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Soluble SARS-CoV-2 Spike
glycoprotein: considering some
potential pathogenic effects
Bruno Azzarone*, Nadine Landolina,
Francesca Romana Mariotti , Lorenzo Moretta and Enrico Maggi

Tumor Immunology Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
The soluble S1 subunit of Spike protein (SP) from the SARS‐CoV-2 of different

variants of concern (VOCs) may directly bind and activate human NK cells in vitro

through the engagement of the toll-like receptor (TLR) 2 and TLR4. This

mechanism revealed a novel pathogenic role played by NK cells not only in the

different phases of disease but also in the post-acute sequelae of COVID-19

(PASC) and some post-vaccination side effects. In addition to its binding to

angiotensin-converting enzyme 2 (ACE2), which mediates virus attachment and

cell entry, soluble SP triggers several active receptors/molecules expressed by

many cells, inducing, in turn, type I/III interferon decrease, altered autophagy and

apoptosis, the release of inflammatory cytokines and chemokines, complement

activation and endothelial damage, which favour clotting events. In this review,

we discuss the hypothesis that circulating SP, exerting multiple biological

activities, can explain the heterogeneity of the clinical outcomes of severe

COVID-19, PASC and post-vaccine-related effects. Recent reports have clearly

indicated that soluble SARS-CoV-2 and post-vaccination SP trigger the same

cascade of events, acting on the immune response and promoting defined

adverse events. Factors hindering the pathological activity of soluble SP are the

SP plasma levels, the age of the infected/vaccinated people and the efficiency of

protein synthesis of ectopic targets triggered by soluble SP, as well as the

specificity, the titre and the affinity of anti-SP antibodies elicited by the

infection. At present, the risk/benefit ratio is largely in favour of vaccination;

however, the excessive and persistent ectopic production of synthetic SP should

be systematically analysed. This would allow for the identification of subjects at

risk for major adverse events and to answer the urgent need for efficient vaccines

that provide long-lasting activity with minimal side effects.
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Introduction

The coronavirus disease 2019 (COVID-19), caused by SARS-

CoV-2, has been characterized by a rapid spread of infection,

associated with overwhelming morbidity and mortality. Indeed,

by January 2023, more than 671 million cases had been confirmed

worldwide (260 million in Europe), with more than 6.71 million

individuals succumbing to the disease (more than 2 million in

Europe) (1). In surviving patients, SARS-CoV-2 may also cause

post-COVID long-term symptoms due to organ or tissue damage.

This condition, known as post-acute sequelae of COVID-19

(PASC), or long COVID-19 (2), affects approximately 10%–30%

of non-hospitalized and 50%–70% of hospitalized patients.

Importantly, 10%–12% of vaccinated patients also displayed

PASC (3).

SARS‐CoV-2 is an enveloped virus, classified as a b2-
coronavirus. Its single‐stranded RNA genome encodes seven

structural viral proteins. Among them, the Spike Glycoprotein

(SP) is expressed as a projection, approximately 20 nm long, at

the virus surface. Three joined SP glycoproteins make up trimers

that form structures resembling a crown surrounding the virion (4).

The SP glycoprotein determines the specificity of the virus binding

to angiotensin-converting enzyme 2 (ACE2), which also mediates

virus cell entry. ACE2 is highly expressed on different cell types,

including epithelia, endothelia, monocytes, phagocytes, dendritic

cells (DCs) and type II pneumocytes (5).
Pathologic effects induced by Spike
glycoprotein

In ACE2+ cells and tissues, SP/ACE2 interaction is responsible

not only for the entry of the virus but also for the decreased

production of type I/III interferons that, in turn, may induce

increased autophagy and apoptosis, a broad spectrum of pro-

inflammatory signals with the release of cytokines and

chemokines, increased TRL signalling, complement activation and

endothelial damages favouring clotting events (6, 7).

SP can also induce cell activation and tissue damage through the

direct engagement of cellular receptors/co-receptors and non-active

molecules (such as TMPRSS2, CD26, CD147, CD209/CD209L

TLR2/TLR7‐8, mannose-binding lectins, P53 and neuropilin-1)

(6, 8–14), expressed on different cell types. This may result in the

activation of different inflammatory pathways, leading to several

endotypes and, in turn, disease phenotypes. In addition, it has been

demonstrated that the S1 subunit of SP induces HLA‐E expression

on epithelial cells, mediated by GATA3 activation, which interacts

with NKG2A inhibitory receptors, negatively affecting NK cell

function. The S1 subunit also displays epitopes with super-

antigenic activity and/or that cross‐react with self‐antigens,

favouring a non-specific polyclonal activation/exhaustion of T

cells or contributing to the onset of complex autoimmune

responses (6, 7, 15). In conclusion, SP may induce several

pathological effects (recently named as “Spikeopathy”) through

different mechanisms that lead to over-inflammation
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characterized by cytokine storm, thrombogenesis and

endotheliitis-related tissue damage (7).
SARS-CoV-2 and innate immune
system dysregulation

SARS-CoV-2 infection may be accompanied by immune

dysregulation and the release of cytokines, leading to a “cytokine

storm”, mostly mediated by cells of the innate immunity. In these

cells, the interaction of viral antigens with toll-like receptors (TLRs)

has been proposed as the most relevant mechanism mediating

COVID-19 pathogenesis (16).

Monocytes and macrophages are both infected by the virus (17).

While macrophages are infected via ACE2, monocytes, which

poorly express ACE2, are infected via CD147 (18). Among

different monocyte subsets, the non-classical monocytes nMo1 are

mostly activated by the interaction of CD147 with the S1 subunit.

Notably, the proportion of circulating nMo1 is higher in severe than

in mild disease and positively correlates with some inflammatory

markers such as LDH and D-dimers. nMo1 numbers are also tightly

associated with altered coagulation and inflammation

parameters (19).

Another study showed that the proportion of non-classical

(CD14LowCD16+) monocytes is significantly elevated in PASC

patients at up to 15 months post-acute infection as compared to

recovered non-PASC patients. Notably, in the PASC patients of this

study, a significantly higher number of nMo1 contained the S1

subunit (20). Finally, cytokines as interleukin 12 (IL-12), IL-15 and

IL-21, all relevant for NK cell proliferation and function, were not

detected in some cases, suggesting that the monocytic/DC

compartment may also be compromised (21). In this context, it

has been recently shown that interactions, mediated by soluble

factors and direct cell–cell contacts, between the NK cell subset

CD56bright CD16− and monocytes, contribute to NK cell activation

and dysfunction in severe COVID-19 patients through the

production of elevated levels of pro-inflammatory cytokines,

chemokines and TGF-b (22).

Neutrophils and neutrophil extracellular traps (NETs) have

been implicated in the pathogenesis of COVID‐19. Indeed,

activated neutrophils under increased PADI4 gene expression

release DNA coated with histones, neutrophil elastase (NE),

myeloperoxidase (MPO), cathepsin G and other proteins that

form web-like structures such as NETs, which are able to trap

and kill microorganisms due to the delivery of anti‐microbial

molecules. However, NET release can cause tissue damage and

can be highly detrimental to the host, considering histones’

cytotoxic effects on airway epithelia and vessel endothelia. Indeed,

this may cause the inappropriate activation of both coagulation and

thrombosis, thus heavily contributing to the endotheliopathy

observed in severe COVID‐19 disease (23).

DC interaction with soluble SARS-CoV-2 S1 protein has been

reported to promote the activation of key signalling pathways

involved in inflammation, including MAPK, AKT, STAT1 and

NF-kB, resulting in the production/release of distinct pro-
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inflammatory cytokines (24). Moreover, virus-like particles (VLPs)

containing the receptor-binding motif of SARS-CoV-2 S1, upon

interaction with DCs, promote the activation of the NF-kB
pathway, the main pathway responsible for the synthesis of pro-

inflammatory cytokines (25). This complex signalling network is

likely activated through S1 binding to TLRs (primarily TLR2 and/or

TLR4) expressed by DCs (10, 24, 25).

It has been suggested that both the tissue distribution and

effector function of NK cells could be affected by SARS-CoV-2

infection. Remarkably, a prompt and strong NK cell response could

determine a favourable outcome for infected patients (26). In this

context, the infection modulates the phenotype of NK cells in

COVID-19 patients by upregulating the expression of certain

molecules, in particular of CD69, a surface marker linked to NK

cell activation (27). However, several reports indicate that SARS-

CoV-2 S1 may also induce NK cell dysfunction. For instance, NK

cell function in the lung was impaired by S1 via the HLA-E/NKG2A

interaction. In fact, S1 protein can induce HLA‐E expression on

lung epithelial cells, which may interact with NKG2A and

negatively affect NK cells. Another report reveals a more complex

interaction showing that virus peptide/HLA-E induces the

expansion of highly efficient NKG2C+ adaptive NK cells. An

analysis of a cohort of COVID-19 patients in the acute phase of

infection revealed that adaptive NK cells are induced irrespective of

the Human cytomegalovirus (HCMV) infection. Overall, these data

strongly suggest that NK cell responses to SARS-CoV-2 are mainly

influenced by the balance between canonical and adaptive NK cells

via the HLA-E/NKG2A/2C axis (28) and that NK cell dysfunction

can heavily contribute to the immunopathogenesis of SARS-CoV-2

infection (29). Moreover, studies in Long-COVID patients have

shown that while the adaptive CD56+CD57+NKG2C+ NK cell

subset may be expanded, their anti-viral function is impaired

(30). Another report underlines the occurrence of reduced NK

cell numbers and compromised cytolytic activity in COVID-19

patients compared to healthy controls (21).

Of note, an expansion of an unusual NK cell subset exhibiting

an altered phenotype (CD151brightCD9+) and impaired function has

been observed in severe COVID-19 patients (31).

The divergent effects of the SP protein on NK cells could be

partially explained by a recent paper (32) showing that, in short-

term experiments, soluble SP from the Wuhan strain and other

variants of concern (VOCs), as well as their S1 subunits, directly

bind and activate purified NK cells, as demonstrated by enhanced

activation marker expression, cytokine release and cytolytic activity

induced primarily in the CD56bright NK cell subset. Since ACE2 is

neither expressed by NK cells nor induced by SP, different VOC-SPs

can directly and efficiently bind both TLR2 and TLR4 and induce

robust NK cell activation. In addition, VOC-SPs upregulate

CD56dim NK cell functions in recovered, but not in non-infected,

individuals, suggesting the expansion of “adaptive” NK cells (32).

This suggests that, at the disease onset, NK cells activated by SP may

fight SARS-CoV-2 infection, while upon prolonged non-specific

activation, in patients with severe disease and PASC, the

engagement with SP can be detrimental, favouring the

development of hypo-responsive NK cells (27). In this context,
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several papers have shown that the long-lasting stimulation of NK

cells (both in vitro and in vivo with different stimuli) may cause NK

cell hypo-responsiveness, as discussed in detail in a recent

report (33).

Overall, the remarkable heterogeneity in COVID-19 outcomes

may be due to variable degree of impairment of innate immune

mechanisms that are frequently mediated by the SP protein. In

patients with severe SARS-CoV-2 disease, heavily impaired innate

immunity may cause the so-called “cytokine storm”, which is

responsible for the excessive inflammatory response leading to

acute respiratory distress syndrome (ARDS) and potentially to

death (34).
Circulating Spike protein during SARS-
CoV-2 infection

SP, present in multiple copies in one virion particle and

assembled into homotrimers, mediates viral entry by attaching to

and fusing with the host cell membrane (35). It is cleaved into the S1

and S2 subunits by convertases, as transmembrane serine protease

type II (TMPRSS2), cathepsins, furin or metalloproteases, which are

expressed by infected cells (36). The S1 subunit binds the receptor

ACE2 through the receptor-binding domain (RBD), while the S2

subunit links the S protein to the membrane, allowing viral entry

(37). It has been calculated that, upon furin cleavage, approximately

50–100 soluble SP/viral particles are spread into the medium and

bloodstream (38).

In mild COVID-19 patients, persisting active viral reservoirs

have been found to release circulating SP protein. In addition, in

severe COVID-19 patients with ARDS, the damage to endothelial

cells and vascular leakage (39) can lead to the discharge of viral

proteins such as SP and its S1 subunit into the blood. Thus,

circulating SP can reach and further compromise different organs,

acting substantially as a circulating toxin (40).

In this context, a recent study reported that SARS-CoV-2 S1

antigen was detectable in two-thirds of COVID-19 patients,

revealing a significant correlation between high plasma S1

concentration and disease progression (40).

S1 can also be active when bound and expressed by exosomes. It

has been demonstrated that exosomes in mild or severe COVID-19

patients contained SARS-CoV-2 Spike-derived peptides (41). Of

note, 16 proteins were associated with exosomes in mild COVID-19

and were involved in pathways related to antigen processing and the

presentation of exogenous peptides. In contrast, six proteins were

detected in exosomes in severe COVID-19. These included

complement factors, coagulation proteins, inflammation

modulators and regulators of IL-6-mediated pro-inflammatory

signalling (41).

In the blood, SP can activate platelets, which release coagulation

factors, secrete inflammatory molecules and form leukocyte–

platelet aggregates. Moreover, SP has been shown to bind

fibrinogen, thus favouring blood clots (42). Finally, soluble SP can

stimulate cardiac pericytes, which produce pro-inflammatory

cytokines and promote microvascular disease (43).
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SP can also activate all three complement system pathways, as

shown by recent data showing that patients with detectable

circulating SP protein had significantly higher levels of

anaphylatoxins C3a/C5a than controls, which are correlated with

a thrombophilic state (44).

Overall, the above-mentioned data could suggest that the SP itself,

in particular the S1 subunit, as either a viral component or circulating

forms (soluble or vehiculated by exosomes), may contribute to exert a

pathogenic effect by inducing inflammation in different cell types and

tissues in severe COVID-19 patients (Figure 1).
Circulating Spike protein in long
COVID-19 patients

COVID-19 patients recovered from the infection can

experience long-term symptoms as a result of organ or tissue

damage due to the virus. This condition is referred to as PASC or

long COVID-19 (45, 46).

In this context, it has been reported that the presence of

circulating SP in PASC patients persists up to 12 months after

infection. This observation could suggest exploiting circulating SP

as a useful bio-marker for PASC (47). Another report describes the
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persistent circulation of soluble and extracellular vesicle-linked SP

in subjects with PASC even over 1 year after recovery from acute

SARS-CoV-2 infection. Moreover, 30% of these patients tested

positive for both SP and viral RNA, while none of the individuals

without PASC were found to be positive, suggesting a contribution

of SP to syndrome development (48). Other authors reported

persisting circulating S1 subunit in 64% of post-infection patients

with increased levels in individuals with ongoing PASC (49).

Similar results were recently described in a proportion of PASC

patients, suggesting that PASC with high circulating levels of the S1

subunit could represent a different cluster of patients (47).

A recent study quantified and mapped the SARS-CoV-2 organ

tropism, showing long-term signs of infection in the brain, as well as

across the body, even within non-respiratory sites (50). It has been

suggested that soluble SP could also spread via the meninges into

the brain, causing inflammation and, possibly, cell death (51).

Notably, prolonged detectable levels of the circulating S1 subunit

have been observed in children with multisystem inflammatory

syndrome (MIS-C).

On the whole, several reports have indicated that circulating SP

(both soluble and carried by exosomes) may be detectable in PASC

patients’ sera, suggesting its possible involvement in the

pathogenesis of the disease.
FIGURE 1

Soluble S1 subunit triggering a variety of receptors (blue) and co-receptors (red) and binding many surface molecules (black); it is responsible for
activation/dysfunction of several cell types, highly influencing phenotypes of SARS-CoV-2 infection, PASC or post-vaccination events. ADAM9
(metalloproteinases as MMP9), ASGR1 (asialoglycoprotein receptor 1), CD147 (Basigin), C-type lectins (DC-SIGN and L-SIGN), HRH1 (histamine
receptor 1), HSPGs (heparan sulfate proteoglycans), LDLRAD3 (low-density lipoprotein receptor class A domain containing), NRP1 (neuropilin 1), PS
receptor (phosphatidylserine receptor), SIGLEC1 (sialoadhesin 1), SR-B1 (scavenger receptor class B type 1), TLR (toll-like receptors), TMEM106B
(transmembrane protein 106B) and Vimentin.
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Circulating Spike protein in vaccinated
individuals
Natural mRNA is highly unstable, and for this reason, the synthetic

mRNA coding for SP in COVID-19 vaccines is usually stabilized by the

replacement of uridine with N1-methylpseudouridine (52). The

mRNA is then packaged into lipid nanoparticles (LNPs) and injected

into the deltoid muscle as a vaccine.

During the early phase of vaccine commercialization, the

manufacturing companies believed that the persistence of mRNA-

related SP production would be short and localised in the injected

muscle. By contrast, more recent data showed that intramuscular

injection causes an initial accumulation of LNPs at the injection site

from where they migrate to proximal lymph nodes by passive draining

or are actively transported by professional antigen-presenting cells

(APC) and neutrophils. The remaining unprocessed vaccine particles

may reach systemic circulation and, depending on the composition of

the lipid shell, may reach the liver, spleen and other organs (7, 53,

54) (Figure 2).

In this regard, a recent paper reports that NK cell activation by

the BNT162b2 vaccine may contribute to vaccine-induced

inflammatory symptoms, reducing the timing of vaccine-induced

antibody responses (55).

Thus, one could argue that this synthetic mRNA vaccine is

excessively stable over a prolonged period (56), being able to

generate pathogenic effects superposable to those induced by the

viral SP during natural infection.

In agreement, a recent paper states that the same cascade of

events triggered by SARS-CoV-2 infection was triggered by vaccine

antigens. This possible suboptimal efficacy may account for
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preventing the infection (57). It is clearly demonstrated that the

persistent SP after vaccination may contribute, together with the

high viral load and the higher affinity of SP for its receptors, to the

partial vaccine efficacy.

Indeed, the presence of vaccine mRNA and SP post-vaccination

suggests that in its lipid-encapsulated form, mRNA may retain the

ability to induce SP and its secretion in different susceptible cells

(53, 58–61). Thus, circulating synthetic SP may penetrate various

organs, including, in pregnant women, the placenta, with potential

pathological consequences [for review, see (62)]. The excessive

production of synthetic SP associated with post-vaccination

adverse side effects has been reported: i) in vaccine-related

thrombocytopenia occurring 10 days after vaccination; ii) in

dermal keratinocytes and endothelial cells more than 3 months

after vaccination associated with severe skin lesions, caused by

varicella-zoster virus reactivation; and iii) in the right deltoid and

quadriceps associated with diffuse myositis 1 month after injection

of the mRNA vaccine into the left deltoid muscle (63).

Along this line, a recent report has shown high levels of full-length

unbound SP, detectable for up to 3 weeks after vaccination and eluded

antibody recognition in adolescents who developed post-vaccine

myocarditis, but not in the asymptomatic cohort (64). In this

context, the in vitro exposure of primary human cardiac pericytes

(PCs) to the SARS-CoV-2 recombinant SP of VOCs induced the

phosphorylation/activation of the extracellular signal-regulated kinase

1/2 (ERK1/2), triggering the CD147 receptor. This may cause the

secretion of pro-inflammatory molecules and the production of pro-

apoptotic factors, leading to endothelial cell death. These data indicate

that the soluble SP may induce PC dysfunction, thus contributing to

endothelial injury (33) (Figure 3). These initial observations were

subsequently confirmed by other studies (65–68).
FIGURE 2

Diffusion of soluble (or exosome-bound) SP into bloodstream and different organs with acute infection in PASC and post-vaccination adverse
events. SP, Spike protein; PASC, post-acute sequelae of COVID-19.
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Of note, in a Japanese population, the ratios among patients

with myocarditis/pericarditis associated with SARS-CoV-2 mRNA

vaccination vs. all vaccine-related adverse events were significantly

higher than those in other populations. Indeed, among the

registered adverse events, the percentages of myocarditis/

pericarditis in Japan were found to be between 8%–11% and 5%–

11%, with two types of mRNA vaccines (69), while, according to the

European Medicines Agency (EMA), an adverse event spontaneous

reporting database, in the whole vaccinated population, this

percentage ranged between 0.55%–0.91% and 1.53%–3.03%,

respectively (70). In general, these diseases were more frequent in

people aged ≤30 years and men, associated with higher expression

of IgG anti-myocardial cell antibodies; this suggests that mRNA

vaccines increase IgG expression levels and, in turn, the risk of

myocarditis in young compared to older people. Importantly,

synthetic SP has been identified in endomyocardial biopsies of

patients with myocarditis up to nearly 2 months after COVID-19

vaccination, supporting the link between the accumulation of SP in

the cardiac tissue and its damage (71).
Factors interfering with Spike
biological activity

There is a general consensus that the induction of adverse

events by soluble SP depends on its plasma levels. Indeed, high

levels (in the range of ng/mL) are required in mice to mimic the

endotheliopathy observed in severe COVID-19 case series (72).

Such levels have been essentially observed in severe COVID-19

patients, while higher SP levels correlated with intensive care unit

(ICU) admission (40). By contrast, in people vaccinated with

mRNA vaccine, soluble SP can be detected 1 day after the first

injection, with plasma levels up to 150 pg/mL (40). Such levels are

likely too low to trigger permanent endothelial cell damage, as

shown by a recent report, which demonstrates that circulating SP in

this range only caused a limited and transient endothelial damage,

which reversed to normal levels 2 days after vaccination (73).
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It has recently been proposed that excessive and persistent ectopic

production of the synthetic SP may depend on “factors specific to the

recipient organism, such as more efficient protein synthesis, especially

in young people, or localization of COVID-19 vaccine RNA-containing

nanoliposomes in tissues or organs with intrinsically high protein

synthesis capacity (e.g, liver, ileum, heart, skeletal muscle)” (74). In

addition, since exosomes carrying SP can be detected in the plasma of

vaccinated subjects up to 4 months after mRNA vaccine (53, 75, 76), it

is important to establish whether these exosomes mediate a favourable

immune response or rather an excessive inflammatory response (41).

Indeed, the presence per se of SP-carrying exosomes is not sufficient to

establish their pathological role, and it is necessary to determine their

phenotype and the effector molecules conveyed (41).

Finally, an important factor interfering with SP activity is

represented by the type and intensity of adaptive immune

response towards the virus. The isotypes/subclasses, levels and

quality (neutralizing, opsonizing, etc.) of anti-S1 Abs, elicited by

infection or vaccination, can deeply condition all SP biological

effects, modifying its interactions with different receptors or other

protein targets. Notably, the anti-S1 response is also able to impair

the activity of exosomes expressing SP. The immune status before

infection could also be relevant; at present, correlative studies

comparing (single or multiple) defects of humoral response and

high SP plasma levels are missing, as well as lacking any direct

evidence linking some immune defect with possible SP effects.
Limitations and controversies

Several experiments show that SP affects in vitro the function of

several cells of the innate immunity, and it is pathogenic for several

types of cells (10, 17, 24, 25, 29, 32, 43). Nevertheless, the situation

in vivo appears to be much more complex. In this context, the

pathogenic role of free SP to determine post-vaccination tissue

alterations and clinical side effects (as myocarditis), even if clearly

confirmed by different studies (62–70), leaves some questions still

open. For instance, the extremely low incidence of the pathologies
FIGURE 3

Left: SARS-CoV-2 can shed S proteins into the blood. Middle: S protein in the blood can activate CD147 receptors on pericytes to increase pericyte
motility, activate pericyte ERK 1/2, cause impaired pericyte/endothelial cell interactions and cause pericytes to release pro-apoptotic factors.
Pericytes also release pro-inflammatory factors via C5a. Right: S protein actions on pericytes cause damage to the brain and cardiovascular system,
while detrimental effects on the eye, skeletal muscle and kidney remain unknown.
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due to mRNA COVID-19 vaccines in the face of billions of doses

overall administered in the last 3 years has not been convincingly

explained. In addition, the free SP levels are variable and usually

very low in vaccinated people in comparison with those present in

the plasma of severe COVID-19 patients. Other unknown

mechanisms, including the status of the immune system, the

effectiveness of anti-SARS-CoV-2 immunity induced by

vaccination and comorbidities, or genetic factors (69), must be

taken into consideration. At present, controlled studies on very

large cohorts of patients (as correlative studies among SP levels or

inducible anti-SP response or their persistence, with vaccination

side effects) are still missing and have become mandatory to

understand whether soluble SP protein acts as a contributing

cause or is the main cause of the post-vaccination adverse events.
Conclusions

SARS-CoV-2 SP was initially considered the viral structure

responsible for binding and entry into target cells, but essentially

deprived of any pathogenic effects. However, several studies have

now shown that SP, either as a structural component of the virus or

as a circulating protein carried by exosomes, may exert harmful effects

on different cells and tissues, potentially causing cellular damage that

can even lead to organ failure in both severe disease and PASC. Soluble

SP, neo-synthesized after vaccination with anti-SARS‐CoV-2 mRNA

vaccines, has been associated with rare adverse side events. In these

patients, the interaction of the SP with different protein targets of

different types of cells (NK, dendritic, monocytic and epithelial cells)

induces the changes in their cellular pathways, leading to the overrated

release of different molecular effectors, shifts from classical to non-

classical populations and the activation of neutrophils, which in turn

trigger a cascade of events involved in defined adverse effects.

At present, the risk/benefit ratio is largely in favour of the

vaccination; however, the above-mentioned studies have suggested

that an age difference in the processing and clearance of SP

translated from the mRNA vaccine may cause the excessive and

persistent ectopic production of the synthetic SP. These events have

not been systematically analysed in humans, and future research

should clarify the fine mechanisms by which inappropriate

localization and excessive SP synthesis can develop in certain

(genetically defined) individuals.

Finally, since some issues limiting the full efficiency of the

presently employed vaccines have recently been raised, there is an
Frontiers in Immunology 07
urgent need to develop new vaccines able to inhibit viral spread and

provide anti-viral long-lasting immune-mediated responses (77).
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