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Cellular hierarchy
framework based on single-cell
and bulk RNA sequencing reveals
fatty acid metabolic biomarker
MYDGF as a therapeutic
target for ccRCC
Ning Wang1†, Ziyu Xu1†, Lina Zhang1,2, Yanfang Lu1,2,
Yanliang Wang1,2, Lei Yan1,2, Huixia Cao1,2*,
Limeng Wang1,2* and Fengmin Shao1,2*

1Department of Nephrology, Zhengzhou University People’s Hospital, Henan Provincial People’s
Hospital, Zhengzhou, China, 2Henan Provincial Key Laboratory of Kidney Disease and Immunology,
Henan Provincial Clinical Research Center for Kidney Disease, Henan Provincial People’s Hospital,
Zhengzhou, China
Background: Fatty acid metabolism (FAM) reprogramming is a prominent feature

of clear cell renal cell carcinoma (ccRCC). Nevertheless, the effect of FAM

reprogramming on the heterogeneity and prognosis of ccRCC individuals

remains insufficiently understood.

Methods: We utilized single-cell sequencing and spatial transcriptomics to

investigate the heterogeneity of FAM in ccRCC comprehensively. Functional

enrichment algorithms, including AUCell, UCell, singscore, ssGSEA, and

AddModuleScore, along with hdWGCNA analysis, were used to identify hub

genes influencing high FAM of ccRCC. Machine learning methods were then

applied to pinpoint the optimal feature gene. The function of the selected genes

in FAM was validated through clinical samples and cellular functional experiments.

Results: The results revealed significant upregulation of FAM in malignant

epithelial cells. Through five distinct enrichment scoring methods and

hdWGCNA analysis, we redefined a gene set related to increased FAM at the

single-cell level. By the integration of this gene set with bulk transcriptomic data

and the application of machine-learning algorithms, we found four candidate

genes—MYDGF, ZNHIT1, HMGN3, and ARL6IP4—that were linked to ccRCC

progression. Bulk RNA sequencing validated their increased expression in

ccRCC individuals, underscoring their diagnostic and prognostic potential.

Single-cell analysis further revealed that these genes were primarily

upregulated in malignant epithelial cells, emphasizing their cell-specific roles in

ccRCC. It was verified that MYDGF could promote cell proliferation, migration

and invasion while inhibiting cell apoptosis. Functional experiments further

confirmed that MYDGF is a key FAM-related biomarker that enhances lipid

deposition by suppressing fatty acid oxidation, thereby accelerating

tumor progression.
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Conclusions: MYDGF was identified as a FAM-related oncogenic biomarker that

promotes ccRCC progression by inhibiting fatty acid oxidation. Our findings

elucidated the cellular hierarchy of ccRCC from the perspective of FAM

reprogramming and may offer new insights and therapeutic targets for future

ccRCC treatments.
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Introduction

Renal cancer ranks as one of the most prevalent malignancies in

the urinary system, with 155,702 global deaths reported in 2022.

The occurrence of kidney cancer has also been gradually elevating,

with 434,419 new cases worldwide in the same year (1–3). Clear cell

renal cell carcinoma (ccRCC) is the most prevalent and aggressive

subtype, resulting in almost 60% to 80% of all primary cases (4). The

effectiveness of current clinical treatments for ccRCC, including

surgery, conventional chemotherapy, targeted therapy, and

immunotherapy, is constrained by both inter- and intratumor

heterogeneity (5). Over one-third of ccRCC individuals

experience relapse and metastasis following surgery, with a poor

prognosis for metastatic cases, reflected by a five-year survival rate

of just 10% (6). Thus, investigating the cellular mechanisms driving

ccRCC progression and detecting innovative therapeutic targets is

essential for enhancing the outcomes of patients.

Metabolic reprogramming is a defining feature of ccRCC,

marked by the aberrant lipid droplet accumulation within tumor

cells (7). Lipid storage is a crucial adaptive mechanism in tumors

rather than a mere bystander effect in tumor growth (8). Recent

investigations have shown that lipid storage is linked to abnormal

fatty acid metabolism (FAM) (9, 10). De novo fatty acid synthesis,

uptake, and inhibition of fatty acid oxidation (FAO) contributed to

lipid storage (11). Storing excess fatty acids is important for

maintaining endoplasmic reticulum function and preventing

lipotoxicity by reducing harmful reactive oxygen species from

lipids (12, 13). Moreover, enhanced lipid storage may confer

additional advantages to ccRCC, as elevated phosphatidylcholine

levels support cell membrane fluidity, thereby promoting metastatic

potential (14). These outcomes underscore the role of lipid storage

in ccRCC progression and emphasize the need to investigate the

molecular mechanisms behind altered FAM further.

Despite the growing recognition of the critical function of FAM in

the ccRCC pathogenesis and progression, the determination and

validation of hub regulatory genes are still challenging. Conventional

experimental techniques often fall short in detecting cell-specific gene

expression and metabolic processes, which are essential for

comprehending the heterogeneous regulation of FAM in ccRCC.

Single-cell RNA sequencing (scRNA-seq) provides insight into tumor
02
cell heterogeneity at single-cell resolution, enabling the detection of rare

cell populations, characterization of cellular subtypes, lineage tracing,

and the discovery of novel biomarkers (15). This technology offers new

perspectives on tumor metabolic reprogramming. Additionally, spatial

transcriptomics (ST) complements single-cell omics by characterizing

cellular components in spatial environments, providing high-

throughput strategies to examine tumor heterogeneity (16). However,

the limited sample size in scRNA-seq datasets restricts the

comprehensive exploration of the relationship between metabolic

reprogramming at the cellular level and interpatient heterogeneity,

factors that may contribute to poor prognoses in ccRCC. Therefore,

integrating multidimensional data for joint analyses is essential to

compensate for unreliable or missing information from single-omics

data, facilitating the discovery of novel disease indicators and more

accurate therapeutic targets.

Herein, scRNA-seq, ST, and bulk RNA-seq data were utilized to

examine the FAM function in ccRCC comprehensively. FAM

heterogeneity was initially identified at the single-cell level,

revealing remarkable variability across cell types, with a notable

increase in malignant tumor cells. By applying various machine

learning algorithms to bulk RNA-seq data, we identified key genes

associated with FAM upregulation and examined their involvement

in ccRCC pathology and progression. Finally, the regulatory role of

MYDGF in FAM was validated through in vitro experiments. Our

outcomes offer important visions into the genetic underpinnings of

FAM and provide a foundation for future studies and potential

therapeutic approaches for ccRCC.
Materials and methods

Data collection

The scRNA-seq, such as 19 ccRCC samples, were acquired from

the GEO database using accession ID: GSE207493 (17). The bulk

RNA-seq data and the clinical characteristics of ccRCC were accessed

from TCGA databases. One spatial transcriptomics RNA sequencing

(stRNA-seq) sample of ccRCC with the accession ID GSE175540 was

involved in this investigation. Detailed information about all the

datasets used in this study was provided in Supplementary Table S1.
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A total of 323 FAM-associated genes were brought from the KEGG,

REACTOME, Hallmark MSigDB v5.2, and earlier investigations (18)

(Supplementary Table S2).
Data analysis

For the scRNA-seq data processing, high-quality cells were

retained, defined as those with fewer than 20% mitochondrial gene

expression and the expression of greater than 200 genes. We

concentrated on genes with expression levels between 200 and 7,000,

detected in a minimum of three cells. A total of 154,130 suitable cells

were included for additional analysis. Subsequently, the Seurat pipeline

was employed for integrating data (19). The remaining cells were

normalized and scaled using a linear regression model using the “Log

Normalization” approach. The top 3,000 extremely variable genes were

determined via the “FindVariableFeatures” function. Data were then

reduced using principal component analysis (PCA). Correcting the

batch effects between samples was conducted via the “Harmony”

package (20) to ensure that they did not interfere with downstream

analyses. Cell clustering was carried out via the “FindClusters”

function. The annotation of cell clusters involved the identification of

highly expressed and uniquely expressed genes and known canonical

cellular markers.
Infer the malignant epithelial cells

Using the inferCNV R program, copy number variation (CNV)

profiles were created to identify cancer cells with clonal, substantial

chromosomal CNV (21). The CNV score was measured as the mean

of the squared CNV values for all chromosomes. Malignancy or

non-malignancy labels were allocated based on distributing the

malignancy scores in relation to the reference and the identification

of bimodal features.
Gene set scoring algorithm in scRNA-seq

Five distinct algorithms were employed to assess FAM activity

in scRNA-seq datasets: AUCell, UCell, singscore, ssGSEA, and

AddModuleScore (22, 23). Based on the quartile of the resulting

FAM activity scores, malignant cells were categorized into three

categories: low FAM activity state (LFS), dynamic transition FAM

activity state (DTFS), and high FAM activity state (HFS). The

“FindMarkers” function was then employed to detect differentially

expressed genes (DEGs) involved in upregulating FAM.
CytoTRACE analysis

We conducted CytoTRACE analysis using default parameters, a

method that forecasts differentiation states using scRNA-seq data,

predicated on the assumption that transcriptional diversity diminishes

during differentiating (24). This analysis was employed to quantify the
Frontiers in Immunology 03
progressive status of every cell by examining alterations in gene

expression. Upon completion of the CytoTRACE algorithm, each

cell was given a score reflecting its stemness within the dataset. The

CytoTRACE R package was used to calculate scores for malignant

cells, with values of 0-1. Greater scores signified greater stemness (low

differentiation) than lower scores, indicating reduced stemness.
Cell communication

The data analysis of gene expression and the exploration of

potential variations in cell-cell communication networks were

conducted using CellChat (25). Subsequent to the conventional

CellChat pipeline, we utilized the default CellChatDB to identify

ligand-receptor interactions. By examining the overexpression of

ligands and receptors within distinct cell populations, we were able

to infer interactions that are specific to individual cell types.

Moreover, we observed an increase in ligand-receptor interactions

that correlated with the overexpression of certain ligands or receptors.
Gene set variation analysis

The GSVA R program was employed to conduct GSVA in order

to investigate potential biological pathways that differ across various

groups (26), with marker pathways sourced MSigDB database.

GSVA was applied to each cell type to estimate pathway activity,

and the average gene expression for all subtypes was computed. The

differences in activity scores were subsequently utilized for the

quantification of the variation in pathway activity across various

cell subtypes.
hdWGCNA

The hdWGCNA method facilitates the analysis of weighted

gene co-expression networks in high-dimensional datasets,

including scRNA-seq data, permitting the exploration of gene co-

expression levels and network dynamics within cell populations

(27–29). Utilizing hdWGCNA R package (30), scale-free networks

were constructed at the single-cell level. A threshold of > 0.85 was

set for the scale-free topology model fit, with a soft threshold of 12

chosen to optimize connectivity within the network. A co-

expression network was created via the “ConstructNetwork”

function, and the “UCell” method was employed to detect the

most relevant modules for HFS cells. The outcomes of the shared

candidate genes were recognized through hdWGCNA analysis, and

DEGs performed further assessment.
Functional enrichment analysis

To examine the roles and mechanisms of candidate genes, gene

ontology (GO) and disease ontology (DO) enrichment analyses

were carried out utilizing the clusterProfiler R package (31).
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1615601
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2025.1615601
Screening of optimal feature genes

An in-depth analysis of the previously screened candidate genes

was conducted to detect optimal feature genes (OFGs) associated

with FAM activity. To select the most relevant genes, we first

conducted univariate Cox regression analysis in the TCGA-KIRC

cohort to detect genes significantly correlated with ccRCC overall

survival (P < 0.05). To guarantee this selection reliability, we

employed a bootstrap methodology by sampling 80% of the

individuals 1000 times and retained only those genes with P <

0.05 occurring more than 800 times. Three machine-learning

algorithms were subsequently applied to detect the most accurate

feature genes: the Boruta algorithm, the Random Forest (RF)

survival algorithm, and the XGBoost algorithm (32–35). These

algorithms were chosen for their complementary intensities in

selecting features, optimizing models, and mitigating biases from

relying on a single algorithm, collectively enhancing the strength

and precision of detecting ccRCC-specific genes. Finally, the genes

common to all three algorithms were chosen as hub FAM-related

genes in ccRCC and represented by using a Venn diagram.
Validation of the OFGs

We conducted validation at both the scRNA-seq and bulk

RNA-seq levels to evaluate the precision of our results. We

investigated the enrichment of the OFGs across different cell

types by examining annotated scRNA-seq data. This research

revealed the particular cell types in which the OFGs contributed

to the upregulation of FAM activity. The influence of characteristic

genes on overall survival was evaluated via Kaplan-Meier (KM)

survival analysis. The expression of the OFGs in TCGA-KIRC

samples was validated via the Wilcoxon rank sum test. The

receiver operating characteristic (ROC) and area under the ROC

(AUC) curves were utilized to verify the predictive value of these

feature genes.
Cell culture and human tissues

Human renal cell line HK-2 was obtained from the American

Type Culture Collection (Manassas, USA) and cultivated in

DMEM/F12 medium (Gibco, Brazil) supplemented with 10% fetal

bovine serum (FBS, Biological Industries, Israel). All human ccRCC

cell lines (ACHN, A498, CAKI, 769-P, and 786-O) were acquired

from the National Collection of Authenticated Cell Cultures,

Chinese Academy of Sciences (Shanghai, China). The 786-O and

769-P cell lines were cultured in RPMI-1640 medium (Invitrogen,

USA) with 10% FBS and 1% penicillin-streptomycin (Solarbio,

China). CAKI cells were cultivated in McCoy’s 5A medium

(Biological Industries, Israel) with 10% FBS and 1% penicillin-

streptomycin, while ACHN and A498 cells were maintained in

MEM medium (iCell Bioscience, China) with the same

supplements. All cells were kept in an incubator with 5% CO2 at

37°C and humidified conditions.
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Cancerous and matched normal kidney tissues (minimum 3 cm

away) were gathered from individuals undergoing radical

nephrectomy at Henan Provincial People’s Hospital (Zhengzhou,

China). All individuals diagnosed with ccRCC did not undergo

radiotherapy, chemotherapy, or immunotherapy prior to surgery.

The investigation received approval from the Human Research

Ethics Committee of Henan Provincial People’s Hospital

(Approval No. 2019-44), and written informed consent was

obtained from all participants.
Western blot

The trials were conducted as earlier described (36). The primary

antibodies used in the western blot (WB) experiments were detailed

in Supplementary Table S3. Horseradish peroxidase (HRP)-linked

secondary antibody (A0208 at 1/2000 dilution) was acquired from

Beyotime Technology (Shanghai, China).
Quantitative real−time PCR and RNA
isolation

The trials were carried out as earlier described (37). The

following are the primer sequences. MYDGF forward: 5’-

GGCGTCGTGCATTCCTTCT-3 ’ , Reverse:5 ’-CCATTGCT

CATTGGTCCCTC-3’; b-actin Forward: 5’- GAGAAAATC

TGGCACCACACC-3 ’ , Reve r s e : 5 ’ - GGATAGCACA

GCCTGGATAGCAA-3’.
Immunohistochemistry staining

After fixing renal tissues in 4% paraformaldehyde, dehydration,

and paraffin-embedding were conducted. The tissue blocks were

sectioned into 5 mm slices, then deparaffinization with xylene and

rehydration through a graded ethanol series were conducted.

Boiling sections in sodium citrate buffer for 15 min was

performed for antigen retrieval, and then cooling to room

temperature was conducted. A 3% H2O2 was used to block

endogenous peroxidase activity for 10 min, and then 5% BSA was

used to block sections for 30 min. The MYDGF antibodies

(Proteintech, 11353-1-AP at 1/500 dilution) were maintained

overnight at 4°C. Next, adding secondary antibodies was

conducted for 1 h at room temperature. Detection and

quantification were carried out via DAB staining, and the nuclei

were counterstained with hematoxylin.
Small interference RNA transfection

The small interference RNAs (siRNAs) were acquired from

Sangon Biotech Co., Ltd (Shanghai, China) and transfected using

Lipofectamine™ RNAiMAX Transfection Reagent (Thermo Fisher

Scientific, Cat#13778030) as per the manufacturer’s guidelines. In
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brief, the cells were cultured to 50–60% confluence and transfected

with negative control (NC) and knockdown (siMYDGF). 5 mL
siRNA mix and 5 mL RNAiMAX were added to 125 mL Opti-

MEM and incubated at 25°C for 10 min. The resulting mixture was

then gently added to the medium to prepare siRNAs at

approximately 50 nM. After 48 hours of transfection, the cells

were harvested for subsequent analysis. The sequences were as

follows: MYDGF siRNA-1: AUACGUGUAUGUUCACUUA;

MYDGF siRNA-2: UUCAAAUGCGGCUUUAGAG.
Cell counting kit-8 assay

At 48 h after siRNA oligo transfection, cells were plated into 96-

well plates at 2,000 cells per well. Cell viability was evaluated at 0,

24, 48, 72, and 96 h via the Cell counting kit-8 (CCK-8) assay

(Dojindo, Kumamoto, Japan) as per the manufacturer’s guidelines.

In brief, CCK-8 reagent was applied, and a 2-h incubation of cells

was conducted at 37°C before measuring absorbance at 450 nm.
Wound healing and transwell assay

Cells that were grown to confluency with or without MDGF

suppression were used for the wound healing assay. A 200 µL

pipette tip was used to produce the wound. After 48 h at 37°C,

photographs were taken at 0 and 48 h. For the Transwell assay, 5 ×

104 cells with or without MYDGF suppression were cultured in the

upper chambers of 24-well Transwell inserts (8 µm; Corning, USA)

with or without matrigel for the invasion assay or migration assay in

a serum-free medium. The bottom chambers contained medium

with 10% FBS. Matrigel was used for the invasion assay, while the

migration assay was conducted without Matrigel. Subsequent to 48

h, fixing cells was conducted with 4% paraformaldehyde, followed

by staining with 1% crystal violet and imaging via a Macro Zoom

Fluorescence Microscope (Olympus, MVX10).
Apoptosis analysis

Flow cytometry was utilized to detect apoptotic cells using an

Annexin V-FITC Apoptosis Detection Kit (Elabscience, China).

Briefly, resuspending 5 × 105 cells was conducted in 500 mL of

Annexin V-FITC binding buffer, followed by adding 5 mL of

Annexin V-FITC and 5 mL of propidium iodide (PI). After a 15-

min incubation at 25°C, apoptosis was assessed by flow cytometry

(FACSAria III, BD, USA).
Nile red staining

In accordance with the manufacturer’s protocol, lipid droplets

in cells were detected using a lipid fluorescence staining kit (Nile

Red method, Solarbio, China) after MYDGF knockdown. First, the
Frontiers in Immunology 05
cells were washed with PBS and fixed with 4% paraformaldehyde. A

staining solution (500 mL) was then applied, and the cells were

incubated in the dark for 15 minutes. Fluorescence images were

captured using an EVOS FL microscope (Thermo Fisher

Scientific, USA).
Statistical analysis

Data analysis and graphing were performed via R version 4.3.1

and GraphPad Prism 9.0. The Wilcoxon test or t-test was utilized

to compare between two groups, and one-way ANOVA for several

groups. Pearson’s correlation coefficient assessed variable

correlations. Statistical significance was denoted by P values

< 0.05.
Results

Profiling the heterogeneity of FAM in
ccRCC

Before proceeding with additional assessment, quality control

was conducted on all comprised samples (Supplementary Figure

S1A). Every sample underwent batch effect correction

(Supplementary Figure S1B), and the overall distribution was

stable, confirming the suitability of the data for downstream

analysis. Using the Seurat pipeline, all cells were classified into 29

subgroups (Supplementary Figure S1C). Classical marker genes

were used for cell annotation, resulting in the identification of 12

cell types, including monocytes, macrophages, fibroblasts, CD8+ T,

CD4+ T, cycling T, NK, B, dendritic, mast, endothelial, and

epithelial cells (Figure 1A). The accuracy of the cell type

annotations was validated through a bubble plot of marker genes

(Supplementary Figure S1D).

We assessed the activity of FAM across 12 cell types using the

acquired gene set. The boxplot analysis revealed that FAM activity

showed a significant increase in epithelial cells compared to other

cell types (Figure 1B). Additionally, we examined the spatial

distribution of FAM activity using stRNA-seq data. Notably,

regions with high FAM activity were predominantly located in

the central core of ccRCC tumor (Figure 1C). These findings

suggest considerable heterogeneity in FAM across different

cell types in ccRCC. To further explore this heterogeneity,

we quantified FAM activity in every cell via the AUCell, Ucell,

s ingscore , s sg sea , and AddModuleScore a l gor i thms

(Supplementary Figures S2A–C). All algorithms confirmed that

FAM activity was highest in epithelial cells (Figure 1D). We then

employed inferCNV to identify malignant cells among epithelial

cells. The CNV profiling results revealed heterogeneity between

epithelial and reference cells (Supplementary Figure S2D). Using

unsupervised K-means clustering with five clusters, we

distinguished cells with increased and decreased CNV

(Figure 1E). Cluster 1 exhibited the lowest CNV score,
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containing a higher proportion of normal tissue-derived epithelial

cells. Therefore, healthy epithelial cells were identified in cluster 1,

and malignant cells in the other clusters (Figure 1F). Notably,

FAM activity was significantly elevated in clusters 2 through 5,
Frontiers in Immunology 06
indicating a marked increase in malignant cells (Figure 1G). The

UMAP plot illustrated the distribution of normal and malignant

epithelial cells (Figure 1H). After identifying the malignant cells,

we reassessed FAM act iv i ty using the same method
FIGURE 1

The FAM activity was elevated in malignant epithelial cells of ccRCC. (A) The UMAP plot of the ccRCC cells, colored by cell type in GSE207493. (B)
Boxplots illustrated the scaled mean expression of FAM signatures across various cell types. (C) H&E staining and heatmaps of the spatial distribution
of FAM activity from the GSE175540. (D) The Bubble plot showed enrichment scores of FAM gene sets for all cell types via AUCell, UCell, singscore,
ssGSEA, AddModulescore, and Scoring score. (E) K-means clustering of inferred CNVs to acquire malignant cells. (F) Difference of CNV score for 5
clusters. (G) Comparison of FAM activity across 5 clusters. (H) Cell reannotation further identified malignant cells within the ccRCC. (I) The Bubble
plot revealed that malignant cells exhibit higher FAM enrichment scores, as determined by multiple algorithms.
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(Supplementary Figure S2E). The results demonstrated that FAM

activity was significantly higher in malignant cells (Figure 1I).
Unraveling the complexities of FAM in
malignant cells

The UMAP plot illustrated the distribution of FAM activity in

malignant cells (Figure 2A). We observed that FAM activity showed

heterogeneity even within malignant epithelial cells. Therefore, we

categorized malignant cells into three groups according to the

quartiles of their FAM activity scores: LFS, DTFS, and HFS

(Figures 2B, C). We then conducted DEG on the upregulated

genes of FAM between HFS and LFS groups (Figure 2D). The

DEG outcomes detected 606 genes that participated in upregulating

the FAM activity (Supplementary Table S4). CytoTRACE analysis

illustrated a significant elevation in tumor stemness features in the

HFS group compared to LFS (Figures 2E, F), with a strong positive

correlation between FAM activity scores and CytoTRACE scores

(Figure 2G, Supplementary Figure S3).
Frontiers in Immunology 07
Function analysis of FAM in scRNA-seq
data

We conducted an extensive assessment of the interactions

between LFS, DTFS, HFS, and other cell types using CellChat

integrated with scRNA-seq data. The cell communication results

reflected both the count and intensity of interactions between LFS,

DTFS, and HFS cells and other cell types (Figures 3A, B). Our analysis

revealed that HFS cells are more efficient in signal transmission. The

overall level of intercellular communication demonstrated dynamic

growth across the three groups (Figure 3C). For additional evaluation

of the communication differences between HFS and LFS cells, the

expression of receptors and ligands was assessed. The results showed

that, compared to LFS cells, HFS cells showed a significant elevation in

the count of potential ligand-receptor pairs with other cells

(Figures 3E–G). Heatmap analysis indicated a higher probability of

communication in HFS cells (Figure 3H).

Additionally, analysis of hallmark pathways revealed greater

variation between HFS and LFS cells. A direct comparison between

HFS and LFS cells identified FAM as the most enriched signature in
FIGURE 2

Determination and characterization of FAM-related malignant cells. (A) The UMAP plot revealed the heterogeneity of FAM activity in malignant cells.
(B-C) Based on FAM activity scores, malignant cells are categorized into three groups: LFS, DTFS, and HFS. (D) The percentage difference
(representing the proportion of cells) and log-fold change were calculated using the Wilcoxon rank-sum test for DEGs between the HFS and LFS
groups. (E) The UMAP plot displayed dedifferentiation scores inferred from CytoTRACE. (F) A raincloud plot of CytoTRACE scores for HFS, DTFS, and
LFS malignant cells. The center of the box plot represents the median values, and the box bounds correspond to the 25th and 75th percentiles.
(G) The correlation between the CytoTRACE score and FAM score.
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HFS cells (Figure 3I). Several signaling pathways related to

metabolism and tumorigenesis, such as glycolysis, xenobiotic

metabolism, and the P53 signaling pathway, were also activated in

HFS cells (Figures 3D, I). Metabolic pathway analysis revealed an
Frontiers in Immunology 08
overall increase in metabolic activity in HFS cells (Figure 3J). These

findings suggested that HFS cells possess enhanced cell

communication capabilities and activate more tumor- and

metabolism-related pathways.
FIGURE 3

Function analysis of HFS, DTFS, and LFS malignant cells according to scRNA-seq data. (A, B) Cellchat analysis of malignant cells from the HFS, DTFS,
and LFS groups, along with other cell types. Both interaction counts and strengths are presented. (C) Interaction dynamics across different cell types.
(D) A heatmap illustrated the differences in signaling pathways among the three groups. (E-F) Bar plots showed the number of interactions between
HFS/LFS malignant cells and other cell types. (G) Cellular communication between HFS, DTFS, LFS malignant cells, and other cell types. (H) Heatmap
of the cell-cell communication network for both incoming and outgoing signaling analysis. (I) Variations in hallmark gene set pathway activities,
scored per cell by GSVA. (J) Differences in metabolism-related pathways among LFS, DTFS, and HFS malignant cells.
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Identification of critical modules associated
with HFS malignant cells through
hdWGCNA

The hdWGCNA pipeline was employed to identify co-

expressed gene modules in HFS malignant cells. Using an optimal

soft threshold of 12, a scale-free co-expression network was created,

leading to the detection of 12 distinct modules (Figures 4A, B). The

UMAP plot provided an intuitive and comprehensive visualization

of the distribution of cell subsets in every module (Figure 4C). The

bubble plot revealed significant correlations between the black, blue,

brown, green-yellow, magenta, pink and tan modules and HFS

malignant cells (Figure 4D). The heatmap visualized the correlation

between different modules (Figure 4E). Figures 4F–L illustrate the

first 25 eigengenes for each module. Based on these results, our

study focused on the above seven modules, specifically analyzing

genes with a module membership (kME) greater than 0.3 in each

module, yielding a total of 471 genes for further investigation

(Supplementary Table S5). Ultimately, the intersection of these

genes with the DEGs identified 313 candidate genes that

participated in FAM upregulation in ccRCC (Figure 4M,

Supplementary Table S6).
Outcomes of GO and DO enrichment
analysis

We used GO and DO analysis to uncover the connections

between the 313 FAM genes that were favorably regulated and their

functions in different biological systems. The FAM process

significantly enhanced candidate genes, according to GO

enrichment analysis (Figure 4N, Supplementary Table S7). The

results of the DO enrichment analysis showed that cancer, and

ccRCC in particular, had a significant enrichment of candidate

genes. (Figure 4O).
Screening of the OFGs by several machine
learning algorithms

Univariate Cox regression analysis identified 166 genes from the

313 candidate genes that were significantly associated with OS

(Figure 5A, Supplementary Table S8). The bootstrap method

further chose 124 of 166 prognostic genes that exhibited

robustness in sample resampling (Figure 5B, Supplementary

Table S9). Three machine learning algorithms were then

employed to optimize the selection of OFGs. The Boruta

algorithm removed irrelevant features, resulting in 55 key genes

(Figure 5C, Supplementary Table S10). The RF algorithm identified

59 key genes with importance > 0 (Figures 5D, E, Supplementary

Table S11). The XGBoost algorithm evaluated feature importance

and selected 16 key genes with importance > 0.2 (Figure 5F,

Supplementary Table S12). Cross-analysis of the genes selected by

all three algorithms revealed four OFGs: MYDGF, ZNHIT1,

HMGN3, and ARL6IP4 (Figure 5G, Supplementary Table S13).
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Additionally, we innovatively applied the RF algorithm to assess the

significance of the OFGs in predicting HFS malignant cells. In this

analytical framework, HFS malignant cells were designated the

prediction target, while LFS malignant cells were the control

group. The results indicated that MYDGF demonstrated strong

predictive value (Figure 5H, Supplementary Table S14).
Validation of the OFGs at the single-cell
level

To further identify the specific cell types affected by the OFGs,

we conducted validation at the single-cell level. The overall analysis

revealed that the OFGs were most concentrated in malignant cells,

with the highest average expression levels (Figure 6A). The UMAP

plots visually demonstrated that the OFGs showed a predominant

expression in malignant cells (Figure 6B). In the previously defined

HFS, DTFS, and LFS groups, all four genes showed significant

enrichment in the HFS group, with an expression showing a clear,

dynamic increase (Figures 6C, D). The accuracy of the feature genes

in predicting HFS was analyzed using ROC curves (Figures 6E–H).

The results indicated that all four genes exhibited strong diagnostic

performance, with MYDGF (AUC = 0.778) demonstrating the

highest discriminative ability, followed by ZNHIT1 (AUC =

0.736), HMGN3 (AUC = 0.681) and ARL6IP4 (AUC = 0.692).
Assessment of prognosis value for OFGs

The distribution and predictive efficacy of the OFGs at the bulk

level were further clarified. All four genes showed predictive value

for OS (Figures 7A–D). Their diagnostic value was evaluated

through ROC curves, with AUC values of 0.965 for MYDGF,

0.663 for ZNHIT1, 0.779 for HMGN3, and 0.864 for ARL6IP4

(Figures 7E–H). Compared to healthy controls from TCGA data,

these gene expressions were significantly higher in ccRCC patients

(Figures 7I–L). Additionally, in paired tissue samples, we observed

that except for ZNHIT1, the other three genes were highly

expressed in tumor tissues (Figures 7M–P).
Cellular communication and trajectory of
MYDGF+ malignant cells

To examine the MYDGF biological role, we classified malignant

cells from ccRCC samples into two categories according to MYDGF

expression levels: MYDGF+ and MYDGF- cells. The UMAP plot

illustrated the distribution of these two cell groups (Figure 8A).

CytoTRACE analysis revealed a significant increase in tumor

stemness features in the MYDGF+ group compared to the

MYDGF- group (Figures 8B, C). A comprehensive study of the

interactions between MYDGF+/MYDGF- cells and other cell types

was conducted. The outcomes indicated that compared to MYDGF-

cells, the MYDGF+ cells exhibited a significantly higher number of

potential ligand-receptor pairs with other cells (Figures 8D, E). Cell
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communication analysis showed that compared to MYDGF- cells,

MYDGF+ cells displayed a higher overall level of intercellular

communication (Figure 8F). Figures 8G, H present the count and

strength of cell communication between the two groups and other
Frontiers in Immunology 10
cell types. Figure 8I further explores the ligand-receptor interactions

between various cell types and MYDGF+/MYDGF- cells. Mast cells

showed enhanced communication with MYDGF+ cells through the

AREG-EGFR ligand-receptor relationship regarding signal
FIGURE 4

Determination of the essential modules linked to HFS malignant cells by hdWGCNA. (A) Scale-free fit index and mean connectivity plot for numerous soft
threshold powers. (B) Hierarchical cluster tree of gene modules determined through WGCNA. Twelve modules were determined as presented in the
hdWGCNA dendrogram. (C) UMAP plots depicting feature scores for each module in hdWGCNA. (D) The bubble plot exhibited the scores acquired by 12
modules. (E) Correlation analysis between different models. (F–L) The first 25 eigengenes of the selected module. (M) The outcomes of the Venn diagram
of hdWGCNA analysis and DEG analysis. (N) GO enrichment analysis of the overlapping genes. (O) DO enrichment analysis of the overlapping genes.
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reception. Additionally, heatmap results showed that MYDGF+

cells revealed a greater probability of cell communication. The PTH,

AGT, and PROS pathways were more active in MYDGF+ cells than

in MYDGF- cells. Among the incoming signals, IGF was

predominantly expressed in MYDGF+ cells (Figure 8J).
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MYDGF expression was upregulated in
human ccRCC tissues and cells

To confirm our previous analysis, we evaluated MYDGF

expression in cancerous and adjacent non-cancerous tissues
FIGURE 5

Screening of OFGs by multiple machine learning algorithms. (A) Outcomes of univariate Cox regression analysis. (B) Outcomes of bootstrap approach.
(C) Outcomes of Boruta algorithm. (D-E) Outcomes of RF algorithm. (F) Outcomes of XGBoost algorithm. (G) The outcomes of the Venn diagram of the
aforementioned 3 machine learning algorithms. (H) The importance of feature genes in predicting HFS malignant cells evaluated by the RF algorithm.
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from patients diagnosed with ccRCC. WB analysis illustrated a

marked elevation in MYDGF protein levels in the cancerous

tissues relative to the normal tissues (Figure 9A). In addition,

immunohistochemistry staining corroborated these findings by

showing elevated MYDGF expression, specifically in ccRCC

tissues (Figure 9B). Taken together, these outcomes showed that

MYDGF was overexpressed in ccRCC tissues relative to adjacent
Frontiers in Immunology 12
normal tissues. Examining the levels of MYDGF in both normal

renal tubular cells (HK-2) and five different ccRCC cell lines

(A498, ACHN, CAKI, 769-P, and 786-O) allowed us to explore the

MYDGF expression in ccRCC further. Consistent with the tissue-

based findings, MYDGF expression was notably elevated in the

ccRCC cell l ines compared to the normal renal cel ls

(Figures 9C, D).
FIGURE 6

Verification of OFGs at the single-cell level. (A, B) The bubble plot and UMAP analysis results demonstrated that all four feature genes had high expression
in malignant cells. (C, D) Further analysis illustrated that the feature genes had significant expression in HFS malignant cells, showing a gradient increase in
expression. (E–H) ROC curves estimated the diagnostic performance of feature genes in distinguishing HFS malignant cells from LFS malignant cells.
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MYDGF functions as an oncogene in
ccRCC

MYDGF protein level showed a significant elevation in the 769-

P and 786-O cell lines. Consequently, MYDGF was knocked down

in both cell lines, and the effectiveness of the suppression was
Frontiers in Immunology 13
validated by qRT-PCR (Figure 9E). CCK-8 assays revealed that

MYDGF knockdown inhibited cell proliferation (Figures 9F, G).

Flow cytometry analysis indicated that MYDGF knockdown

significantly increased apoptosis in ccRCC cells (Figures 9H, K).

Cell motility was assessed through wound healing (Figures 9I, L)

and transwell assays (Figures 9J, M, N), both of which demonstrated
FIGURE 7

Verification of OFGs in Bulk-Level Analysis. (A–D) Kaplan-Meier survival curves for feature genes in TCGA database. (E–H) ROC curves for feature
genes in TCGA database. (I–L) Feature gene expression between tumor and normal samples. (M–P) Comparison of feature gene expression
between paired tumor and normal samples.
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FIGURE 8

Trajectory analysis and cellular communication in MYDGF+ malignant cells. (A) The distribution of MYDGF in malignant cells was visualized by a
UMAP plot. (B) CytoTRACE analysis of MYDGF+ malignant cells. (C) Raincloud plot of CytoTRACE scores in MYDGF+ malignant cells and MYDGF-
malignant cells. (D, E) Bar plots showed the number of interactions between MYDGF+ malignant cells and other cell types. (F) The correlation
between differential outgoing contacts and the degree of incoming interactions in MYDGF+ malignant cells and MYDGF- malignant cells. (G–H)
Quantity and intensity of cellular communications between MYDGF+ malignant cells and other cell types. (I) MYDGF+ malignant cells interacting
with various cell ligand-receptor bubble diagrams. (J) A heat map summarizing the outgoing and incoming signal pathways of MYDGF+ malignant
cells and other cell types.
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FIGURE 9

MYDGF promoted cell proliferation, inhibited apoptosis, and suppressed FAO in ccRCC. (A) The protein levels of MYDGF were measured in ccRCC
and neighboring normal tissues. (B) MYDGF protein level in neighboring normal and ccRCC tissues as detected by immunohistochemistry (Scale bar:
25 mm). (C, D) The differential expression of MYDGF in HK-2 cell and ccRCC cells validated by western blot. (E) Determination of MYDGF knockdown
efficiency in 786-O and 769-P cells by qRT- PCR. (F, G) CCK-8 assessments were performed to estimate the impact of MYDGF suppression on cell
proliferative capacity. (H) The apoptosis level was assessed by flow cytometric analysis. (I) Representative images of the wound healing assay with
MYDGF knockdown. (J) Representative images of transwell migration and invasion assays with MYDGF knockdown. (K) Statistical results of apopotic
cells. (L) Statistical results from the wound healing assay. (M) Statistical results of the cell migration assay. (N) Statistical results of the cell invasion
assay. *P < 0.05, **P < 0.01, ***P < 0.001 and ****P < 0.0001 compared with the control group.
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that MYDGF knockdown reduced the migratory capacity of ccRCC

cells. In summary, these results suggest that MYDGF promotes

ccRCC progression by triggering cell growth and migration while

inhibiting cell death.
MYDGF promotes ccRCC by inhibiting FAO

To further investigate the role of MYDGF in FAM, we used WB

to assess changes in proteins associated with fatty acid synthesis and

FAO following MYDGF knockdown (Figure 10A). The results

demonstrated a significant upregulation of key genes involved in

FAO, including PPAR-g and CPT1A, in the MYDGF knockdown

group. Conversely, the levels of major genes that participated in

fatty acid synthesis, such as FASN, ACC1, and ACLY, remained

unchanged (Figures 10B–G). Additionally, Nile Red staining results

demonstrated a substantial reduction in intracellular lipid droplets

following MYDGF knockdown (Figures 10H, I). These findings

suggested that MYDGF may facilitate ccRCC progression by

inhibiting FAO.
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Discussion

Metabolic reprogramming constitutes a defining characteristic

of malignancy, describing the adaptive alterations in cancer cell

metabolism that support growth under abnormal conditions (38).

In ccRCC, this process is marked by significant disruptions in lipid

metabolism (39). Along with the well-characterized disturbances in

glucose (Warburg effect) and amino acid metabolism, particularly

glutamine, there is increasing recognition of FAM function in

tumor development. Dysregulation of FAM has been noted in

several malignancies, including kidney, breast, prostate, and lung

cancer (40–43). However, the regulatory mechanisms of the FAM

pathway in ccRCC remain inadequately explored.

Several investigations have concentrated on FAM function in

the diagnosis and prognosis of ccRCC (44, 45). FAM-related gene

signatures have been associated with poor OS and resistance

to immunotherapy in ccRCC (46). Zhang et al. identified and

validated 10 FAM-linked genes for the prediction of ccRCC

prognosis (47). Screening FAM-related genes using bulk-RNA-seq

was the basis of each of the above investigations. There is cellular
FIGURE 10

MYDGF suppressed FAO in ccRCC. (A) The protein levels linked to FAM were determined by western blot. (B) Relative quantitative level of FASN
protein. (C) Relative quantitative level of ACC1 protein. (D) Relative quantitative level of ACLY protein. (E) Relative quantitative level of CPT1A protein.
(F) Relative quantitative level of PPAR-g protein. (G) Relative quantitative level of MYDGF protein. (H) Nile Red staining of 769-P cells following
MYDGF knockdown (Scale bar: 100 mm). (I) Nile Red staining of 786-O cells following MYDGF knockdown (Scale bar: 100 mm). ns (no significance,
P > 0.05), **P < 0.01 and ***P < 0.001 compared with the control group.
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heterogeneity inside tumors that whole tissues cannot capture

because they reflect average gene expression levels. These

constraints have been efficiently addressed by single-cell

transcriptomics and ST. Furthermore, There is insufficient

elucidation of the function of FAM levels in malignant cells,

validation from clinical samples, and investigation into particular

processes in these investigations.

Herein, we initially utilized scRNA-seq profiles to evaluate the

FAM heterogeneity in ccRCC. Using the obtained FAM gene set

combined with five scoring methods, we observed a significant

increase in FAM activity in epithelial cells, especially in malignant

epithelial cells. ST provided additional evidence supporting FAM

heterogeneity. Notably, we detected considerable variability in FAM

activity scores within malignant cells, suggesting that FAM

heterogeneity exists not only between different cell types but also

within malignant epithelial cells. Subsequently, malignant cells were

categorized into three groups: LFS, HFS, and DTFS. Functional

analysis revealed that the HFS group exhibited enhanced cell

communication and greater stemness. Enrichment analysis

showed that HFS was associated with more metabolic and cancer-

related signaling pathways, highlighting its potential function in

promoting tumor development. By integrating key module genes

from hdWGCNA and DEGs between the HFS and LFS groups, we

identified a candidate gene set linked to FAM upregulation in

ccRCC. We applied various machine-learning algorithms to filter

the candidate gene set to identify biomarkers related to hierarchical

composition and clinical outcomes. Our study identified four OFGs

that were correlated with elevated FAM activity. MYDGF was

ultimately selected as the primary biomarker for further

investigation due to its association with poor prognosis, high

tumor expression, and superior predictive capability.

Encoding MYDGF is conducted by the open reading frame 10

on chromosome 19, also called C19orf10 (48). It is named for its

secretion by bone marrow-derived monocytes and macrophages,

playing a significant function in numerous metabolic disorders and

malignancies (49). Studies have shown that MYDGF knockout

diabetic mice exhibit raised concentrations of total cholesterol,

triglycerides, and free fatty acids, indicating that the absence of

MYDGF leads to lipid metabolism disorders. Further research

indicates that MYDGF can regulate GLP-1 production and

release, improving lipid metabolism in diabetic mice (50).

MYDGF has also been linked to the recurrence risk of non-

alcoholic fatty liver disease (NAFLD), where its absence worsens

liver index, lipogenesis, and liver dysfunction while restoring it

mitigates these effects. These findings suggest that MYDGF can

suppress inflammation and reduce hepatic lipid synthesis, offering

protection against NAFLD (51). MYDGF may promote tumor

angiogenesis and macrophage infiltration in hepatocellular

carcinoma, releasing inflammatory cytokines, including IL-6 and

TNF-a, which accelerate tumor progression (52). Our findings and

existing literature underscore the importance of studying FAM

regulatory mechanisms in ccRCC and highlight the potential of

MYDGF as a therapeutic target. However, the relationship between

MYDGF and FAM in ccRCC remains unexplored, warranting

further investigation to identify potential pathways.
Frontiers in Immunology 17
We investigated the expression of MYDGF in both clinical

samples and cell lines of ccRCC. Our findings demonstrated that

MYDGF was significantly upregulated in ccRCC, which corroborated

our analysis and was consistent with previous reports (53). In

MYDGF knockdown ccRCC cells, we observed a marked increase

in apoptosis, along with reduced cell proliferation, migration and

invasion, indicating that MYDGF contributes to the malignant

progression of ccRCC. Additionally, the reprogramming of FAM in

ccRCC, including disruptions in fatty acid synthesis and FAO, is

pivotal in lipid storage. To further examine MYDGF’s role in FAM,

we estimated the key protein levels that participated in this process.

The outcomes showed that inhibiting MYDGF substantially elevated

the CPT1A and PPAR-g expression while having no effect on

enzymes associated with fatty acid synthesis. These outcomes

indicate that MYDGF enhances lipid accumulation by inhibiting

FAO, thereby facilitating ccRCC progression.

Despite these promising findings, several limitations must be

acknowledged in our research. First, both scRNA-seq and ST

methods possess inherent dropout rates, potentially leading to the

exclusion of genes with low expression throughout the screening of

FAM-related genes. The outcomes on the diagnostic and prognostic

value were brought from TCGA, which necessitates large-scale

prospective clinical trials for validation. Furthermore, additional

in vivo and in vitro trials are required to explore the biological

function and mechanisms of MYDGF.
Conclusion

In brief, our investigation provided the first comprehensive analysis

of FAM heterogeneity and redefined the gene set linked to increased

FAM in individuals with ccRCC at the single-cell level. We identified

important feature genes associated with FAM by combining this gene

set with large-scale RNA-seq data and applying machine learning

algorithms. Subsequent experiments validated that MYDGF served as a

critical biomarker for FAM, promoting lipid deposition through

inhibiting FAO, thereby accelerating tumor progression. These

findings offer a promising foundation for personalized treatment

strategies to improve outcomes in ccRCC patients.
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