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Ulcerative colitis (UC) is a kind of chronic inflammatory bowel disease, is driven

by dysregulated immune responses involving neutrophils (NEUs) and

macrophages. NEUs exacerbate mucosal injury through reactive oxygen

species (ROS), neutrophil extracellular traps (NETs), proteases, and cytokine

interactions, while also exhibiting dual roles in tissue repair. Macrophages

contribute to UC progression via M1-mediated pro-inflammatory cytokine

release and epithelial barrier disruption, whereas M2 macrophages promote

resolution through anti-inflammatory signals (IL-10, TGF-b) and epithelial

regeneration. Clinically, NEU-derived biomarkers predict disease activity and

therapeutic response, while macrophage-targeted therapies modulate

inflammation. This review summairzes current knowledge on the mechanistic

roles of these immune cells in UC pathogenesis and their clinical implications,

such as NET inhibition, MMP-9 blockade, and M2 polarization, which hold

promise for precision medicine in UC.
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1 Introduction

Ulcerative colitis (UC), a major subtype of inflammatory bowel disease (IBD), is

characterized by chronic, relapsing inflammation of the colorectal mucosa, leading to

bloody diarrhea and abdominal pain, which may be life-threatening in severe cases (1).

Since the early 21st century, UC has emerged as a global health concern, with rising

prevalence imposing a significant socioeconomic burden (2). Therapeutic goals have

evolved from clinical to endoscopic and now histological remission, as persistent

histologic inflammation despite endoscopic healing is linked to poorer prognosis (3).

The pathogenesis of UC is multifactorial, involving gut microbiota dysbiosis, disruption

of the intestinal mucosal barrier, and aberrant immune cell function (4). Among these

immune elements, neutrophil (NEU) infiltration is a defining histological feature of UC,
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with NEU depletion associated with lower relapse risk, and NEU-

related biomarkers offering prognostic value (5). Macrophages are

essential for phagocytosis and immune modulation. Studies have

demonstrated that the number of macrophages in the lamina

propria of the colon in patients with active UC is approximately

tenfold higher than that in healthy individuals (6), and skew toward

a more activated state (7, 8), suggesting their pivotal involvement in

UC pathogenesis. This review aims to provide a comprehensive

overview of the mechanistic roles of neutrophils and macrophages

in the development and progression of UC, as well as their potential

clinical applications.
2 NEUs regulate the intestinal
inflammation of UC

2.1 NEU-derived ROS and NETs exacerbate
intestinal inflammation

NEUs are essential effectors of innate immunity, yet their

excessive activation has been implicated in the onset and

progression of various autoimmune diseases (9, 10). During

maturation, NEUs generate three distinct types of granules:

primary granules, which contain enzymes such as myeloperoxidase

(MPO) and neutrophil elastase (NE); secondary granules, including

collagenases; and tertiary granules, which carry MMP-9 (11). In UC,

massive infiltration of NEUs into the intestinal mucosa leads to the

release of granule contents and ROS, resulting in epithelial and

stromal injury and manifesting as cryptitis, mucosal erosion, and

ulceration (12). ROS induces cellular apoptosis and necrosis by

oxidatively damaging nucleic acids, proteins, and lipids (13). In
Frontiers in Immunology 02
UC, excessive ROS production by infiltrating NEUs, coupled with

insufficient ROS clearance, leads to ROS accumulation in the mucosa

(14, 15). NETs are extracellular mesh-like structures composed of

decondensed chromatin, DNA, and antimicrobial peptides, extruded

from activated NEUs as part of their antimicrobial defense (16, 17).

NETs amplify inflammatory cascades through the release of IL-1b
and TNF-a, representing a key trigger of immune dysregulation in

UC (18). Angelidou et al. demonstrated that activation of the

REDD1/autophagy/NETs/IL-1b axis mediates UC-related

inflammation and mucosal injury (19). Moreover, UC is a

recognized risk factor for venous thromboembolism, including

deep vein thrombosis and pulmonary embolism (20). NEUs also

secrete proteinase-3 and cathepsin G, while NE specifically degrades

extracellular matrix components such as elastin (21, 22). Serine

protease inhibitor B1, an endogenous NE suppressor, inhibits

H2O2-induced NE activity and may help preserve epithelial

integrity (23). Infliximab, a TNF-a-targeting monoclonal antibody

and the first biologic approved for moderate-to-severe UC, effectively

induces mucosal healing (24) (Figure 1).
2.2 Cytokine–NEU interactions drive
inflammatory activity

Matrix metalloproteinases (MMPs), a family of zinc-requiring

endopeptidases, play critical roles in extracellular matrix

degradation and tissue remodeling, with their overexpression

implicated in immune-mediated tissue damage (25, 26). Within

ulcerative colitis, these enzymes drive disease progression through

multiple mechanisms, including basement membrane breakdown,

enhanced barrier permeability, regulation of epithelial repair,
FIGURE 1

Neutrophils and macrophage polarization in ulcerative colitis progression.
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leukocyte migration, and angiogenic modulation (27, 28). Among

MMPs, MMP-9 is predominantly secreted by NEUs upon

degranulation and serves as a key contributor to UC pathogenesis

(29, 30). By compromising epithelial tight junction integrity, MMP-

9 exacerbates mucosal permeability and impairs barrier function

(31). During active UC, NEUs constitute the predominant immune

cell population in the lamina propria, acting as major effectors of

mucosal injury (32). The dynamic interaction between NEUs and

inflammatory cytokines is fundamental to UC development.

Circulating and tissue-infiltrating NEUs produce IL-1b, which
amplifies inflammatory responses and tissue destruction via dual

mechanisms: NEU-derived serine proteases and inflammasome/

caspase-1 activation (33). Hence, targeting NEU serine proteases or

caspase-1 may offer novel therapeutic strategies. Stakenborg et al.

reported that NEUs promote IL-1b and TNF-a production via the

HGF–HGFR tyrosine kinase signaling axis, promoting Th17

differentiation and mucosal inflammation (34). Additionally,

antigen-primed NEUs contribute significantly to UC

exacerbations; upon re-exposure to antigens, IgG-bound Fcg
receptor I engagement on sensitized NEUs induces TNF-a
release, further aggravating inflammation and precipitating

disease recurrence (35).
2.3 Microbiome-NEUs crosstalk

NEUs play a paradoxical role in intestinal pathology,

contributing to both inflammatory responses and tissue protection

(36) While defending against microbial invasion through

phagocytosis, NETs, antimicrobial peptides, and ROS.

Simultaneously, NEUs also secrete cytokines, chemokines, and

growth factors that facilitate mucosal repair and barrier

regeneration (37). Notably, specific NEU subpopulations

demonstrate enhanced protective functions. For instance, CD177+

neutrophils generate elevated ROS and antimicrobial peptides,

strengthening mucosal defense while suppressing pro-inflammatory

cytokine expression (38). Furthermore, CD177+ neutrophils produce

IL-22, a key mediator in maintaining epithelial homeostasis (36).

Research by Leppkes et al. revealed that NEUs accumulating in UC

lesions form NETs in a PAD4-dependent manner, transforming

blood clots into immune thrombi to reduce hemorrhage and

accelerate tissue repair (39). The gut microbiota profoundly

regulates NEU behavior in UC through multiple molecular

mechanisms (40). Bacterial fermentation of dietary fibers yields

short-chain fatty acids (SCFAs), including butyrate, propionate,

and acetate, which are crucial in controlling neutrophil function

(41). By activating GPR41 and GPR43 receptors on NEUs, SCFAs

fine-tune ROS generation and facilitate inflammatory resolution (42).

However, microbial dysbiosis in UC diminishes SCFA levels,

compromising neutrophil regulation and perpetuating chronic

inflammation (43). Additionally, microbial components directly

influence NET formation. Pathogens such as Escherichia coli and

Clostridium difficile induce NET release by engaging pattern

recognition receptors (PRRs), particularly Toll-like receptors

(TLRs), which initiate downstream signaling cascades (44, 45).
Frontiers in Immunology 03
Bacterial products like lipopolysaccharides (LPS) intensify this

response by potentiating PRR activation, thereby aggravating UC-

associated inflammation (46, 47). Although NETs, comprising DNA,

histones, and antimicrobial proteins, worsen tissue injury, they also

confine pathogens and restrict dissemination (48). Under

homeostatic conditions, NETs aid in infection control without

inciting persistent inflammation, whereas dysbiosis disrupts this

equilibrium, exacerbating mucosal damage and disease severity (49).
2.4 Dynamic behavior of NEUs

NEUs occupy diverse functional states along a continuum from

immune-enhancing/pro-resolving phenotypes to dysfunctional,

hyperinflammatory programs often described as “exhausted” (50).

Pro-resolving or immune-enhancing states can be experimentally

induced—for example, “resolving memory neutrophils” trained

with 4-phenylbutyrate show enhanced antimicrobial functions

and distinct transcriptional features, while low-dose endotoxin

can reprogram neutrophils toward immune-enhancing

phenotypes (51). At the opposite end, chronic or excessive

stimulation drives neutrophil programs with sustained

inflammatory mediator release and impaired resolution capacity,

consistent with exhausted-like states noted in single-cell studies and

reviews of IBD myeloid heterogeneity (52, 53). These polarized

neutrophil states have concrete implications in UC: immune-

enhancing/pro-resolving programs may facilitate epithelial repair

and hemorrhage control, whereas dysfunctional/exhausted

programs amplify tissue injury through persistent NETosis,

protease release, and cytokine production (16, 30, 39).

Recognizing and therapeutically steering neutrophils toward

immune-enhancing trajectories such as pro-resolving training and

cautious innate “training” paradigms while restraining exhausted-

like, hyperinflammatory activity could help tailor interventions for

patients with persistent histologic activity (54–58).
3 Inhibition of NEU in UC

3.1 Inhibition of NEU-derived ROS and pro-
inflammatory cytokines

Hesperidin methyl chalcone (HMC), a citrus flavonoid

derivative, exerts antioxidative, anti-inflammatory, and analgesic

effects by enhancing colonic glutathione levels and antioxidant

capacity, thereby limiting NEU infiltration and mucosal damage

in UC (15). The sesquiterpenoid compound nerolidol (NRD)

demonstrates similar protective effects by suppressing

myeloperoxidase (MPO) activity, a key marker of NEU

recruitment, while concurrently reducing proinflammatory

cytokine secretion and colonic inflammation (59). NRD further

enhances cellular defense mechanisms through upregulation of

superoxide dismutase and catalase, coupled with decreased ROS

generation and lipid peroxidation (59–61). Cyclosporine A (CSA), a

calcineurin inhibitor used in refractory UC cases, modulates NEU
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activity via SIRT6/HIF-1a-dependent metabolic regulation,

inhibiting ROS production, MPO release, and antimicrobial

peptide expression to prevent excessive neutrophil migration and

apoptosis (62). Ursolic acid (UA), a triterpenoid isolated from

medicinal plants and fruits, effectively reduces epithelial NEU

migration and downregulates IL-6 expression in both systemic

circulation and colonic tissues (63, 64). The artemisinin-derived

compound SM934 exhibits potent immunosuppressive activity by

significantly decreasing MPO levels and attenuating macrophage/

NEU accumulation in inflamed colonic regions, leading to reduced

IL-1b, IL-6, and TNF-a production (65). Another critical regulatory

mechanism involves peptidoglycan recognition protein 1

(PGLYRP-1), which stimulates proinflammatory mediator release

(TNF-a, IL-1b, IL-6, MPO) from neutrophils upon interaction with

triggering receptor expressed on myeloid cells 1 (TREM-1).

Therapeutic targeting of TREM-1 with neutralizing antibodies

effectively disrupts this pathway, particularly in UC patients

exhibiting heightened PGLYRP-1 expression and neutrophil

infiltration (66).
3.2 Inhibition of NET formation and NE
activity

Extrachromosomal DNA (ecDNA) is critically involved in the

generation of NETs. The enzymatic degradation of ecDNA within the

colonic microenvironment by DNases offers a promising therapeutic

strategy for UC (67). To achieve site-specific delivery, staphylococcal

nuclease (SNase), a highly efficient phosphodiesterase with broad

substrate specificity, was formulated into calcium alginate

microspheres (ALG-SNase). This targeted intervention facilitated

NET disruption, attenuated inflammatory responses in the colon,

enhanced epithelial barrier function, and increased expression of key

tight junction proteins, including occludin and zonula occludens-1

(68). Peptidylarginine deiminase 4 (PAD4) is essential for histone

citrullination during NET formation. Peptidylarginine deiminase 4

(PAD4) plays a crucial role in mediating histone citrullination, a

prerequisite for NET formation. Studies demonstrate that NETs

activate the cGAS-STING pathway in MC38 cells in a dose- and

time-dependent manner, promoting the release of pro-inflammatory

cytokines and impairing intestinal barrier integrity. Genetic ablation of

STING ameliorates disease severity, as evidenced by improved clinical

colitis scores, reduced intestinal inflammation, and restored barrier

function. Notably, suppression of NET generation through PAD4

knockout attenuates STING upregulation (69). Pharmacological

inhibition of this post-translational modification has shown

therapeutic benefits in UC models (70). However, PAD4-deficient

UC mice exhibit impaired mucosal healing due to defective

remodeling of fibrin clots at wound sites (39).

Furthermore, NE’s proteolytic activity compromises the TNF-

neutralizing efficacy of infliximab, lowering clinical response rates.

Co-administration of exogenous protease inhibitors may counteract

NE-mediated degradation, enhancing the efficacy of biologic therapy

(71). Selective blockade of the neonatal Fc receptor (FcRn) alleviates

UC pathology by suppressing NET formation in the colon through
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enhanced clearance of anti-neutrophil cytoplasmic antibodies

(ANCAs) (72). Baicalein (BCL) demonstrates efficacy in preventing

UC relapse by downregulating FcRn expression via inhibition of NF-

kB signaling mediated by the p50/p65 heterodimer. Prolonged BCL

treatment in UC mice significantly reduces colonic FcRn levels,

serum ANCA titers, neutrophil-activating peptide (NAP)

expression, and inflammatory markers (including TNF-a, IL-1b,
and CRP), while improving disease activity indices and histological

scores, outperforming sulfasalazine (73).
4 The role of macrophages in UC

4.1 The role of M1 macrophages in UC

Macrophages exhibit phenotypic plasticity in response to

microenvironmental cues, polarizing into pro-inflammatory (M1)

or anti-inflammatory (M2) subsets (74, 75). Polarization toward the

M1 phenotype is predominantly induced by IFN-g, LPS, and TNF-

a (76). In UC, compromised intestinal epithelium permits

microbial invasion, which is detected by M1 macrophages. These

cells subsequently overproduce inflammatory cytokines and

chemokines (77), exacerbating inflammation, tissue damage, and

impaired healing (78, 79), and driving disease progression through

cytokine-dependent mechanisms. In contrast, M2 macrophages,

stimulated by IL-4, IL-10, or IL-13, exhibit diminished reactivity

to bacterial antigens while maintaining phagocytic and

antimicrobial activity (80). Their impaired regulatory function

contributes to epithelial barrier dysfunction, a key feature of UC

pathology (81). Notably, M1 macrophages impair mucosal integrity

via excessive MMP secretion, especially MMP-9, which disrupts the

ECM, elevating gut permeability and permitting additional immune

cell migration (82). Pro-inflammatory cytokines such as IL-1b and

IL-6 predominantly released by M1 macrophages (83, 84). Elevated

IL-1b levels in UC patients weaken the intestinal barrier, permitting

immune cell influx into the lamina propria and aggravating

epithelial injury, thereby accelerating disease initiation (85).

Similarly, IL-6 exacerbates mucosal edema, increases epithelial

permeability, and triggers NF-kB signaling through STAT3

activation, fostering cytokine imbalance and amplifying tissue

damage in UC (86). Collectively, these mechanisms sustain

chronic inflammation and perpetuate UC progression by

undermining intestinal barrier function (Table 1).
4.2 Exacerbation of intestinal inflammation

Under normal physiological conditions, macrophages in the

colonic lamina propria express high levels of CX3CR1. However, in

UC, microbial invasion or epithelial barrier disruption leads to the

recruitment of inflammatory macrophages expressing intermediate

CX3CR1 levels (CX3CR1int), derived from circulating CX3CR1low

Ly6Chigh CCR2+ monocytes. These macrophages produce

substantial pro-inflammatory mediators, drive local inflammation,

and enhance effector T cell functions (87). Compared to their
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counterparts in healthy colonic tissue, macrophages in UC exhibit

both phenotypic and functional alterations. Macrophages

infiltrating inflamed colonic tissue in UC patients display an

activated phenotype, increased TNF-a secretion, and enhanced

stimulation of mucosal T cells, which, in turn, produce elevated

IFN-g levels (88). This cytokine interplay promotes epithelial

apoptosis, compromises the mucosal barrier, and initiates

pathological immune responses, leading to further infiltration of

activated macrophages and T cells into the colonic mucosa. The

disruption of Th1/Th2 homeostasis ultimately sustains and

intensifies mucosal inflammation (89).
4.3 M2 macrophages in UC

Polarization of M2 macrophages is induced by the cytokines IL-

4 and IL-13. In patients with IBD, M1-associated markers and pro-

inflammatory cytokines are typically elevated, whereas M2-

associated markers and IL-1 (90). In a dextran sulfate sodium

(DSS)-induced murine model of UC, upregulation of Yes-

associated protein (YAP) in macrophages was shown to drive M2

polarization and increase the production of anti-inflammatory

cytokines such as IL-10 and IL-13, thereby suppressing intestinal

inflammation and promoting mucosal healing (91). Similarly,

activation of free fatty acid receptors FFAR1 and FFAR4 reduced

lipid accumulation by enhancing fatty acid metabolism and induced

M2 macrophage polarization, concomitantly increasing the

expression of CD206, carnitine palmitoyltransferase-1a (CPT-

1a), and anti-inflammatory cytokines (IL-4, IL-10, IL-13),

ultimately ameliorating DSS-induced colitis (92). Concurrently,

activation of the IL-4–STAT6 signaling pathway promoted M2

polarization and improved colonic mucosal injury (93), while this

process can be suppressed by certain chemokines (94). M2

macrophages release anti-inflammatory mediators such as IL-10
Frontiers in Immunology 05
and TGF-b, along with extracellular matrix (ECM) components,

which collectively support epithelial repair and tissue remodeling

(95). Additionally, they contribute to regenerative processes (96),

mediated in part by hepatocyte growth factor (HGF) (97, 98), and

initiate reparative mechanisms through pathways involving formyl

peptide receptor (FPR)/annexin A1, NADPH oxidase 1 (NOX1), or

IL-10/CREB/WISP-1 signaling (99). When exposed to microbial

stimuli, M2 macrophages generate TNF-a, which triggers epithelial

NF-kB activation, a critical regulator of mucosal homeostasis and

inflammatory control (100). Although these cells predominantly

display an M2-like phenotype, which appears essential for mucosal

healing, their precise role in UC pathogenesis requires

further investigation.

Under homeostatic conditions, tolerogenic macrophages are

induced by dietary antigens or commensal microbiota, exhibiting a

non-inflammatory profile characterized by diminished pro-

inflammatory cytokine secretion and nitric oxide production,

thereby preserving mucosal equilibrium (101). Following tissue

damage, colonic macrophages engage in phagocytic clearance of

pathogens and apoptotic cells, supporting microbial defense and

epithelial repair. In UC, M2-polarized macrophages demonstrate

dual functionality, combining antimicrobial activity and tissue

remodeling with anti-inflammatory cytokine release, thereby

alleviating intestinal injury (77). Emerging research has identified

vessel-associated macrophages (VAMs) localized near colonic

blood vessels. Single-cell transcriptomic analyses reveal elevated

expression of genes associated with angiogenesis in these cells (102),

with features aligning with M2 phenotype. VAMs contribute to a

gut-vascular barrier, preventing microbial translocation to liver/

systemic circulation (103, 104), effectively serving as vascular

sentinels that safeguard microbial containment and vascular

stability. Current therapeutic approaches targeting macrophage

biology in UC focus predominantly on cytokine signaling

modulation and polarization state manipulation (105).
TABLE 1 Mechanisms and therapeutic strategies targeting neutrophils and macrophages in ulcerative colitis.

Immune
Crosstalk

Mechanistic Role
Cytokines
& Factors

Roles Potential Implications

Neutrophils (NEUs)
Exacerbate mucosal damage via ROS production
and NET formation. Release proteases
(e.g., MPO, MMP-9) that degrade ECM.

IL-1b, TNF-a, IL-6,
ROS, MMP-9, NETs

Inhibition of NETs
(e.g., DNase therapy),
MMP-9 inhibition, NE
protease inhibition

NEU-derived biomarkers to
monitor disease activity,
Targeted therapies for ROS and
NET inhibition.

Macrophages (M1)

Release pro-inflammatory cytokines, contributing
to tissue damage and inflammation. Polarize
towards M1 phenotype in response to IFN-g,
TNF-a, LPS.

IL-1b, IL-6, TNF-a,
MMP-9, ROS

M1 polarization
inhibition, IL-1b/IL-6
blockade, MMP-
9 inhibition

Targeting M1 macrophages may
alleviate excessive inflammation
in UC.

Macrophages (M2)
Facilitate tissue repair via anti-inflammatory
cytokines and ECM remodeling. Induced by
IL-4 and IL-13.

IL-10, TGF-b, HGF,
FPR/annexin A1, NOX1

M2 polarization
induction, IL-10/TGF-b
modulation

Inducing M2 macrophage
polarization could promote
mucosal healing and repair.

Neutrophil-
Macrophage Crosstalk

NEU-derived cytokines and NETs influence
macrophage polarization towards pro-
inflammatory M1 phenotype.

IL-1b, TNF-a, IL-6,
MMP-9, TGF-b, IL-10

Targeting NEU-
Macrophage interactions
(e.g., cytokine and
NET inhibition)

Combined therapies targeting
both NEUs and macrophages
can improve UC management.

Microbiome-
NEU Crosstalk

Dysbiosis impairs NEU function, leading to
sustained inflammation. SCFAs modulate NEU
activity and reduce inflammation.

SCFAs, LPS, TLRs, ROS
Microbiome modulation
through probiotics,
SCFA supplementation

Restoring microbiome balance
may improve NEU function and
reduce UC inflammation.
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5 The dynamic crosstalk between
neutrophils and macrophages in UC

The pathogenesis of UC involves a complex interplay between

neutrophils (NEUs) and macrophages, wherein neutrophil-derived

mediators, including cytokines and neutrophil extracellular traps

(NETs), modulate macrophage behavior (106, 107). IL-1b, TNF-a,
and IL-6 released by activated NEUs promote macrophage

polarization toward the pro-inflammatory M1 phenotype (108).

Consequently, these polarized macrophages enhance the

inflammatory response by producing additional cytokines and

recruiting more immune cells to damaged tissues, exacerbating

mucosal injury and perpetuating disease progression (12). M1

macrophages, in turn, secrete inflammatory cytokines such as IL-6

and IL-12, amplifying mucosal injury (109). NETs contribute to

amplify the inflammatory cascade by reinforcing inflammatory

signaling and providing a structural framework that facilitates

macrophage infiltration (110, 111). However, emerging evidence

suggests that NETs and neutrophil-derived signals may also play a

role in resolving inflammation. In specific contexts, NETs promote

the polarization of macrophages toward an M2 phenotype,

characterized by the release of anti-inflammatory cytokines like IL-

10 and TGF-b, which facilitate tissue repair (112). This dual

functionality of NETs and NEUs underscores the intricate nature

of their interactions with macrophages in UC. Given their opposing

roles in inflammation and repair, targeting these cellular dynamics

may present novel therapeutic opportunities for disease management.
6 Conclusion

The pathogenesis of UC is intricately linked to the dysregulated

activities of NEUs and macrophages, which collectively drive

inflammation, tissue injury, and impaired healing. NEUs amplify

mucosal damage via ROS, NETs, and proteolytic enzymes.

However, the protective subsets of NEUs, alongside their

reparative cytokines, demonstrate their functional duality.

Similarly, macrophages exhibit context-dependent roles: M1

polarization perpetuates inflammation through cytokine storms

and barrier disruption, while M2 phenotypes promote microbial

defense and epithelial repair.

To achieve histologic remission, which remains the gold

standard for UC treatment, targeted therapies directed at NEUs

and macrophages must be tailored to individual patient profiles.

Specifically, patients with persistent subclinical inflammation

despite endoscopic healing may benefit from therapies that more

precisely modulate neutrophil activity, such as NET and MMP-9

inhibitors, or macrophage polarization strategies that encourage a

shift toward the M2 phenotype. By focusing on these strategies, we

may overcome challenges related to therapeutic resistance and the
Frontiers in Immunology 06
heterogeneity of UC, ultimately improving long-term patient

outcomes. Further research into immune-stromal crosstalk and

novel therapeutic agents is essential to refine treatment protocols

for UC and move toward personalized, immune-centric approaches

that can address the underlying mechanisms of persistent disease.
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