the persistence

diagram, providing robustness of the topological summary to

noise. This property is particularly relevant for single-cell data,

where technical and biological noise is prevalent. The theorem

provides theoretical support for the use of persistent homology in

noisy biological contexts.
3 TDA in single cell transcriptomics

ngle-cell transcriptomic analysis, i.e. the study of gene expression

patterns at the single-cells level, is arguably the most established and

widely used approach in single-cell biology, despite inherent challenges

such as sparsity, dropouts, and technical noise. Gaining biological

understanding from the enormous quantity of high dimensional data

provided by today’s single cell RNASeq experiments is a daunting task.

Among the many available approaches to this problem, we believe

TDA offers some advantages, especially in terms of interpretability and/

or explainability. Below we will present an outline of how can we do so,

in a quite general single cell gene expression analysis scenario (10–12).
Frontiers in Immunology 07
Single-cell RNA sequencing allows the quantification of gene

expression at the resolution of individual cells, producing high-

dimensional datasets where each cell is represented as a point in a

space defined by the expression levels of thousands of genes. These

data are inherently sparse, noisy, and nonlinear due to technical

artifacts, dropout events, and biological variability (21). TDA offers

a unique set of tools to navigate these complexities (45, 46) and to

reveal meaningful biological structure that may not be identified by

conventional methods.

The first step in applying TDA to scRNA-seq data typically

involves dimensionality reduction and normalization. Raw count

matrices are transformed through log-normalization or more

sophisticated variance-stabilizing transformations, and a subset of

highly variable genes is selected to reduce noise (21). The resulting

expression profiles, often embedded in a lower-dimensional space

(e.g., via PCA or diffusion maps), serve as input for TDA. This

transformation aims to preserve local and global structures relevant

for inferring topological features from the data cloud; however, the

quality of this preservation depends critically on the choice of filter

function, cover parameters, clustering resolution, and the intrinsic

geometry of the data.

Note that while Mapper is designed to capture meaningful

topological features, the resulting graph can be sensitive to filter
FIGURE 5

Illustration of the Mapper algorithm. (A) Original noisy circle point cloud. (B) Filter function assigns scalar values (e.g., angle). (C) Points in the
datacloud clored according with the clusters generated by Mapper (D) Heatmap of the Mapper adjacency matrix encodes connectivity between
clusters. Red cells indicate connections (edges) between clusters, while blue cells indicate no connection.
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function choice, interval overlap, clustering resolution, and

sampling density. Careful parameter tuning and validation are

recommended for robust inference.

Persistent homology (47) is one of the most powerful tools

within TDA for scRNA-seq analysis. By constructing a filtration

(e.g., a Vietoris–Rips complex) over the cellular point cloud, we can

identify topological features such as connected components (b0),
loops (b1), and higher-dimensional voids (b2) (48). In a biological

context, b0 corresponds to discrete subpopulations of cells, while b1
may capture circular or cyclic gene expression programs—such as

those seen in cell cycle dynamics or oscillatory regulatory networks.

Persistent homology thus provides a way to infer the global

architecture of transcriptional landscapes in a scale-robust manner.

The Mapper algorithm, offers another approach for exploring

the topological structure of scRNAseq data (26, 31–33). By applying

a filter function—such as pseudotime scores, diffusion components,

or pathway activation indices—Mapper projects the data onto a

lower-dimensional axis and builds a network summarizing the

connectivity of local clusters (24, 49). The resulting Mapper graph

can reveal branching patterns indicative of developmental

trajectories, bifurcations, and intermediate cell states. Unlike

trajectory inference methods that impose linear or tree-like

assumptions, Mapper flexibly captures multiple paths, cycles, and

convergence points in the data.

These TDA tools have been used to uncover novel biological

insights in various scRNA-seq studies. For instance, persistent

homology has revealed multiscale structure in hematopoietic stem

cell differentiation and enabled the identification of rare progenitor

populations (50). Mapper-based analyses have traced alternative

routes of epithelial cell maturation and characterized the plasticity

of immune responses during infection or cancer (51, 52).

Importantly, such analyses often reveal subtle relationships that

evade detection by clusteringbased approaches, highlighting the

continuity of cell state transitions and the topological complexity of

gene expression spaces.

A key advantage of TDA in this context is its robustness to noise

and parameter choice (2). Unlike clustering or manifold learning

techniques that can be sensitive to tuning parameters and

initialization, persistent homology offers a multiscale summary

that is likely stable under small perturbations of the data (3). This

makes it particularly well suited for single-cell transcriptomics,

where dropout effects and measurement variability can

significantly affect downstream interpretations.

As TDA methods mature, their integration with single-cell

workflows is becoming increasingly streamlined. Hybrid

approaches that combine TDA with graph neural networks,

clustering, and differential expression testing are beginning to

bridge the gap between topology and statistical inference (53).

These developments are poised to enhance the interpretability

and biological relevance of TDA outputs in transcriptomic studies.

Popular single-cell analysis suites like Seurat (R) and Scanpy

(Python) do not include native tools for topological data analysis

(TDA), but they can be integrated with external TDA libraries.

Seurat itself does not include built-in TDA functionality. However,

you can interface it with TDA tools in R such as:
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• TDAmapper (ht tps : / /g i thub .com/paul tpearson/

TDAmapper): Implements the Mapper algorithm (54).

• TDA: Provides methods for computing persistent

homology (e.g. Vietoris–Rips complexes, persistence

diagrams, https://cran.r-project.org/web/packages/

TDA/index.html).

• TDAstats (https://cran.r-project.org/web/packages/

TDAstats/index.html): Simplifies computation of

persistent homology using the GUDHI backend.
Data from Seurat objects (especially PCA-reduced data or

UMAP embeddings) can be extracted and passed to these

packages for TDA analysis.

Scanpy also does not implement TDA directly, but is

compatible with Python-based TDA libraries such as:
• GUDHI (https://gudhi.inria.fr/): A powerful library for

computing simplicial complexes, persistent homology,

and persistence diagrams. It is commonly used for Rips

complex construction and TDA pipelines (55).

• giotto-tda (https://github.com/giotto-ai/giotto-tda): A

modern, scalable TDA library that integrates well with

scikit-learn pipelines. It includes Mapper, persistence

homology computation, and visualization tools (56).

• scTDA (https ://github.com/CamaraLab/scTDA):

Specifically designed for single-cell data, it integrates

Mapper and uses diffusion maps for data representation

before TDA. While not actively maintained, it offers a solid

proof-of-concept (23).

• KeplerMapper (57) (see also https://github.com/MLWave/

kepler-mapper): A user-friendly Python implementation of

the Mapper algorithm, easily integrated with Scanpy-

derived embeddings.
TDA thus offers a principled and flexible framework to explore

the global structure of single-cell transcriptomic landscapes. By

moving beyond linear assumptions and embracing the shape of the

data, it enables a deeper understanding of how cell identities

emerge, differentiate, and interact within complex biological

systems. As new high-resolution and multimodal technologies

further increase the richness of single-cell datasets, topological

approaches are likely to play a central role in their analysis

and interpretation.

It is important for users to understand the forms of output these

TDA tools produce and how to interpret them. Packages

implementing persistent homology (such as TDA, Gudhi, and

Ripser) typically output persistence diagrams or barcodes. As we

previously mentioned, these are 2D plots (or matrices of birth–

death pairs) that summarize the lifetimes of topological features

(e.g., connected components, loops, voids) across scales. Features

that persist over large scale ranges (far from the diagonal) are

typically interpreted as meaningful topological signals.

Tools for Mapper analysis (e.g., TDAmapper in R,

KeplerMapper in Python) output graphs in which nodes

represent clusters of data points (found in overlapping filter
frontiersin.org
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intervals) and edges connect nodes sharing samples. These Mapper

graphs capture global data shape, including connectivity, branching,

and cycles. The graph structure can be exported as an adjacency

matrix or visualized interactively.

Some packages also provide embeddings or cluster assignments

as outputs. For example, Mapperbased methods can be used as

dimensionality reduction tools by laying out the Mapper graph in

2D for visualization. Users should interpret these outputs not

simply as a low-dimensional projection, but as a topology-

preserving summary of the data’s structure that can reveal

branching trajectories, cycles, and other non-linear relationships

not apparent in standard dimensionality reductions like PCA

or UMAP.

Overall, careful interpretation of these outputs – in combination

with domain knowledge – is crucial to extracting meaningful

biological insights.
3.1 Advantages and limitations of TDA in
single cell transcriptomic analysis

Applying TDA to single-cell transcriptomics offers a

transformative approach to uncovering, for instance, rare cell

populations, transitional states, and complex branching

trajectories within highdimensional gene expression landscapes

(58, 59). Traditional clustering and dimensionality reduction

methods often assume discrete, well-separated clusters or linear

transitions between cell types, which can obscure the subtle,

continuous, and often nonlinear nature of cellular differentiation

and identity. TDA, by contrast, considers the intrinsic shape of data,

capturing both local features and global connectivity, thus

providing a richer and more faithful representation of cellular

heterogeneity (6).

One of the central strengths of TDA here lies in its ability to

identify rare cell populations (50). These subpopulations may

occupy small, isolated regions in the high-dimensional space of

gene expression and are often overlooked by clustering algorithms

that rely on density or global structure (51). Through persistent

homology, TDA is able to detect small but topologically significant

features—such as distinct connected components that persist across

multiple scales of analysis—indicating the presence of biologically

meaningful outlier groups. These rare populations might

correspond to stem cells, transient progenitor states, or disease-

associated phenotypes, and their detection is critical for

understanding developmental biology, immune responses, or

cancer heterogeneity.

TDA also excels in revealing transitional states that lie between

well-defined cell identities. In developmental or dynamic processes,

cells do not transition abruptly from one state to another, but rather

traverse a continuum of intermediate configurations (52). Mapper

graphs and persistence diagrams can capture these transitions by

visualizing how cells are organized along continuous or looping

paths, rather than forcing them into discrete categories. This allows

researchers to pinpoint regions of transcriptional plasticity (60)

where cells are in flux—actively differentiating, reprogramming, or
Frontiers in Immunology 09
responding to stimuli—offering insights into the mechanisms that

govern cell fate decisions (34, 61).

Furthermore, the topological structure of scRNA-seq data often

includes branching trajectories, where progenitor cells differentiate

into multiple lineages through bifurcations or more complex

branching events. Standard trajectory inference methods typically

model such processes as trees or linear paths, but may struggle with

cyclic, convergent, or multifurcating structures (62–64). TDA,

particularly via the Mapper algorithm, provides a flexible way to

represent these patterns without imposing restrictive assumptions.

The resulting graphs naturally capture the geometry of branching

and looping, reflecting the multiplicity of developmental routes and

the possibility of reversion or convergence between cell states

(65, 66).

Approach such as Mapper are not without disadvantages. The

results of Mapper are highly sensitive to parameter choices,

including the filter function, the number of intervals, and the

overlap percentage (67). These parameters often require empirical

tuning and can influence the shape and connectivity of the resulting

graph, potentially introducing subjectivity. Furthermore, the

biological interpretation of topological features, such as loops or

branches, can be nontrivial and may require additional validation

using experimental or orthogonal computational methods. Lastly,

while Mapper is effective for visualization and hypothesis

generation, it may not provide rigorous statistical assessments or

p-values associated with observed features, necessitating

downstream modeling or testing to substantiate findings (68).

It is also worth noting that other graph-based approaches for

single-cell data analysis exist, such as PAGA (66), which is widely

used for trajectory inference. Unlike Mapper, which uses a filter

function and clustering to explicitly capture global topological

features (including loops), PAGA models data as a k-nearest

neighbor graph and abstracts it to a simplified connectivity graph

capturing branching structures. Including such methods in the

analytical toolbox helps provide a broader topological perspective

on single-cell data.

By capturing the multiscale topology of gene expression data,

TDA complements and enhances existing single-cell analysis

frameworks. It enables us to discern structures that are

biologically relevant but difficult to detect with classical tools. In

doing so, TDA opens new avenues for understanding the

complexity of cellular ecosystems, the emergence of functionally

distinct phenotypes, and the plasticity inherent to many biological

processes. Its capacity to handle noise, sparsity, and nonlinear

geometry makes it particularly well-suited to the unique

challenges posed by single-cell data, and its continued integration

into biological workflows is likely to yield novel discoveries across

developmental biology, immunology, and regenerative

medicine (6).

Despite its many advantages, TDA also presents several

l imitat ions when appl ied to the study of s ingle-cel l

transcriptomics. One of the primary challenges is the sensitivity

of TDAmethods to preprocessing choices, including normalization,

dimensionality reduction, and gene selection (26). Since TDA

operates on point cloud data derived from these upstream
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transformations, inconsistencies or biases introduced at this stage

can propagate into the topological summaries. For example, the use

of different distance metrics or embedding techniques can

significantly alter the geometry of the data and, consequently, the

resulting persistence diagrams or Mapper graphs. This dependency

necessitates careful and often dataset-specific optimization, which

can hinder the standardization and reproducibility of TDA-based

workflows (2).

Another limitation is the interpretability of topological features.

While persistent homology captures robust multiscale structures in

the data, translating these features into biological meaning is not

always straightforward (69). For instance, the presence of a

longpersisting 1-dimensional hole (b1) may suggest a cyclic

process such as the cell cycle, but assigning this feature to a

specific biological pathway or regulatory mechanism requires

additional analysis, such as overlaying metadata or incorporating

prior knowledge. Moreover, the biological relevance of short-lived

or higher-dimensional features (b2, b3, etc.) is still an open question

in many contexts. As a result, researchers may need to integrate

TDA with complementary statistical or machine learning tools to

derive actionable insights (20, 65, 70, 71).

Finally, computational scalability and parameter selection

remain active areas of development for TDA methods (72–74).

Persistent homology and Mapper algorithms can become

computationally expensive as the number of cells and genes

increases, particularly in the presence of large, high-resolution

datasets typical of modern single-cell studies. Choosing

appropriate filtration functions, cover parameters, and clustering

resolutions often requires manual tuning and domain expertise, and

there is no universally accepted strategy for parameter selection.

These constraints may limit the accessibility of TDA to non-expert

users and present obstacles to its integration into high-throughput

pipelines. Addressing these limitations through better visualization

tools, automated parameter tuning, and scalable algorithms will be

critical to ensuring that TDA can reach its full potential in single-

cell transcriptomics.
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In this section, we aim to highlight a representative set of TDA

tools that are actively maintained, widely used in the community, or

particularly well-suited to single-cell data analysis workflows. Our

selection is not exhaustive, but emphasizes tools that are either

general-purpose (e.g., TDA, Gudhi, Ripser) or specifically designed

with biological data, and in some cases single-cell modalities, in

mind. We recognize that the landscape is rapidly evolving, and new

packages such as scGeom (36) continue to expand the options

available for applying TDA in single-cell analysis.

Table 1 describes some tools surveyed, as well as their typical

output, and practical considerations for users. This aims to help

readers select appropriate tools for their specific data and analysis

goals, while also acknowledging the trade-offs and limitations

inherent to each approach.
4 TDA in single cell proteomics

The emergence of single-cell proteomics, particularly through

techniques such as mass cytometry (CyTOF) (13, 14), CITE-seq

(75–77), and imaging mass spectrometry (78, 79), has enabled the

measurement of protein expression at single-cell resolution with

increasing depth and throughput. Unlike transcriptomics, single-

cell proteomics captures the functional output of gene expression,

offering a closer view of the cellular phenotype and dynamic

signaling events (80, 81). This modality poses unique analytical

challenges, including technical variability, lower feature

dimensionality compared to transcriptomics, and complex inter-

marker dependencies. TDA provides a robust framework to address

these challenges by uncovering the underlying geometric and

topological structure of protein expression spaces across

individual cells.

In single-cell proteomics, each cell can be represented as a

vector in a space defined by a selected panel of protein markers,

which may include surface receptors, intracellular signaling

molecules, and functional state indicators. These markers often
TABLE 1 Comparison of TDA tools, their outputs, advantages, and limitations.

Tool Language Type of TDA Typical Output Pros Limitations

TDA R
Persistent
Homology

Persistence
diagrams, barcodes

Easy integration with R workflows; classic
PH analysis

Requires manual
parameter tuning

Gudhi Python
Persistent
Homology,
Mapper

Diagrams, barcodes,
simplicial complexes

Very flexible, efficient, broad features
More coding required; steeper
learning curve

Ripser Python/R
Persistent
Homology

Diagrams, barcodes
Extremely fast PH
computation

Minimal built-in
visualization

TDAmapper R Mapper
Graph (adjacency
matrix)

Simple Mapper implementation; easy for
small datasets

Less scalable; fewer
advanced options

KeplerMapper Python Mapper
Graph (JSON,
networkx)

Good visualization support; widely used
Parameter-sensitive; can be hard
to tune

scGeom Python
Single-cell
tailored TDA

Mapper graphs, PH
diagrams,
embeddings

Designed for single-cell data; integrated with
scanpy workflows

Newer; documentation
still developing
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exhibit intricate co-expression patterns and hierarchical regulation,

reflecting the combinatorial nature of cell signaling and phenotypic

plasticity. TDA, through tools like Mapper and persistent

homology, can capture these multi-dimensional relationships and

reveal subtle distinctions between phenotypic states that are not

well separated by linear projections or clustering. For example,

Mapper has been successfully applied to CyTOF data to identify

functional subsets of immune cells and to map branching

trajectories in response to external stimuli, such as cytokine

exposure or checkpoint blockade therapies (82, 83).

One of the particular strengths of TDA in single-cell proteomics

lies in its ability to highlight dynamic and transitional processes

(84). Protein-level data are inherently more reflective of temporal

changes, such as post-translational modifications and activation

states. Mapper can capture these transitions in the form of

topological paths or loops in the data graph, which may

correspond to signaling cascades, response gradients, or cellular

adaptation processes. Moreover, by using specific markers as filter

functions—such as phosphorylation levels or surface activation

markers— (81, 85, 86) researchers can guide the topological

representation toward biologically interpretable features,

enhancing the explanatory power of the analysis. As the field of

single-cell proteomics evolves to include more spatial and time-

resolved measurements, TDA is poised to play an increasingly

central role in decoding the shape of proteomic landscapes at the

single-cell level.
5 TDA in spatial biology

Spatial biology technologies, including spatial transcriptomics

(19, 71), multiplexed immunofluorescence (87–89), imaging mass

cytometry (15, 82), andMERFISH (90–92), enable the simultaneous

measurement of molecular profiles and spatial coordinates across

tissues at single-cell or even subcellular resolution. These data offer

unprecedented opportunities to study how cells are organized in

space, how microenvironments influence cell states, and how

structural features of tissues relate to physiological or pathological

processes. However, the high dimensionality, spatial heterogeneity,

and complexity of these datasets also introduce significant analytical

challenges. TDA with its ability to characterize the shape and

connectivity of data across scales, offers a promising approach to

uncovering spatial patterns and relationships that may be difficult to

capture with conventional spatial statistics or clustering techniques

(37, 93, 94).

A key advantage of TDA in spatial biology is its ability to

integrate both molecular and spatial information into a unified

topological representation. By incorporating cell positions into the

construction of simplicial complexes – e.g. through a-complexes or

witness complexes – (95) TDA may, for instance, reveal how gene

or protein expression patterns are distributed and interact within

the tissue microarchitecture. Persistent homology, in this context,

could be be used to detect spatial domains, voids, gradients, or

boundary structures, which may correspond to functionally distinct

regions, barriers between tissue compartments, or signaling niches.
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These features may then be quantified across multiple spatial scales,

potentially enabling researchers to explore the hierarchical

organization of tissue without the need for arbitrary thresholds or

rigid domain definitions (96–98). Of course, other non-biologically

relevant features of the date may influence the properties of witness

complexes, so caution needs to be taken during these analyses.

Moreover, TDA is particularly well-suited to uncovering spatial

transitions and topological signatures associated with disease. In tumor

microenvironments, for example, persistent homology can detect

disruptions in tissue organization, emergent immune cell infiltration

patterns, or the breakdown of structural compartmentalization (98–

100). Mapper-based representations can further capture how spatial

neighborhoods of cells relate to one another in terms of molecular

similarity, forming graphs that reflect the flow of biological information

or gradients of cellular activation across space (25, 101). This

topological perspective is especially valuable in contexts where

cellular behavior is not determined solely by intrinsic molecular

states, but also by local context, spatial proximity, and interaction

with surrounding cells and extracellular matrix.

As spatial biology continues to expand with higher resolution,

multimodal platforms, and largescale atlases, the integration of

TDA offers a scalable and conceptually rich approach to analyze

spatially-resolved single-cell data. Its capacity to identify and

quantify structural complexity—both within and across tissue

compartments—positions it as a powerful complement to

emerging computational frameworks in spatial systems biology.
6 TDA paves the way to uncover new
biology

As we have discussed, TDA offers a unique and powerful lens

through which to uncover previously hidden biological complexity.

Unlike traditional methods that often rely on linear assumptions or

discrete clustering, TDA enables the discovery of alternative cellular

differentiation paths that may exist alongside canonical trajectories

(102–104). In developmental biology, for example, cells do not

always follow a single predetermined path to a mature state; instead,

they may diverge, converge, or follow looping paths influenced by

microenvironmental cues or stochastic gene expression (23, 39).

TDA, particularly through Mapper and persistent homology, can

capture these complex structures by preserving non-linear and

higher-order relationships in the data. This makes it possible to

identify parallel differentiation routes, detours, or even reversible

transitions that would otherwise be missed, offering a richer

understanding of cellular plasticity and fate decisions.

Beyond differentiation, TDA provides a framework to reveal the

intricate architecture of tissues as a multi-scale, interconnected system.

Spatial biology and single-cell technologies together generate high-

dimensional spatially-resolved datasets, which encode not only the

molecular state of each cell but also its physical context within a tissue.

TDA can parse this dual information to map gradients, boundaries,

and organizational motifs across tissues (105, 106). Persistent

homology, for example, can detect voids, folds, or nested

compartments that reflect the physical and functional structuring of
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tissue. These topological features often correlate with physiological

functions or pathological states—such as the compartmentalization of

immune responses in inflamed tissues, or the disruption of epithelial

barriers in tumors—thus providing biologically meaningful

abstractions of tissue complexity (107–109).

In the era of multimodal profiling, where transcriptomics,

proteomics, epigenomics, and spatial data are integrated at the

single-cell level, TDA offers a principled way to build interpretable

models that reconcile these heterogeneous data types (6, 103). By

representing data in topological structures such as simplicial complexes

or Mapper graphs, TDA can serve as a common coordinate system

onto which differentmodalities are projected. This allows researchers to

identify correspondences across data layers, not simply at the level of

cell types or clusters, but at the level of shared structural features, such

as conserved trajectories or overlapping spatial patterns. The

topological approach is especially well-suited for interpreting subtle

or high-dimensional multimodal signals that evade intuitive

visualization or single-modality analysis (72, 110). Beyond

transcriptomic spot-level data, TDA approaches also have the

potential to jointly analyze topological features of nuclear

morphology and intercellular spatial relationships together with

single-cell gene expression profiles (111). Such integrative analyses

are particularly relevant as spatial omics advances to include

multiplexed imaging and digital pathology resources, enabling a

richer characterization of tissue architecture and cellular phenotypes.

Importantly, TDA’s capacity to globally preserve the structure of

the data, while being robust to noise and data sparsity positions it as an

ideal exploratory tool for hypothesis generation. Novel topological

features, such as long-lived loops or persistent cavities, often prompt

fresh biological questions: What does this loop represent in terms of

cellular behavior? Is this cavity indicative of a physical tissue boundary,

or an absence of a particular cell type? TDA can thus drive

experimental inquiry by revealing features that are unexpected,

difficult to define a priori, or missed by standard statistical

summaries. In this way, topological analyses do not merely interpret

known biological frameworks, but actively expand them (6).

Ultimately, the value of TDA lies in its philosophical shift: it

approaches biological data not just as collections of points to be labeled

or classified, but as shapes to be studied. In some sense, TDA

contextualizes data points with respect to other points. This shift has

profound implications. It allows researchers to uncover subtle

organization in messy, high-dimensional data, to connect disparate

biological signals across scales and modalities, and to construct models

that respect the inherent geometry of living systems. As biological

datasets continue to grow in complexity, and as the field moves toward

more integrative and mechanistic understandings, TDA stands out as a

method not only for analysis, but for discovery (41, 42, 112).
7 A TDA approach to systems
immunology

One area of contemporary biology which will be extremely

benefited by the combination of topological data analysis and single

cell experimental approaches is systems immunology.
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Imagine we are interested in the study of the immune response to

checkpoint blockade immunotherapy in cancer (113). In this context,

we aim to understand how individual immune cells, especially T cells,

respond to treatment, differentiate over time, and adopt functional

phenotypes associated with therapeutic success or failure (34, 114). A

particularly notable application we can envision is the use of the

Mapper algorithm to analyze scRNA-seq profiles of tumor-

infiltrating lymphocytes (TILs) (115), enabling the identification of

rare subpopulations of T cells with distinct transcriptional programs

that correlate with treatment response.

In this approach, each T cell’s transcriptomic profile would

represented as a point in highdimensional gene expression

space (113). Mapper can be used to capture the shape of the data

manifold potentially reflecting cellular trajectories, bifurcations,

and loops corresponding to different immune cell states or

differentiation programs.

This last (hypothetical) example is indeed not far from what

already has been done. When applied to TILs, Mapper has revealed

alternative activation states of CD8+ T cells, including exhausted

phenotypes, memory-like precursors, and transitional intermediates

that were previously obscured using standard clustering or linear

dimensionality reduction methods (116).

The advantages of using TDA in this systems immunology context

are several. First, TDA can – as we discussed previously – reveal

continuous and branching trajectories of T cell differentiation and

activation, offering amore nuanced view of immune heterogeneity than

rigid clustering approaches (117). This is particularly valuable in

immunology, where cell states often exist along a spectrum rather

than in discrete categories. Second, TDA is robust to noise and dropout

(46), common challenges in scRNA-seq, due to its focus on persistent

features that remain across multiple scales of resolution. Third, Mapper

outputs are visually interpretable and can integrate metadata –such as

treatment response, cytokine production, or receptor expression –

allowing researchers to spatially localize and annotate subpopulations

within the topological graph (104, 114). This integrative capability

aligns well with the goals of systems immunology, which seeks to

understand the global coordination of immune responses.

The use of TDA in scRNA-seq data for systems immunology

however, offers a compelling method to uncover hidden structures in

complex immune responses, especially in dynamic settings such as

cancer immunotherapy. By preserving the shape of immune cell

trajectories and capturing transitional states, TDA enhances our

ability to decipher the regulatory logic of immunity and to identify

novel targets or biomarkers of treatment efficacy. Despite the

methodological challenges, the interpretability and discovery potential

of TDA make it a valuable addition to the computational

immunologist’s toolkit.
8 Conclusions and perspectives

Topological Data Analysis is rapidly emerging as a powerful

framework for the exploration of complex biological data, offering

insights that extend beyond the capabilities of traditional linear and

cluster-based methods. As single-cell technologies continue to evolve
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toward higher dimensionality, spatial resolution, and multimodal

integration, the need for methods that can faithfully capture the

intrinsic structure of these datasets becomes increasingly critical.

TDA, grounded in mathematical topology, provides precisely such a

framework—capable of preserving global data geometry, identifying

subtle transitions, and quantifying relationships that are often missed

by conventional approaches.

One exciting avenue for TDA in single-cell biology research is its

integration with advancedmachine learning frameworks. Graph neural

networks (GNNs) are naturally suited to process the graph outputs of

Mapper or other TDA constructions, potentially enabling more

powerful downstream prediction or classification. Reinforcement

learning and adversarial models can help optimize filter functions or

clustering strategies to reveal biologically relevant topological features.

Large language models (LLMs), with their capacity to encode complex

multimodal knowledge, may eventually assist in annotating and

interpreting topological summaries in a biologically informed

manner. Integrating TDA with these multilayer models offers a path

toward more interpretable, automated, and robust single-cell analysis

pipelines, bridging the gap between mathematical topology and

practical biological insight.

Looking ahead, the integration of TDA with machine learning,

probabilistic modeling, and causal inference promises to deepen its

utility in biological research. These hybrid models could enhance

the interpretability of complex systems by embedding topological

summaries into predictive frameworks, facilitating the construction

of biologically grounded models that are both data-driven and

theoretically robust. Additionally, the continued development of

scalable TDA algorithms, better parameter selection heuristics, and

more intuitive visualizations will be essential to broaden

accessibility and adoption within the life sciences community.

Despite challenges in embedding TDA within end-to-end

single-cell analysis pipelines, recent methods have begun to

address this gap. For example, scGeom (36) and Gene2role (118)

both apply TDA concepts – specifically, cluster embeddings and

topological summaries – to reveal unique structural characteristics

of gene regulatory network (GRN) modules reconstructed from

single-cell omics data. Such approaches highlight the growing

potential for TDA to provide interpretable, biologically relevant

features in complex multi-omics analyses.

Embedding TDA into end-to-end single-cell analysis pipelines

has also resulted hard to implement, recent deep learning methods

have begun to address this gap. For example, scMGCA (119) uses

graph convolutional networks to integrate gene expression and cell-

cell PPMI matrices, extracting major gene signals and cellular

topology into latent representations for downstream decoding.

Similarly, methods such as scPrisma (120) and scGAE (121) use

graph and manifold structures to learn meaningful low-dimensional

embeddings. These approaches highlight the promise of combining

topological insights with modern deep learning architectures to

improve interpretability and predictive power in single-cell analysis.
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Beyond single-cell transcriptomics, proteomics, and spatial

omics, single-cell epigenomic modalities present additional

opportunities for TDA. Techniques such as ATAC-seq, single-cell

Hi-C, and RNA secondary structure sequencing such as KARR-seq

(122, 123) generate high-dimensional data with inherently

topological and regulatory interactions. For example, TDA

frameworks could be used to define or refine spatial DNA

topological associating domains (TADs) and elucidate their

regulatory interactions (124). Incorporating TDA into single-cell

epigenomics could thus provide new insights into the 3D genome

organization and regulatory landscapes at single-cell resolution.

An important practical consideration is the computational

scalability of TDA methods with increasing single-cell or spatial

resolution. For example, the construction of Vietoris–Rips complexes

for persistent homology typically has combinatorial scaling with the

number of data points, making naive approaches infeasible for large

datasets. Similarly, Mapper workflows involve repeated distance

computations and clustering steps that can scale quadratically or

worse with data size. This non-linear growth in computational cost

underscores the need for efficient approximations, sparse filtrations,

and scalable implementations, especially as single-cell and spatial

transcriptomics datasets continue to grow in size and resolution.

As TDA matures, its potential to generate biologically

meaningful hypotheses across disciplines—from developmental

biology to immuno-oncology and regenerative medicine—is only

beginning to be realized. By reframing how we conceptualize

cellular organization and tissue complexity, TDA invites a new

language for interpreting biology: one that embraces continuity,

shape, and structure as foundational elements of understanding

living systems.
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Appendix: code examples to perform
selected TDA analytics in single cell
data

Below are the links of some code repositories with examples of

how topological data analysis has been applied in the context of

single cell biology in diverse settings:
Fron
1. Github repository to reproduce the figures in this review

(except by Figure 1 that was manually drawn) https://

github.com/CSB-IG/TDA_Single_Cell. These are just

illustrative examples with no original, published or

unpublished data.

2. Github repository to reproduce the PH analysis of (109):

https://github.com/DrMSAbdullahi/PBMC_RNASeqHCC_

PH_Analysis

3. Gitlab repository of the general analysis strategy https://

gitlab.com/kfbenjamin/topact and Zenodo repository for

the specific analyses https://doi.org/10.5281/zenodo.11050996

to reproduce the results of (96)

4. Github repository to reproduce the TDA of (115): https://

github.com/bru08/ly_decount

5. Github repository of the code and data to reproduce the

analysis of (113): https://github.com/salvadorchulian/

shapecancerrelapse

6. Github repository of the code used in (101): https://

github.com/kemplab/TDA-Microscopy-Pipeline

7. Github repository of the code used in (29): https://

github.com/pqiu/Quantifying_clusterness_trajectoriness

8. Github repository of the code used in (121): https://

github.com/ZixiangLuo1161/scGAE

9. Python and Julia code to reproduce the analyses on (100) can

be found here ht tps : / /g i thub .com/ i r i shryoon/

multiplex_relations and here https://github.com/

irishryoon/Dowker_persistence, respectively.

10. GitHub repository for code accompanying (98) can be

found here https : / /g i thub.com/Mult iparameter

TDAHistology/SpatialPatterningOfImmuneCells

11. Code repository to perform PAGA analytics (66) within the

Scanpy software ecosystem (70) can be found here https://

github.com/theislab/paga

12. Code repository, with tutorials and examples to perform

scMGCCA https://pypi.org/project/scMGCA as used in

(119) can be found here: https://github.com/Philyzh8/

scMGCA

13. Github repository with the source code of sc-MTOP as

performed in (111) is available here https://github.com/

fuscc-deep-path/sc_MTOP and here https://doi.org/

10.5281/zenodo.8364420

14. Code for the analyses performed in (69) is here https://

github.com/jzthree/quasildr. An Ocean capsule tutorial can

be found here https://codeocean.com/capsule/9866535/tree/v1
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