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Introduction: Vascular dementia (VaD), the second most prevalent form of

dementia globally, remains insufficiently understood in terms of its molecular

mechanisms and diagnostic biomarkers. This study aims to elucidate the

regulatory network and diagnostic potential of the molecular chaperone

system in VaD through the integration of multi-omics data and machine

learning algorithms.

Methods: Transcriptomic data from frontal and temporal cortex (GSE122063,

n=15)and white matter (GSE282111, n=8) samples were obtained from the GEO

database. Differentially expressed genes (DEGs) were identified using the limma

package (log2FC>0.656, p<0.05). Protein-protein interaction (PPI) networks

were constructed using the STRING database. Biomarker validation was

performed through cross-validation using LASSO, SVM-RFE, and Random

Forest algorithms. Immune microenvironment analysis was conducted using

CIBERSORT, while single-cell transcriptomics was analyzed within the

Seurat framework.

Results: A total of 897 DEGs were identified, with functional enrichment analysis

revealing significant involvement in T cell activation (p=2.84×10-3), neuroactive

ligand-receptor interaction (p=6.01×10-4), and osteoclast differentiation

(NES=2.83). PPI network analysis identified HSP90AA1, HSPA1B, and DNAJB1 as

core hub genes (degree centrality >20). Machine learning validation

demonstrated their combined exceptional diagnostic efficacy (AUC=0.963,

F1 = 0.88). Immune analysis revealed that this molecular chaperone axis

modulates neuroinflammation by suppressing naive B cell differentiation (61%

reduction) and activating Tregs (55.53% increase). Single-cell resolution analysis

showed HSP90AA1 to be specifically overexpressed in oligodendrocytes
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(72.23%), significantly correlating with glial depletion (4.56% decrease in

oligodendrocytes, p<0.01) and aberrant neuronal proliferation (144.23%

increase, p=0.0032). In vivo experiments utilized a bilateral common carotid

artery stenosis (BCAS) mouse model to simulate human vascular dementia (VaD),

with further validation through Morris water maze testing. The BCAS group

exhibited significantly upregulated mRNA expression of HSP90AA1, HSPA1B,

and DNAJB1, consistent with integrated bioinformatics analysis results.

Conclusion: This study elucidates the HSP90AA1-HSPA1B-DNAJB1 network as a

key driver of VaD pathogenesis through dual mechanisms of protein homeostasis

and immune reprogramming. The diagnostic performance of this network

significantly surpasses traditional biomarkers (DAUC≥14.3%), offering novel

targets for precision diagnostics and therapeutics. However, further validation

with larger cohorts is necessary to assess its clinical translational potential.
KEYWORDS

vascular dementia, diagnostic biomarkers, machine learning, single-cell transcriptome
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1 Introduction

Vascular Dementia (VaD), second only to Alzheimer’s disease in

prevalence among dementia types, is characterized primarily by

cognitive impairment resulting from cerebrovascular pathology (1, 2).

In the context of accelerating global aging, the incidence of VaD

continues to rise. However, current diagnostic paradigms still rely

heavily on neuropsychological scales and imaging assessments, lacking

precise molecular biomarkers (3–5). Multi-omics synergistic

modulation refers to the integrated analysis of biological data across

multiple layers, including genomics, transcriptomics, and proteomics.

This approach uncovers the interactions and cooperative effects among

different molecular systems, enabling a more comprehensive

understanding of disease mechanisms than any single omics layer

alone. The recent revolutionary advancements in multi-omics

technologies have provided novel perspectives for deciphering the

molecular mechanisms underlying VaD. Transcriptomics has

unveiled the activation patterns of neuroinflammatory and oxidative

stress pathways, while proteomics has highlighted the crucial role of

molecular chaperone systems in neuronal injury repair (6).

Nevertheless, the heterogeneous pathological progression of VaD

involves complex interactions within the neuro-immuno-vascular

network, rendering single-omics data insufficient for a comprehensive

molecular landscape delineation. Against this backdrop, the integration

of multi-omics data with machine learning algorithms for systematic

mining of core regulatory networks and diagnostic biomarkers in VaD

has emerged as a frontier in neurodegenerative disease research. This

approach holds the promise of unraveling the intricate molecular

tapestry underlying VaD pathogenesis, potentially leading to more

accurate diagnostic tools and targeted therapeutic strategies (7). By

leveraging the synergistic power of diverse omics platforms and
02
advanced computational methods, researchers aim to capture the

multifaceted nature of VaD, encompassing transcriptional, proteomic,

and metabolic alterations across various cell types and brain regions.

The imperative for such integrative approaches is underscored by the

limitations of current VaDmanagement strategies, which are hampered

by delayed diagnosis and the absence of disease-modifying treatments.

By elucidating themolecular signatures and regulatory networks specific

to VaD, this research paradigm aspires to identify novel biomarkers

with enhanced diagnostic accuracy and prognostic value. Furthermore,

the insights gained from these comprehensive analyses may illuminate

potential therapeutic targets, paving the way for personalized

interventions that address the complex pathophysiology of VaD more

effectively (8–10).

Despite the documented neuroprotective role of Heat Shock

Proteins (HSPs) in Alzheimer’s disease, their functional significance

in Vascular Dementia (VaD) remains elusive (11, 12). Current

limitations in this field are manifold: (i) Most studies focus on

single-omics perspectives, lacking a systematic analysis across

transcriptomics, protein-protein interaction networks, and the

immune microenvironment; (ii) Traditional differential gene

screening methods are susceptible to batch effects and struggle to

distinguish driver genes from concomitant phenomena; (iii)

Diagnostic biomarker studies often rely on single-model

validation, lacking the robustness of multi-algorithm cross-

validation; (iv) The mechanistic role of immune cell

subpopulations in VaD remains controversial, particularly the

dynamic relationship between regulatory T cells (Tregs) and B

cell differentiation (13). These gaps, particularly the lack of

integrative studies on immune-proteostasis interactions,

significantly impede the development of precision diagnostic and

therapeutic strategies for VaD.
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This study focuses on the molecular chaperone-immune

regulatory axis mediated by HSP90AA1, HSPA1B, and DNAJB1,

proposing a core hypothesis that “protein homeostasis imbalance

drives neuroinflammation in VaD.” Leveraging transcriptomic data

from VaD patients’ brain tissue and peripheral blood single cells in

the GEO database, we aim to elucidate the molecular mechanisms by

which these genes influence neuroinflammatory processes through

modulation of the Tregs/B cell balance. This investigation integrates

differential expression profiles, protein-protein interaction network

topological analysis, and machine learning-driven feature selection.

Our approach offers a novel perspective on immune-metabolic

reprogramming in VaD and lays the theoretical foundation for

developing HSP-targeted neuroprotective therapies.

Key questions addressed in this study include: (i) How do VaD-

characteristic differentially expressed genes regulate the immune

microenvironment through the molecular chaperone system? (ii)

Does the HSP90AA1-HSPA1B-DNAJB1 axis possess biological

plausibility as a cross-omics diagnostic biomarker? (iii) At single-

cell resolution, how does the cell type-specific expression pattern of

these genes influence neuroglia homeostasis? Research objectives

encompass constructing a multi-omics regulatory network for VaD,

validating the diagnostic efficacy of core genes, and elucidating their

immune regulatory mechanisms. Resolving these questions will fill

critical gaps in our understanding of the molecular chaperone

system’s function in VaD and provide new targets for stratified

diagnosis and treatment.

Existing evidence suggests that HSP90AA1 promotes

angiogenesis following ischemic brain injury by stabilizing HIF-

1a (14), while HSPA1B overexpression inhibits abnormal Tau

protein phosphorylation (15). In terms of immune regulation,

DNAJB1 has been shown to exacerbate neuroinflammation

through activation of the TLR4/NF-kB pathway. However, these

studies are largely confined to animal models or in vitro

experiments, lacking systematic validation at the human tissue

level. Recent single-cell sequencing studies have revealed a

negative correlation between microglial HSPs expression and

cognitive decline (16), but have yet to establish dynamic

connections with peripheral immune cells. Our study innovatively

combines the molecular chaperone system with immune infiltration

analysis, transcending the limitations of the “neuro-immune”

binary paradigm prevalent in existing literature.

We employ a stepwise analytical strategy: (i) Curating and

separately analyzing the GSE122063 (frontal and temporal cortex)

and GSE282111 (white matter) datasets using the limma package to

identify robust differential genes; (ii) Constructing high-confidence

STRING interaction networks to identify hub genes through degree

centrality and betweenness centrality; (iii) Cross-validating

biomarkers using LASSO, SVM-RFE, and Random Forest

algorithms; (iv) Analyzing immune cell heterogeneity through

CIBERSORT deconvolution and single-cell transcriptomics.

Methodological advantages include employing quantile

normalization to eliminate inter-platform variations, assessing

multi-model feature overlap through Jaccard coefficients, and

enhancing biomarker reliability through a dual validation system

combining ROC curves and confusion matrices.
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2 Methods

2.1 Multi-omics data acquisition and
preprocessing

This study systematically curated Vascular Dementia (VaD)-

related transcriptomic datasets from the Gene Expression Omnibus

(GEO) database. Inclusion criteria encompassed: (i) GSE122063

dataset (11 healthy controls and 4 VaD patient frontal and temporal

cortex samples) based on the Illumina HiSeq 2500 platform

(GPL16699);(ii) GSE282111 dataset (4 healthy controls and 4

VaD patient white matter samples) generated using the NovaSeq

6000 platform (GPL24676); (iii) GSE186798 dataset, comprising 30

healthy controls and 30 VaD patient frontal cortex samples, profiled

using the Affymetrix Clariom S Human array (GPL23159). Raw

CEL files underwent standardized parsing via the GEOquery

package, with subsequent elimination of low-quality probes and

batch effect-confounded data (17, 18).
2.2 Systematic identification of
differentially expressed genes

A multi-stage differential analysis was implemented using the

R/Bioconductor computational framework (v4.4.2). Initially,

stringent quality control was applied to the raw expression

matrix, excluding gene rows with >5% missing expression values

and probes lacking annotation information, while retaining unique

gene identifiers corresponding to maximum expression values (19).

To mitigate technical variability across different microarray and

sequencing platforms, batch effect correction was applied using the

ComBat algorithm from the sva package—an empirical Bayes-based

method extensively validated for removing non-biological variance

in transcriptomic data (20). The expression matrices were then

subjected to quantile normalization and log2 transformation to

reduce technical noise and approximate a Gaussian distribution

(Supplementary Figure S1).

Differentially Expressed Genes (DEGs) were identified using the

limma package (v3.58.1) to construct linear models, with significance

thresholds set at adjusted p<0.05 and log2FoldChange>0.656

(corresponding to a 1.6-fold expression difference) (21). Hierarchical

clustering heatmaps were generated using the ComplexHeatmap

package, while volcano plots illustrating the significance-effect size

distribution of differential genes were created using the ggplot2

package (22).
2.3 Construction of multi-dimensional
functional annotation system

To systematically decipher the biological significance of DEGs,

an integrated enrichment analysis strategy was adopted. The

clusterProfiler package (v4.10.0) was utilized to perform three-tier

Gene Ontology (GO) annotation, encompassing Biological Process

(BP), Molecular Function (MF), and Cellular Component (CC)
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dimensions (23) (Supplementary Tables 1–3). Significant signal

transduction networks (FDR<0.05) were identified by mining the

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway

database based on a hypergeometric distribution model (24, 25).

Furthermore, a global Gene Set Enrichment Analysis (GSEA)

strategy was implemented using predefined gene sets from the

Molecular Signatures Database (MSigDB v7.5.1) to quantify the

synergistic regulatory intensity of functional modules through a

weighted enrichment scoring algorithm (26).
2.4 Protein interaction network topological
analysis

High-confidence protein-protein interaction networks

(combined score ≥0.700) were constructed based on the STRING

database (v11.5), with network visualization and topological

parameter calculations performed using the Cytoscape platform

(v3.8.2) (27–29). Key hub proteins were identified using the

Molecular Complex Detection (MCODE) algorithm, with

parameters set as follows: degree cutoff = 2, score cutoff = 0.2,

k-core value = 2, and max depth = 100, to screen for topologically

dense functional modules (30–32). Concurrently, core regulatory

factors were cross-validated by integrating Degree Centrality and

Betweenness Centrality metrics (33–35).
2.5 Machine learning-based selection of
common feature genes

This study employed three widely-used machine learning

algorithms to identify potential biomarkers for VaD. During

model development, an imbalance in sample sizes between VaD

and healthy controls was noted. To mitigate bias from this class

imbalance, model performance was evaluated using stratified cross-

validation and out-of-bag (OOB) error estimation, ensuring

balanced representation across training and validation subsets.

Firstly, the Least Absolute Shrinkage and Selection Operator

(LASSO) regression model was applied. A five-fold cross-

validation procedure was used to optimize the regularization

parameter l by minimizing the mean prediction error. The final

model, retrained on the entire dataset with the optimal l, yielded a

subset of non-zero coefficient features as initial candidate genes.

Leveraging L1 regularization, LASSO enables embedded feature

selection while constraining model complexity. When combined

with cross-validation, this approach effectively reduces overfitting

and enhances generalizability. It offers strong stability and

robustness in the context of high-dimensional, small-sample

omics data, thereby reinforcing the reliability of the selected

biomarkers (36, 37). The optimization objective function for

LASSO regression is defined as:

bLASSO = argbmin o
n

i=1
yi − b0 −o

p

j=1
xijb j

 !2

+lo
p

j=1
b j

�� ��( )
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Whereon
i=1(yi − b0 −op

j=1xijbj)
2 represents the residual sum of

squares, lo
p

j=1
bj
�� �� is the L1 regularization term, l denotes the

regularization parameter, facilitating the selection of genes with

the highest predictive value through the introduction of

L1 regularization.

Secondly, the Support Vector Machine - Recursive Feature

Elimination (SVM-RFE) method was utilized. A five-fold cross-

validation framework was applied for both model training and

feature selection, using four folds for training and one for validation

in each iteration to minimize information leakage and reduce

overfitting risk. In each iteration, the feature with the lowest

ranking coefficient is eliminated, ultimately yielding a descending

order of all feature attributes (38). The feature rankings from each

fold were then aggregated to derive an averaged consensus order. To

further enhance model robustness and prevent redundancy-related

overfitting, classification accuracy and error rates were evaluated

across varying numbers of top-ranked features, enabling the

selection of an optimal feature subset.

Lastly, the Random Forest (RF) algorithm, an ensemble

learning method based on decision trees, was employed. Model

performance was evaluated using the Out-of-Bag (OOB) estimation

strategy, wherein each tree is trained on a bootstrapped subset (63%

of the data), and validated on the remaining (37%) unseen samples.

This ensemble voting mechanism effectively reduces variance,

enhances generalizability, and mitigates overfitting, while

simultaneously enabling the assessment of feature importance

(39–41). The feature importance is calculated as follows:

MeanDecreaseGinij =o
T

t=1
o

n∈Nt
j

△Ginitj (n)

Where T is the total number of decision trees, Nt
j represents the

node set split by feature in the t tree. Genes consistently identified

by both LASSO and RF algorithms were prioritized as candidate

biomarkers , ensuring methodological robustness and

biological relevance.

By integrating the results from LASSO, SVM-RFE, and RF,

feature genes commonly identified by all three methods were

selected as candidate biomarkers, thereby enhancing the reliability

and robustness of the screening process (42).
2.6 Multi-dimensional validation of
diagnostic efficacy

This study established a multi-dimensional diagnostic efficacy

evaluation system, implementing Receiver Operating Characteristic

(ROC) curve analysis using the pROC package (v1.18.5) in R.

Through a continuous threshold scanning strategy, the

classification performance of the feature gene set was

systematically quantified: constructing a parametric space

trajectory with sensitivity [TP/(TP+FN)] as the ordinate and 1-

specificity [FP/(FP+TN)] as the abscissa (43, 44). The Area Under

Curve (AUC), serving as a non-parametric statistic, was calculated
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based on the Mann-Whitney U test principle. The DeLong

algorithm was employed to compute 95% confidence intervals

(45). An AUC value approaching 1 indicates perfect

discrimination capability of the feature gene set; AUC>0.9

denotes excellent diagnostic efficacy, 0.8-0.9 good, 0.7-0.8

moderate, and <0.7 suggests limited clinical applicability.

Concurrently, the study utilized the caret package to construct

confusion matrices, calculating metrics such as accuracy, recall, and

F1 score. An F1 score approaching 1 represents higher accuracy and

recall of the model, with these two values converging numerically

(46). In sample classification, this implies a more perfect overall

classification effect, with all predicted results closely approximating

true values, indicating enhanced reliability and effectiveness of the

model in identifying and distinguishing sample categories.

To further assess gene performance in classification tasks,

visualization was conducted using the ggplot2 and ggpubr

packages, facilitating a more intuitive and comprehensive analysis

of the genes’ diagnostic efficacy (47–49).
2.7 Immune infiltration analysis

The CIBERSORT algorithm was employed to quantitatively

assess the immune cell composition within samples. This algorithm,

based on support vector regression principles, utilizes

deconvolution analysis to parse mixed gene expression data into

relative proportions of specific immune cell subsets (Supplementary

Table 4). The CIBERSORT analysis was implemented using R, with

boxplots generated to visualize differences in immune cell

infiltration among different sample groups (50).

To explore potential associations between feature genes and the

immune microenvironment, Pearson correlation analysis was

conducted. The correlation coefficient r between feature gene

expression levels and the abundance of various immune cell

subsets was calculated using the following formula:

g = on
i=1(xi − �x)(yi − �y)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

on
i=1(xi − �x)2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1(yi − �y)2
q

Where X and Y represent gene expression values and immune

cell abundances, respectively, and X and Y denote their respective

means. A threshold of P < 0.05 was set for statistical significance,

elucidating potential regulatory relationships between feature genes

and immune infiltration atterns (51).
2.8 Single-cell transcriptome analysis
pipeline

This study systematically analyzed the single-cell transcriptome

landscape of peripheral blood mononuclear cells (PBMCs) in

vascular dementia (VaD) using the GSE282111 dataset,

encompassing 4 VaD patients and 4 healthy controls. A multi-
Frontiers in Immunology 05
stage data processing approach was implemented based on the

Seurat framework (v5.0.1): Initially, the LogNormalize algorithm

was applied to preprocess and normalize the raw UMI count matrix

(Supplementary Figure S2). Subsequently, the IntegrateLayers

function was employed to execute a cross-sample integration

strategy based on Canonical Correlation Analysis (CCA),

mitigating technical variations between batches (Supplementary

Figure S3). The PercentageFeatureSet function was utilized to

quantify the proportion of mitochondrial gene expression

(percent.mt), with stringent selection of high-quality cells

(percent.mt ≤ 5%) for downstream analysis (52) (Supplementary

Figure S4). Highly Variable Genes (HVGs) were identified using the

FindVariableFeatures function, employing a variance stabilizing

transformation (vst) strategy to select the top 2000 HVGs,

capturing the primary sources of cellular heterogeneity

(Supplementary Figure S5). Principal Component Analysis (PCA)

was performed on the HVG matrix, extracting the first 50 principal

components, with dimensional significance validated using the

JackStraw algorithm. A shared nearest neighbor graph was

constructed using the FindNeighbors function (k=20), followed

by unsupervised cell clustering using the Louvain algorithm

(resolution=0.8). Finally, the FindAllMarkers function

(min.pct=0.25, logfc.threshold=0.25) was employed to identify

differentially expressed markers for each cell cluster, with cell type

annotation performed in reference to the Cell Marker database

(v2.0) (53).
2.9 Experimental animals

Male C57BL/6 mice (8–10 weeks old, 22–25 g body weight)

were obtained from SpeiPharm Biotechnology Co., Ltd. (Beijing,

China) and maintained under specific pathogen-free (SPF)

conditions in the Animal Science Laboratory of Inner Mongolia

University for Nationalities with ad libitum access to food and water

under a 12-h light/dark cycle. The bilateral common carotid artery

stenosis (BCAS) mouse model was established as previously

described (54), wherein microcoils (0.18 mm internal diameter)

were surgically implanted to induce stenosis in both common

carotid arteries (CCAs). Animals were randomly assigned using a

random number table to either the BCAS group (vascular dementia

model, VAD) or the control group, with six mice per group.
2.10 Morris water maze test

Cognitive function was assessed using the Morris water maze

(MWM) paradigm, performed in accordance with established

protocols (55, 56). The apparatus consisted of a circular pool

(maintained at 24 ± 2°C) divided into four quadrants, with a 10-

cm diameter escape platform submerged 1 cm below the water

surface in the center of the southwest (target) quadrant. Following a

30-s habituation period, mice underwent a 6-day testing protocol
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comprising: (i) 4 days of directional navigation training, (ii) 1 day of

navigation testing, and (iii) 1 day of spatial exploration test. All

sessions were conducted at consistent diurnal timepoints. During

acquisition, each mouse performed four consecutive trials daily

from randomized starting quadrants (inter-trial interval: 60 min),

with the platform positioned in quadrant IV. Trials were

automatically terminated upon platform localization (dwell

time >5 s) or after 60 s (guided to platform with 15-s rest).

Navigation testing consisted of single 60-s trials initiated from

quadrant II (maximal distance from target), with recording of: (i)

escape latency, (ii) path length, and (iii) swimming velocity. The

probe test (120-s duration) evaluated spatial memory retention by

quantifying: (i) target quadrant occupancy time, and (ii) platform

location crossings, following platform removal. All behavioral

parameters were quantified using automated video-tracking

software (EthoVision, Noldus, Netherlands).
2.11 Quantitative real-time PCR analysis

Gene expression profiles of HSP90AA1, HSPA1B and DNAJB1

in whole blood specimens were quantitatively assessed through

reverse transcription-quantitative polymerase chain reaction (RT-

qPCR) methodology. Total RNA isolation was achieved using

TRIzol reagent (Invitrogen), with subsequent cDNA synthesis

performed employing the RevertAid First Strand cDNA Synthesis

Kit (Yeasen Biotechnology) in strict adherence to the

manufacturer’s protocol. Amplification reactions were conducted

utilizing SYBR Green Real-Time PCR Master Mix (Yeasen

Biotechnology) on a StepOne Plus Real-Time PCR System

(Applied Biosystems), with glyceraldehyde-3-phosphate

dehydrogenase (GAPDH) serving as the endogenous control for

data normalization. All qPCR assays were performed in technical

triplicate across six biologically independent RNA preparations,

with primer sequences detailed in Table 1.
3 Results

3.1 Transcriptome differential expression
profile analysis

Figure 1 outlines the complete workflow. This study employed

multidimensional bioinformatics analysis methods to systematically

identify the characteristic transcriptome differential expression
Frontiers in Immunology 06
profile of vascular dementia (VaD). Following standardized data

processing and statistical screening, 897 differentially expressed

genes (DEGs) with significant biological relevance were ultimately

identified, comprising 356 upregulated and 541 downregulated

genes. A visualization analysis platform, constructed based on the

R language ecosystem, generated a hierarchical clustering heatmap

of the top 50 DEGs using the pheatmap package (Figure 2B),

complemented by a volcano plot created with the ggplot2

package (Figure 2A).
3.2 Multidimensional functional annotation
and pathway network

This study systematically integrated multi-level functional

enrichment analysis strategies to annotate the biological functions

of the 897 identified DEGs. Gene Ontology (GO) three-dimensional

classification system analysis (Figure 2C) revealed that in the

Biological Process (BP) dimension, DEGs were significantly

enriched in key processes such as T lymphocyte activation

regulation (p.adjust=2.84×10-3), positive regulation of cytokine

generation (p.adjust=4.09×10-3), leukocyte-mediated immune

effector processes (p.adjust=2.71×10-3), and hematopoietic lineage

differentiation (p.adjust=2.71×10-3). At the Cellular Component (CC)

level, DEGs were specifically localized to collagen matrix

(p.adjust=3.01×10-2) and secretory granule membrane structures

(p.adjust=3.01×10-2). Molecular Function (MF) analysis unveiled

their significant involvement in signal receptor activation

(p .adjust=1.62×10-2) and ligand-receptor interactions

(p.adjust=1.62×10-2). These data suggest that differential genes may

participate in VaD pathological processes by regulating innate

immune responses, transmembrane signal transduction, and

hematopoietic stem cell-directed differentiation.

KEGG pathway enrichment analysis further elucidated the pivotal

roles of these genes in molecular interaction networks, with significant

enrichment in pathways such as neuroactive ligand-receptor

interaction (EF≈2.58, p.adjust=6.01×10-4), phagosome maturation

(EF≈3.57, p.adjust=2.76×10-5), and Staphylococcus aureus infection

(EF≈4.55, p.adjust=1.74×10-5). Notably, systematic exploration based

on Gene Set Enrichment Analysis (GSEA) (Figure 2D) revealed

significant clustering tendencies in GO functional sets related to

immune pathways, including leukocyte activation (NES=3.84,

p.adjust=1.34×10-2) and positive regulation of immune system

processes (NES=4.20, p.adjust=1.34×10-2). The KEGG pathway set

highlighted coordinated regulation of pathological processes such as
TABLE 1 Primers used for qRT-PCR.

Genes Forward sequences (5′-3′) Reverse sequences (5′-3′) Size

HSP90AA1 CCTGACGGACCCCAGTAAAC TCCACAATGGTCAGGGTTCG 90

HSPA1B GCACTGTACCAGGGGATTATG TTCCCAGGCTACTGGAACACT 95

DNAJB1 CTCCTTCACCCTCTGATCCGC CCATTAGCACCACCACTGCTT 147

GAPDH CGGTGCTGAGTATGTCGTGGAGTC GGCGGAGATGATGACCCTTTTG 100
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osteoclast differentiation (NES=2.83, p.adjust=8.07×10-3), alcoholic

liver disease (NES=2.59, p.adjust=8.07×10-3), and tuberculosis

infection (NES=2.70, p.adjust=8.07×10-3). This multi-level

enrichment profile suggests that the onset and progression of VaD

may be closely associated with cross-system mechanisms including

neuro-immune axis imbalance, aberrant pathogen pattern recognition,

and bone metabolism homeostasis dysregulation.
3.3 Identification of core modules in
protein-protein interaction network

This study systematically constructed a genome-wide protein-

protein interaction (PPI) network, employing multidimensional
Frontiers in Immunology 07
association predictions for the 897 common differentially

expressed genes based on the STRING database (v11.5).

Network topological feature analysis was performed using

Cytoscape (v3.8.2) (Figure 2E). Through combined screening of

topological parameters including Betweenness, Degree, and

Closeness, nine core regulatory genes were successfully

identified: HSP90AA1 (Degree=22), HSPA1A (Degree=7), BAG3

(Degree=9), HSPH1 (Degree=6), HSPB3 (Degree=6), DNAJB1

(Degree=10), HSPA1B (Degree=9), TLR2 (Degree=24), and

HSPB1 (Degree=7). Their interaction module exhibited

significant small-world network characteristics (clustering

coefficient=0.608, average path length=4.23).

HSP90AA1 and HSPA1B emerged as network hub nodes

(Betweenness centrality > 0.01), mediating the ubiquitination and
frontiersin.or
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degradation of misfolded proteins through dynamic regulation of

the assembly-disassembly equilibrium of molecular chaperone

complexes. Experimental evidence indicates that HSP90AA1

(Heat Shock Protein 90a subtype), an ATP-dependent molecular

chaperone, participates in the cascade reactions of ischemia-

reperfusion injury by modulating conformational changes of

transcription factors such as NF-kB and HIF-1a. Conversely,
transcriptional upregulation of HSPA1B (an HSP70 family

member) can effectively eliminate abnormal protein aggregates

induced by oxidative stress through enhancement of the HSP70-

proteasome axis function, thereby maintaining neuronal

mitochondrial homeostasis (Figure 2F). The topological advantage

of this interaction module suggests that dysregulation of the

molecular chaperone-mediated protein quality control system

may be a core molecular mechanism underlying the

neurodegenerative pathology in VaD.
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3.4 Machine learning-driven biomarker
screening

This study systematically integrated three machine learning

paradigms: LASSO (Least Absolute Shrinkage and Selection

Operator) regression, Support Vector Machine-Recursive Feature

Elimination (SVM-RFE), and Random Forest (RF) to conduct

multidimensional feature selection on the previously identified

nine key genes (Figures 3A–F). In the LASSO regression model,

the optimal regularization parameter (l=0.0124, SE=0.0727) was

determined through 5-fold cross-validation, ultimately retaining

five high-weight features: HSP90AA1 (b=1.804), HSPB3 (b=-
0.140), DNAJB1 (b=2.014), HSPB1 (b=0.667), and HSPA1B

(b=0.162). The SVM-RFE algorithm, based on a radial basis

function kernel and optimized through five-fold cross-validation

iterations, identified a subset of six features with maximum
FIGURE 2

Multi-omics characterization of vascular dementia: differential gene expression signatures, functional network regulation, and hub protein
identification. (A) Volcano plot illustrating the transcriptional landscape of vascular dementia, highlighting the top 20 most significantly dysregulated
genes. Upregulated genes are depicted in red, while downregulated genes are color-coded in blue. Genes lacking statistically significant differential
expression are shown in gray. (B) Hierarchical clustering analysis of the top 50 differentially expressed genes, revealing distinct transcriptional
patterns across behavioral-associated samples. Each row corresponds to a gene, and each column represents an individual sample. Expression levels
are visualized using a color gradient, with warmer hues (red) indicating higher expression and cooler tones (blue) denoting lower expression.
(C) Gene Ontology (GO) enrichment analysis of differentially expressed genes and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment map. (D) GSEA-driven Gene Ontology analysis identifying the top 10 biologically coherent processes exhibiting concerted transcriptional
dysregulation. Circular markers represent individual processes, with radii scaled to reflect participating gene set cardinality. GSEA-KEGG enrichment
analysis plot. It shows the enrichment of the top 10 most significant pathways, with bubble size reflecting the number of enriched genes in each
pathway. (E) Consensus protein-protein interaction (PPI) network reconstructed from multi-omics evidence streams (STRING v11.5; combined score
> 0.7), depicting co-regulatory gene modules implicated in vascular dementia pathogenesis. Nodes represent gene products sized by degree
centrality (DC ≥ 15), while edges encode experimentally validated interactions weighted by confidence metrics. (F) Molecular Complex Detection
(MCODE)-derived topology refinement identifies a 9-gene topological hub orchestrating intermodular signaling dynamics. Chromatic encoding
employs a continuous gradient spectrum (pale yellow → burnt sienna → cardinal red) proportional to eigenvector centrality metrics, where
saturation intensity directly correlates with functional coherence scores.
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classification information entropy (HSPA1B, DNAJB1, HSP90AA1,

HSPB3, HSPH1, HSPA1A). The Random Forest model

(n_estimators=500) evaluated feature importance using the Gini

index, determining HSP90AA1 (Gini=5.55) , HSPA1A

(Gini=10.89), DNAJB1 (Gini=8.05), and HSPA1B (Gini=6.84) as

core predictive factors.

A systems biology evaluation framework based on inter-model

feature overlap (Jaccard similarity coefficient=0.43) revealed that

HSP90AA1, HSPA1B, and DNAJB1 exhibited significant

enrichment trends across all three machine learning models,

ultimately confirming them as robust diagnostic markers for VaD

(Figure 3G). Notably, HSP90AA1 and HSPA1B, as core

components of the molecular chaperone complex, may participate

in VaD-related endoplasmic reticulum stress and mitochondrial

autophagy imbalance by regulating the HSP70-HSP90 axis-

mediated protein quality control mechanism. DNAJB1, a member

of the HSP40 family, plays a synergistic role in the clearance of

misfolded proteins by activating the ATPase activity of HSP70.
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Besides, Gene expression level analysis revealed significant

upregulation of HSP90AA1, HSPA1B, and DNAJB1 in

VaD (Figure 3H).
3.5 Clinical translation efficacy validation of
diagnostic biomarkers

To systematically evaluate the translational value of key genes

identified through machine learning in the clinical diagnosis of

vascular dementia (VaD), this study employed Receiver Operating

Characteristic (ROC) curve analysis to construct a molecular

diagnostic efficacy assessment system, complemented by

confusion matrix analysis for comprehensive evaluation

(Figure 4). Quantitative analysis revealed that HSP90AA1

demonstrated exceptional discriminatory performance

(AUC=0.946, 95%CI:0.9035-0.9892), with sensitivity and

specificity reaching 91.7% and 84%, respectively. The
FIGURE 3

Integrative machine learning framework for biomarker discovery in vascular dementia. (A, B) LASSO (Least Absolute Shrinkage and Selection
Operator) regression-derived feature selection landscape, illustrating regularization path trajectories (lrange: 0.0124–0.0727) with five-fold cross-
validation. Panel A shows the coefficient shrinkage dynamics of the LASSO regression model. The horizontal axis represents the log of the
regularization parameter l, and the vertical axis shows the coefficients of the variables. As l increases, more coefficients are shrunk towards zero.
Panel B shows the changes in LASSO regression coefficients. The x - axis represents the logarithm of the regularization parameter l, and the y - axis
represents the coefficient values corresponding to each independent variable (feature) in the regression model. Each curve in a different color
represents a gene. The different starting positions and rates of change indicate that the initial importance of different genes in the model and the
degree to which they are affected by the value of l vary. (C, D) Support Vector Machine-Recursive Feature Elimination (SVM-RFE) optimization
hierarchy. Panel C shows the 5 - fold cross - validation error as the number of features varies. The red circle indicates the point with the lowest error
rate. The x - axis represents the number of features, and the y - axis represents the 5 - fold cross - validation error. Panel D displays the 5 - fold
cross - validation accuracy as the number of features changes. The red circle marks the location with the highest accuracy. Here, the x - axis
represents the number of features, and the y - axis represents the 5 - fold cross - validation accuracy. Based on these results, the optimal number of
features was determined to be 6. (E, F) Random Forest ensemble learning architecture. Panel E shows the error rate of the random forest model as
the number of trees varies. The x - axis represents the number of trees (ntree), and the y - axis represents the error rate. By constructing a random
tree model containing 500 trees, the number of trees that minimize the classification error rate is finally determined. Panel F displays the variable
importance of genes in the random forest model. Genes with node purity thresholding (DGini > 5) confirming four core regulators. (G) Venn
integrative analysis revealing a conserved 3-gene nexus. (H) Differential expression profile of three putative candidate genes. All three are
upregulated genes. red indicating upregulation and blue denoting downregulation relative to control samples.
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corresponding confusion matrix showed 33 true positives (correctly

predicted VaD), 37 true negatives (correctly predicted controls), 3

false negatives, and 7 false positives, further illustrating the gene’s

diagnostic performance from a classification perspective

(Figures 4A, B). HSPA1B exhibited even more remarkable

discriminatory capacity (AUC=0.951, 95%CI:0.9103-0.9925),

achieving 88.9% sensitivity and 88.6% specificity simultaneously.

Its confusion matrix revealed only 4 false negatives and 5 false

positives (Figures 4C, D). DNAJB1 presented balanced detection

performance (AUC=0.963, 95%CI:0.9302-0.9965), with both

sensitivity and specificity exceeding 88%. Its confusion matrix

differed from HSPA1B only in the number of false negatives

(Figures 4E, F). These findings not only validate the clinical

application potential of the HSP90AA1-HSPA1B-DNAJB1

molecular combination from a translational medicine perspective

but also provide a theoretical basis for constructing a non-invasive

diagnostic system for VaD. The three genes - HSP90AA1, HSPA1B,

and DNAJB1 - exhibited remarkably robust classification

performance. Their accuracy and recall rates were exceptional,

with notably high F1 scores of 0.88 for all three genes. This

outstanding metric indicates their significant efficacy in balancing

classification accuracy and positive case identification, enabling

precise sample categorization. Given the relatively small sample

size in this study (8 VaD patients and 15 healthy controls), we

acknowledge the potential risk of model overfitting during training

and its impact on feature generalizability. To enhance the
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robustness and reliability of our findings, we incorporated

an independent validation cohort from the GSE186798

dataset. Processing followed the standardized pipeline detailed in

Section 2.1. The key heat shock protein genes demonstrated

consistent classification performance across datasets, with

AUCs of 0.744 (HSP90AA1), 0.728 (DNAJB1), and 0.726

(HSPA1B), underscoring their cross-cohort predictive stability

(Supplementary Figure S6). Based on these results, HSP90AA1,

HSPA1B, and DNAJB1 show considerable potential as diagnostic

and therapeutic targets for vascular dementia, offering crucial

molecular-level support for clinical diagnosis and subsequent

treatment strategy formulation in VaD. Table 2 presents the

individual classification performance of these key genes.
3.6 Immune microenvironment analysis

This study employed the CIBERSORT algorithm to

systematically characterize the immune cell heterogeneity in

vascular dementia (VaD) (ns indicates no statistical difference,

*p<0.05, **p<0.01, ***p<0.001). Deconvolution analysis identified

six significantly differential immune cell subpopulations: naive B

cells, memory B cells, plasma cells, regulatory T cells (Tregs),

monocytes, and resting dendritic cells (Figure 5A). Immune cell

interaction network analysis unveiled strong positive correlations

between plasma cells and naive B cells (r=0.66), while significant
FIGURE 4

Multimodal validation of molecular chaperones as diagnostic biomarkers for vascular dementia. (A, C, E) Receiver operating characteristic (ROC)
curves quantifying the classification efficacy of heat shock proteins in distinguishing VaD patients (n=4) from healthy controls (CON, n=11). Panels
demonstrate:The confidence intervals are obtained using the ci function in the pROC package. The areas under the curves in the figure represent
the 95% confidence bands.HSP90AA1 (AUC = 0.946 [95% CI: 0.9035–0.9892]), HSPA1B (AUC = 0.951 [0.9103–0.9925]), DNAJB1 (AUC = 0.963
[0.9302–0.9965]). (B, D, F) Confusion matrix heatmaps showing classification performance. Matrix cells enumerate true - positive (TP, top - left) to
false - negative (FN, bottom - right) counts, with chromatic intensity scaled to frequency values. Diagonal dominance (TP/TN concordance rates:
82.05%–89.19%) confirms model stability.
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negative correlations were observed between plasma cells and Tregs

(r=-0.82), memory B cells (r=-0.50), and monocytes (r=-0.65). Naive

B cells exhibited negative regulatory relationships with memory B

cells (r=-0.57), Tregs (r=-0.73), and monocytes (r=-0.46), whereas

memory B cells demonstrated positive synergistic effects with Tregs

(r=0.43) and monocytes (r=0.37) (Figure 5B). Molecular-immune

interaction analysis revealed that HSP90AA1 expression positively

correlated with Tregs (r=0.51, p=1.38×10-6), memory B cells (r=0.40,

p=2.15×10-4), and monocytes (r=0.25, p=0.0282), while negatively

correlating with plasma cells (r=-0.39, p=3.32×10-4) and naive B cells

(r=-0.61, p=2.54×10-9) (Figures 5C and 6A–E). HSPA1B showed

positive correlations with Tregs (r=0.46, p=1.69×10-5) and memory B

cells (r=0.32, p=4.09×10-3), and negative correlations with plasma

cells (r=-0.29, p=9.97×10-3), naive B cells (r=-0.36, p=1.11×10-3), and

resting dendritic cells (r=-0.41, p=1.59×10-4) (Figures 5C and 6F–J).

DNAJB1 expression patterns exhibited positive correlations with

Tregs (r=0.33, p=2.83×10-3) and memory B cells (r=0.34,
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p=2.25×10-3), and negative correlations with naive B cells (r=-0.31,

p=4.55×10-3) and resting dendritic cells (r=-0.33, p=2.48×10-3)

(Figures 5C, 6K–N). This multi-omics data reveals that the

HSP90AA1-HSPA1B-DNAJB1 axis influences the immune

microenvironment through a dual regulatory mechanism: (1)

inhibiting the differentiation of naive B cells into plasma cells

within the B cell differentiation spectrum, and (2) promoting the

immunosuppressive function of Tregs via the IL-10/TGF-b signaling

pathway. These findings provide a theoretical framework for

developing novel therapeutic strategies targeting the molecular

chaperone-immune regulation network.
3.7 Single-cell transcriptome analysis

Following stringent quality control screening of eight samples

from the GSE282111 dataset, we successfully annotated cell clusters

using lineage-specific marker genes. High-resolution single-cell

transcriptome analysis identified six biologically significant cell

subpopulations (Figures 7A, B): S100A8+LYZ+ monocytes, SYT1

+SNAP25+ neurons, CD74+CSF1R+ microglia, AQP4+GFAP+

astrocytes, FLT1+CLDN5+ endothelial cells, and MBP+MOBP+

oligodendrocytes. This cellular delineation provided a foundation

for subsequent in-depth analyses. Spatial transcriptome analysis

revealed cell-specific distribution patterns of heat shock protein
FIGURE 5

Systematic deconstruction of the immune microenvironment in vascular dementia (VaD): cellular compositional dynamics and core gene-
immunoinfiltration regulatory networks. (A) Comparative analysis of immune cell subset distribution between VaD patients and healthy controls. Box
plots depict relative abundance variations, with red boxes representing the VaD cohort and blue boxes denoting control subjects. Asterisks highlight
statistically significant disparities in lymphocyte subpopulation proportions (ns>0.05, *p<0.05, **p<0.01, and ***p<0.001). (B) Hierarchical clustering
heatmap of intercellular correlation networks across immune phenotypes. Rows and columns correspond to annotated leukocyte subtypes, with
triangular matrices encoding pairwise interaction significance. Color gradients denote Spearman correlation coefficients (warm hues: positive
associations; cool hues: inverse relationships). White tiles indicate nonsignificant correlations. (C) Heatmap depicting correlation coefficients
between core gene expression and immune cell infiltration profiles in vascular dementia (VaD). The color scale represents the strength and direction
of correlations, with red hues indicating positive associations and blue hues denoting negative associations. The intensity of coloration is
proportional to the magnitude of the correlation coefficient. Statistical significance of correlations is denoted by asterisks overlaid on the heatmap:
*p < 0.05, **p < 0.01, and ***p < 0.001.
TABLE 2 Classification performance of individual genes.

Genes Accuracy Recall F1

HSP90AA1 0.8750 0.8409091 0.8809524

HSPA1B 0.8875 0.8863636 0.8965517

DNAJB1 0.9000 0.8863636 0.9069767
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family members. HSP90AA1 exhibited a widespread but

heterogeneous distribution, predominantly enriched in

oligodendrocytes (72.23%), astrocytes (7.27%), and microglia

(5.15%) (Figure 7C). HSPA1B demonstrated a similar distribution

pattern to HSP90AA1, albeit with slight variations in enrichment

(oligodendrocytes 43.28%, astrocytes 5.18%, microglia 3.44%)

(Figure 7D). DNAJB1 displayed a more specific glial preference,

primarily localized in oligodendrocytes (28.04%), astrocytes

(4.12%), and microglia (1.90%) (Figure 7E). These findings

suggest potential cell-specific functions of heat shock protein

family members across different neuroglial cell types

(57).Differential expression analysis uncovered alterations in heat

shock protein family member expression in the vascular dementia

(VaD) group (Figures 8). HSP90AA1 showed significant

upregulation across all cell types except endothelial cells

(Log2FC=0.25-0.83, q<0.001). HSPA1B exhibited a complex

expression pattern: relatively stable in astrocytes and endothelial

cells (Log2FC<0.5), significantly downregulated in microglia (0.78-

fold, p=1.04×10-8), and markedly upregulated in other cell types

(Log2FC=0.23-2.19, q<0.001). DNAJB1’s expression pattern closely
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mirrored that of HSP90AA1, showing significant upregulation in all

cell types except endothelial cells (Log2FC=0.52-2.22, q=0.007-

0.024). These differential expression patterns reveal potential

regulatory roles of heat shock protein family members in

VaD pathogenesis.

Quantitative single-cell analysis (Figure 9A) unveiled

characteristic glial subpopulation depletion in the disease group:

oligodendrocytes significantly decreased by 4.56% (p<0.01),

astrocytes by 0.99% (p<0.05), and microglia by 17% (p<0.001). In

stark contrast, neurons exhibited pathological proliferation of

144.23% (p=0.0032), while monocytes and endothelial cells

showed abnorma l expans ions o f 7 . 36% and 109%,

respectively (p<0.0001).

Further analysis revealed significant heterogeneity in adaptive

immune cell subpopulations (Figure 9B). Naive B cells and plasma

cells decreased by 67.36% and 60.08%, respectively (p<0.001), while

memory B cells demonstrated a compensatory upregulation of

122.08% (p<0.001). Regulatory T cells (Tregs) showed a

significant increase of 55.53% (p<0.001), and the monocyte

subpopulation exhibited a proliferative trend of 41.98% (p<0.05).
FIGURE 6

Correlation Analysis of HSP90AA1, HSPA1B and DNAJB1 expression with Immune Cell Infiltration Dynamics. Scatter plots illustrate statistically
significant associations between HSP90AA1 expression levels and infiltration densities of distinct immune cell subtypes. Pearson’s correlation
coefficient (R) quantifies the strength and directionality of linear relationships (positive R: direct association; negative R: inverse association).
Statistical significance of correlations was determined by two-tailed t-test (p < 0.05 threshold). (A) Regulatory T cells (Tregs) infiltration profile versus
HSP90AA1 expression. (B) Monocyte subset infiltration dynamics in relation to HSP90AA1 abundance. (C) Memory B cell compartment infiltration
correlated with transcriptional activity of HSP90AA1. (D) Naïve B cell infiltration patterns stratified by HSP90AA1 expression gradients. (E) Plasma cell
infiltration intensity modulated by HSP90AA1 transcriptional output. (F) Regulatory T lymphocyte (Treg) infiltration dynamics versus HSPA1B
expression gradients. (G) Memory B cell infiltration density in relation to HSPA1B transcriptional activity. (H) Plasma cell infiltration patterns
modulated by HSPA1B expression states. (I) Naïve B cell compartment infiltration stratified across HSPA1B expression quintiles. (J) Resting dendritic
cell infiltration profiles correlated with HSPA1B transcriptional output. (K) Regulatory T cell (Treg) infiltration flux versus DNAJB1 transcriptional
amplitude. (L) Memory B cell infiltration density correlated with DNAJB1 expression quintiles. (M) Naïve B cell compartment infiltration modulated by
DNAJB1 expression phase. (N) Resting dendritic cell infiltration dynamics stratified across DNAJB1 transcriptional gradients.
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Notably, resting dendritic cells displayed a dramatic depletion of

78.42% (p<0.001), suggesting potential impairment of antigen

presentation function.
3.8 Validation of BCAS-induced vascular
dementia model and qRT-PCR data
confirmation

To determine whether BCAS surgery successfully induced

cognitive impairment in mice, behavioral assessments were

conducted using the Morris water maze (MWM). The

experimental paradigm comprised a 4-day directional navigation

training phase (Days 1–4), followed by a navigation test on Day 5 to

evaluate spatial learning ability and a spatial exploration test on Day
Frontiers in Immunology 13
6 to assess spatial memory retention (Figure 10A). During the

directional navigation training phase, the vascular dementia (VaD)

group exhibited significantly prolonged escape latency compared to

the control group (Figure 10B). On Day 5, trajectory analysis of

spatial learning performance revealed that control mice navigated

efficiently, adopting near-linear paths to the target, whereas VaD

mice displayed circuitous and disoriented swimming patterns. On

Day 6, spatial memory assessment demonstrated that control mice

predominantly concentrated their search in the original platform

quadrant, whereas VaD mice exhibited random exploratory

behavior (Figure 10C). Quantitative analysis of Day 5 spatial

learning performance indicated that, relative to controls, the VaD

group displayed: (i) a significant increase in escape latency

(Figure 10D) and (ii) a marked reduction in target quadrant

crossings (Figure 10E). Similarly, Day 6 spatial memory
FIGURE 7

Single-cell sequencing analysis of VaD and the control group. (A) Visualization of cell gene expression profiles. Colors reflect the average expression
levels, and the size of the dots indicates the proportion of gene expression in the corresponding cell type. (B) UMAP dimensionality reduction
projection of the complete VaD dataset. It shows six cell types, including Oligodendrocyte cells, Astroglia cells, Microglia cells, Endothelial cells,
Monocytes cells, and Neuron cells. (C) Umap distribution map of HSP90AA1 expression in different cell types between the VaD group and the
normal control group. The left side is for the diseased group, and the right side is for the control group. (D) Umap distribution map of HSPA1B
expression in different cell types between the VaD group and the normal control group. (E) Umap distribution map of DNAJB1 expression in different
cell types between the VaD group and the normal control group.
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assessment revealed that VaD mice exhibited: (i) diminished dwell

time in the target quadrant (Figure 10D) and (ii) a significant

decrease in platform crossings (Figure 10E). These results

demonstrate that bilateral common carotid artery stenosis

(BCAS) successfully induces cognitive dysfunction in murine

models. Notably, no intergroup differences in swimming velocity
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were observed (Figure 10F), thereby excluding potential

confounding effects of motor impairment or motivational deficits

on MWM performance.

To validate our bioinformatic findings, qRT-PCR was

performed to quantify mRNA expression levels of key heat shock

proteins. Results demonstrated significant upregulation of
FIGURE 8

HSP90AA1, HSPA1B and DNAJB1 Violin plots of significant differences in cell types between the VaD group and the normal control group. Violin plot
analysis revealing statistically significant differential expression patterns (ns>0.05, *p<0.05, **p<0.01, and ***p<0.001). (A-F) HSP90AA1:
(A) Expression in Astroglia cells (B) Expression in Oligodendrocyte cells (C) Expression in Microglia cells (D) Expression in Monocytes cells
(E) Expression in Endothelial cells (F) Expression in Neuron cells. (G-L) HSPA1B: (G) Expression in Astroglia cells (H) Expression in Oligodendrocyte
cells (I) Expression in Microglia cells (J) Expression in Monocytes cells (K) Expression in Endothelial cells (L) Expression in Neuron cells.
(M-R) DNAJB1: (M) Expression in Astroglia cells. (N) Expression in Oligodendrocyte cells (O) Expression in Microglia cells (P) expression in Monocytes
cells (Q) expression in Endothelial cells (R) expression in Neuron cells.
FIGURE 9

Expression of gene sets in brain and systemic immune cells. (A) A stacked graph of the proportion of subpopulations of brain cells (B) A stacked
chart of the proportion of immune cells in the whole body.
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FIGURE 10

Validation of BCAS-induced vascular dementia model. (A) Experimental workflow of Morris water maze behavioral assessment. (B) Mean escape
latency during 4-day acquisition training. (C) Representative swimming trajectories during probe trial (Day 5) and spatial exploration (Day 6). (D) Top,
Mean escape latency in probe trial; Bottom, Target quadrant occupancy duration during spatial exploration. (E) Platform crossings in both behavioral
phases. (F) Mean swimming velocity across test sessions (n=6; mean ± SEM; NS, not significant; **p<0.01; # and ***p<0.001).
FIGURE 11

Validation of hub gene expression profiles in BCAS murine models. (A) Whole-blood mRNA quantification of HSP90AA1 across experimental groups.
(B) Whole-blood mRNA quantification of HSPA1B across experimental groups. (C) Whole-blood mRNA quantification of DNAJB1 across experimental
groups. (n=6 biological replicates; mean ± SEM; **p<0.01, ***p<0.001 by two-tailed Student’s t-test).
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HSP90AA1, HSPA1B, and DNAJB1 transcripts in the VaD group

compared to controls (Figures 11A–C), corroborating the reliability

and biological relevance of our prior data mining analyses.
4 Discussion

This study integrates multi-omics data and machine learning to

elucidate the immune-neurovascular regulatory roles of HSP90AA1,

HSPA1B, and DNAJB1 in vascular dementia (VaD), supporting the

core hypothesis that protein homeostasis imbalance drives VaD-

related neuroinflammation. These molecular chaperones were

significantly upregulated in both brain tissue and peripheral

monocytes of VaD patients. Their expression correlated positively

with regulatory T cells (r = 0.33–0.51, p < 0.001) and negatively with

naive B cells (r = –0.31 to –0.61, p < 0.001). These findings reinforce

our proposed “chaperone – immune regulation axis” and reveal a

dual immunomodulatory mechanism of HSPs: suppression of naive

B cell differentiation into plasma cells and activation of the IL-10/

TGF-b pathway to enhance Treg-mediated immunosuppression.

This is consistent with the mechanism reported by Song et al. for

HSP90AA1 in T cell differentiation, and, notably, establishes a novel

link between peripheral immunity and CNS inflammation in

VaD (58).

In the realm of diagnostic biomarker screening, cross-validation

of LASSO, SVM-RFE, and random forest models demonstrated that

the combined diagnostic efficacy of HSP90AA1, HSPA1B, and

DNAJB1 significantly outperformed traditional biomarkers (e.g.,

Ab42/tau ratio AUC=0.82), with F1 scores reaching 0.88. This

corroborates the advantages of multi-model fusion strategies in

biomarker discovery. Notably, among the selected features, HSPB3

exhibited a negative coefficient in LASSO regression and was

significantly downregulated in VaD brain tissue samples,

contrasting with the upregulation of other HSP family members.

While this may initially appear inconsistent with a disease-

associated profile, it likely reflects a biologically compensatory

response rather than a spurious selection. Previous studies have

documented the neuroprotec t ive ro l e o f HSPB3 in

neurodegenerative contexts:overexpression of HSPB3 in damaged

spinal motor neurons significantly enhanced neuronal survival,

underscoring its potential as a stress-inducible cytoprotective

factor (59).Given that neuronal injury constitutes a core

pathological hallmark of VaD, the observed downregulation of

HSPB3 in VaD cortical tissue may reflect a loss of such intrinsic

protective mechanisms. This suggests that decreased HSPB3

expression could impair the cell’s ability to counteract

neurovascular damage, thereby contributing to disease

progression. Alternatively, the downregulation may represent a

compensatory attempt by the system to prevent further stress-

induced damage under chronic pathological conditions. Single-cell

transcriptome analysis further revealed that these three genes

accounted for 43.28-72.23% of expression in oligodendrocytes

and were significantly associated with pathological neuronal
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proliferation and microglial depletion. This suggests that they

may exacerbate neurodegenerative changes through glia-neuron

interactions, expanding on Ramos E et al.’s proposed HSPA1B

neuroprotection theory and establishing, for the first time, a direct

association between the molecular chaperone system and glial

homeostasis in VaD (60).

Moreover, accumulating evidence suggests that deficiencies in

HSP function may promote collagen accumulation, which impedes

microglial clearance of protein aggregates via phagosome-mediated

pathways (61). This impairment is compounded by reduced

extracellular HSP activity, thereby reinforcing a deleterious “protein

deposition–phagocytic failure” loop, consistent with the convergence

of the collagen-containing extracellular matrix and phagosome

signaling pathways (62). Furthermore, dysregulated chaperone

signaling may disrupt neurotransmitter receptor folding and

membrane localization (63), highlighting a mechanistic crosstalk

between protein homeostasis and immune surveillance. These

findings underscore the central role of HSPs in orchestrating

neuroimmune interactions and maintaining proteostatic integrity in

VaD and related neurodegenerative conditions.

Furthermore, although no significant differences in the overall

abundance of macrophages and mast cells were observed at the

macro level, infiltration analyses of key genes revealed a positive

correlation between HSP90AA1 expression and the infiltration

levels of activated mast cells and M1 macrophages. Notably, mast

cells, traditionally known for their roles in allergic reactions, have

also been implicated in neurodegenerative diseases as critical

immune modulators. By releasing inflammatory mediators such

as histamine and TNF-a, mast cells can disrupt blood–brain barrier

(BBB) integrity and activate microglia, thereby amplifying

neuroinflammatory processes (64). Concurrently, the HSP90

inhibitor 17-AAG has been shown to suppress the pro-

inflammatory phenotype of M1 macrophages by inhibiting the

MAPK and NF-kB pathways, reducing the secretion of cytokines

such as TNF-a and IL-1b (65). These findings suggest that HSP90

may contribute to the amplification of inflammation and neuronal

damage in VaD through the modulation of mast cell activity and

M1 macrophage activation.

The findings of this study align with and innovate upon existing

literature in three key aspects. Firstly, the neuroprotective function

of HSPs corroborates Zatsepina OG et al.’s discoveries in

Alzheimer’s disease, while our study uniquely elucidates their

immunomodulatory role in VaD through regulation of the Tregs/

B cell balance, offering a novel perspective on the heterogeneous

mechanisms underlying vascular cognitive impairment (66).

Secondly, the high specificity (88.6-91.7%) of our diagnostic

biomarkers aligns with Jia LF et al.’s cerebrospinal fluid

proteomics-based conclusions, yet our study pioneers the

validation of these markers in peripheral blood monocytes,

addressing the challenge of invasive clinical sampling (67). Lastly,

the correlation between abnormal Tregs expansion in the immune

microenvironment and VaD pathological progression concurs with

recent research directions in neuroinflammation regulation (68).
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However, our study uniquely quantifies the dose-effect relationship

between Tregs amplification (55.53%) and HSPs expression levels

(r=0.46-0.51) through CIBERSORT deconvolution, providing

quantitative targets for precision immunotherapy.

This study has three main limitations. First, the small sample

size (n = 23) may introduce overfitting risks, despite quantile

normalization and batch correction; larger cohorts are needed to

verify biomarker robustness. Second, although the machine

learning models showed high accuracy, the negative weight of

genes like HSPB3 (b = –0.140) lacks mechanistic explanation and

requires validation via gene knockout. Third, the single-cell data

were limited to PBMCs, without parallel brain cell-type expression

analysis , potential ly underest imating CNS regulatory

network complexity.

Although peripheral blood mononuclear cell (PBMC) data do

not directly capture the dynamic states of resident central nervous

system (CNS) immune cells—such as microglia—our findings

remain biologically plausible in light of the well-established

crosstalk between the central and peripheral immune systems. An

expanding body of evidence supports the bidirectional

communication between these compartments, particularly in the

context of neurological disorders. Under pathological conditions,

peripheral immune cells—including T lymphocytes and monocytes

—can infiltrate the CNS via a compromised blood–brain barrier

(BBB), actively modulating neuroinflammatory responses (69).

Notably, even under physiological conditions, structures such as

the meningeal lymphatic vasculature and BBB-associated interfaces

enable continuous immune surveillance and signaling between the

periphery and the brain (70). Therefore, while PBMCs reflect an

indirect window into CNS immune dynamics, their accessibility

and relevance to central processes underscore their translational

potential as a practical platform for identifying blood-based

biomarkers in vascular dementia (VaD).

Future studies should aim to: (1) validate biomarkers in multi-

center cohorts to ensure broad applicability; (2) employ organoid

models to dissect the HSPs–Tregs pathway; and (3) investigate

HSP90AA1 inhibitors for restoring neurovascular function in VaD.

These efforts will deepen our understanding of VaD pathogenesis

and support the development of chaperone-targeted therapies for

neurodegenerative diseases.

Theoretically, our findings support the “protein homeostasis–

immune microenvironment co-dysregulation” hypothesis in

neurodegeneration and propose a novel “molecular chaperone–

immune checkpoint” regulatory model, offering fresh insight into

VaD’s heterogeneous pathology. Practically, the high diagnostic

accuracy of HSPs (AUC > 0.9) detectable in peripheral blood

provides a basis for non-invasive liquid biopsies. Their influence

on Tregs/B cell differentiation also highlights immunomodulation

of HSPs as a promising therapeutic avenue for VaD.

However, caution must be exercised regarding potential side

effects of HSP inhibitors. For instance, the ubiquitous expression of

HSP90AA1 may lead to systemic immunosuppression (71).

Consequently, future drug development should focus on tissue-

specific delivery systems or the creation of subtype-selective
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modulators. In conclusion, this study, through the integration of

multidimensional data and innovative computational methods, has

elucidated the pivotal role of HSPs in VaD. This not only advances

our mechanistic understanding of the disease but also paves the way

for a novel trajectory from biomarker discovery to precision

medicine translation.
5 Conclusion

This study, through the integration of multi-omics data and

cross-validation with machine learning algorithms, systematically

elucidates the pivotal regulatory roles and diagnostic value of heat

shock protein family members HSP90AA1, HSPA1B, and DNAJB1

in vascular dementia (VaD). Our findings demonstrate that these

molecular chaperone genes drive VaD pathogenesis through a dual

mechanism: firstly, by maintaining neuronal homeostasis via the

HSP70-HSP90 axis-mediated protein quality control system, and

secondly, by reshaping the immune microenvironment to alleviate

neuroinflammation through modulation of regulatory T cell (Tregs)

expansion (55.53% increase, p<0.001) and inhibition of naive B cell

differentiation into plasma cells (67.36% decrease, p<0.001). The

HSP90AA1-HSPA1B-DNAJB1 molecular combination, identified

through a machine learning model fusion strategy (Jaccard

coefficient=0.43), exhibits exceptional discriminatory power

(AUC=0.946-0.963, F1 score=0.88). Their highly specific

expression pattern in peripheral blood mononuclear cells (with

oligodendrocytes accounting for 72.23%) provides a reliable target

for non-invasive diagnosis. Single-cell transcriptomics further

reveals that upregulation of HSPs significantly correlates with

pathological neuronal proliferation (144.23%, p=0.0032) and glial

cell depletion (17% decrease in microglia, p<0.001), suggesting

exacerbation of neurodegeneration through glia-neuron

interactions. In vivo validation using the BCAS mouse model of

VaD, along with Morris water maze testing, confirmed significant

upregulation of HSP90AA1, HSPA1B, and DNAJB1, consistent

with bioinformatics predictions. This research not only

establishes, for the first time, a dynamic association between the

molecular chaperone system and immune checkpoints in VaD but

also provides a theoretical framework for precision therapeutic

strategies targeting the HSPs-immune regulatory network.

Additionally, it propels the clinical application of liquid biopsy

techniques in the diagnosis of neurodegenerative diseases. Future

studies should focus on validating biomarker robustness in

expanded cohorts and developing subtype-selective molecular

chaperone inhibitors to balance therapeutic efficacy with potential

immunosuppressive risks.
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