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Introduction: Identification of CD8+ T cell epitopes is crucial for advancing

vaccine development and immunotherapy strategies. Traditional methods for

predicting T cell epitopes primarily focus on MHC presentation, leveraging

immunopeptidome data. Recent advancements however suggest significant

performance improvements through transfer learning and refinement using

epitope data.

Methods: To further investigate this, we here develop an enhanced MHC class I

(MHC-I) antigen presentation predictor by integrating newly curated binding

affinity and eluted ligand datasets, expanding MHC allele coverage, and

incorporating novel input features related to the structural constraints of the

MHC-I peptide-binding cleft. We next apply transfer learning using

experimentally validated pathogen- and cancer-derived epitopes from public

databases to refine our prediction method, ensuring comprehensive data

partitioning to prevent performance overestimation.

Results: Integration of structural features results in improved predictive power

and enhanced identification of peptide residues likely to interact with the MHC.

However, our findings indicate that fine-tuning on epitope data only yields a

minor accuracy boost. Moreover, the transferability between cancer and

pathogen-derived epitopes is limited, suggesting distinct properties between

these data types.

Discussion: In conclusion, while transfer learning can enhance T cell epitope

prediction, the performance gains are modest and data type specific. Our final

NetMHCpan-4.2 model is publicly accessible at https://services.healthtech.dtu.

dk/services/NetMHCpan-4.2, providing a valuable resource for immunological

research and therapeutic development.
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Introduction

Major Histocompatibility Complex class I (MHC-I) molecules

play a pivotal role in the adaptive immune system. Anchored to the

cell surface, MHC-I molecules bind and present peptide fragments

derived primarily from degraded intracellular proteins. CD8+ T

cells can interact with the peptide-MHC-I complexes, potentially

initiating an immune response intended to kill off infected cells.

Understanding the rules for MHC-I antigen presentation is thus

crucial for rational development of disease treatments targeting

CD8+ T cell activation.

Structurally, MHC-I molecules consist of an alpha chain and a

beta-2-microglobulin chain. The alpha chain, encoded in humans

by the HLA (Human Leukocyte Antigen) gene, is highly

polymorphic and forms a peptide binding cleft that is closed at

both ends. Due to the closed structure of the MHC-I binding cleft, a

limited range of peptide lengths can be accommodated. While 8–11

mer peptides are most common, longer peptides can also bind by

generally adopting a ‘bulging’ conformation in which certain

residues protrude away from the binding cleft (1). Although these

bulging residues may not interact with the MHC molecule, they are

important for the peptide-MHC’s interaction with T cells.

In order to characterize the rules of MHC binding, binding

affinity (BA) assays have historically been employed, in which each

peptide’s affinity towards a single MHC-I molecule is measured in

vitro. However, datasets produced by such assays by design do not

contain information regarding the steps in the MHC class I

presentation pathway leading up to the peptide presentation. The

use of liquid chromatography coupled with mass spectrometry (LC-

MS/MS) has resolved this issue by allowing for high-throughput

generation of datasets describing the immunopeptidome. In these

assays, peptide-MHC complexes are purified from cell lines in

which one or more known MHC allotypes are present, after

which the peptide ligands are retrieved and sequenced. These so-

called eluted ligand (EL) datasets ultimately consist of lists of

peptides known to bind to at least one of the MHC molecules

expressed in the original cell lines. Cell lines are sometimes

engineered to express only one MHC allele, in which case the

immunopeptidome datasets are single-allelic (SA). However, for

multi-allelic (MA) samples, it is necessary to assign each peptide to

its most likely MHC target, a process commonly referred to as

motif deconvolution.

To address this issue, Alvarez et al. have proposed the

NNAlign_MA machine learning framework, which simultaneously

deconvolutes immunopeptidome datasets and trains a pan-specific

prediction model for MHC antigen presentation, allowing for highly

improved motif deconvolution power (2). This framework has been

incorporated into the widely used NetMHCpan-4.1 prediction

method (3).

NNAlign_MA accommodates peptides of variable length by use

of insertions and deletions. While insertions are used for peptides

shorter than the motif length of 9, for peptides longer than 9, a 9-

mer binding core is extracted either as a sub-sequence or by deleting

a continuous stretch of amino acids reflecting potential bulging
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residues within the peptide. Until now, no information other than

the length and position of the deletion has been used as an input

feature to the NNAlign method. Furthermore, even though the

deletions should ideally correspond to the residues bulging

outwards in the peptide-MHC complex, no constraints have been

placed on the position of the deletion so far. Recently, features

related to MHC-peptide structures have been explored in

publications about MHC-peptide binding (4) and peptide

immunogenicity (5) prediction with great utility. Given this, we

expect that integrating such structural features into NNAlign could

therefore enhance its ability to more accurately model the

interaction propensity of individual peptide residues and boost

the overall predictive performance.

Beyond prediction of MHC antigen presentation, several tools

have been developed for the direct prediction of immunogenicity

(6–9). Training these tools directly from epitope data has proven

challenging given the limited data available with accurate

immunogenicity annotations of individual peptides (10). Given

this, prediction of MHC-I antigen presentation is often used as a

proxy for CD8+ epitope prediction. However, recently several

publications have used the concept of transfer learning to refine

methods trained on MHC ligands to predict epitopes more

accurately, potentially resolving the issue of limited data volume,

resulting in many cases in large proposed performance gains (11–13).

Given this background, we here seek to improve upon the

previously developed NetMHCpan-4.1 method for prediction of

both naturally presented ligands and epitopes. We achieve this by

first integrating newly curated BA and EL data covering additional

MHC-I alleles. Second, we investigate the use of an updated version

of NNAlign_MA that incorporates new input features related to

amino acid deletions. Finally, the obtained method is further refined

using transfer learning on epitope data from the public domain in

order to learn features specific to MHC-I epitopes and hence boost

the predictive performance for their identification.
Results

We set out to capitalize on the large amount of available MHC

class I (MHC-I) peptide binding, immunopeptidome and epitope

data in order to improve upon current state-of-the-art predictors, in

particular for epitope prediction. To achieve this, we compiled a

dataset of binding affinity (BA), MS eluted ligand (EL) and epitope

data available in the public domain. We used the Immune Epitope

Database (IEDB) to collect BA data points and identified a set of

published MS immunopeptidomics datasets that were not used in

the training of NetMHCpan-4.1, allowing us to expand both the BA

and EL data. Furthermore, we collected positive and negative class I

epitopes deposited in the IEDB (14), as well as a set of positive and

negative neoepitopes from the CEDAR database (15). Then,

variants of the NNAlign_MA machine learning framework used

in NetMHCpan-4.1 were used to train a series of prediction models

for predicting MHC class I antigen presentation and CD8

+ epitopes.
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Integration of new EL training data

As a baseline, we trained a method with the re-curated BA

dataset and the EL data subset that was included in the training of

NetMHCpan-4.1 (old EL). The model was trained in a cross-

validation setup and evaluated in terms of AUC, AUC 0.1 and

PPV (for details on these metrics and the model training see

Materials and Methods). We then investigated the cross-

validation predictions on the entire EL data using this model,

including the new EL data not used during training. The

performance on the new EL data was generally lower than the

performance on the old EL data (median PPV 0.857 and 0.791,

respectively). A major source of this reduced performance was a
Frontiers in Immunology 03
significant proportion of ‘trash’ peptides with %-rank greater than

20 in many of the new samples (see Figure 1A) compared to the old

EL datasets. In Supplementary Figure S1, we show motif

deconvolutions for several of these noisy datasets, illustrating that

the predicted ‘trash’ peptides have length distributions and motifs

that do not resemble those of predicted binders. Furthermore, when

looking at the alleles covered by the new EL datasets, only a small

proportion were either completely absent or had poor peptide

coverage (<100 peptides with %-rank< 20) in the old EL data (see

Supplementary Table S1).

Given this analysis, we decided to only include new EL datasets

if they included at least one allele with a peptide count less than 100

in the old EL data, thus avoiding adding potentially low-quality
FIGURE 1

Integration of new EL data. (A) Percentage of trash peptides in old and new EL datasets. ‘New - subset’ refers to the chosen subset of EL datasets
that covers alleles with low peptide count in the old EL training data. (B) Number of unique alleles per MHC-I locus represented in the training data
without (old) and with the new EL data subset (old+new). (C) Performance on old EL samples for models trained without (old) and with the new EL
data subset (old+new). (D) Performance on the new EL data subset for models trained without (old) and with this subset (old+new). In (C, D) pairings
corresponding to greater than or equal performance in the old+new method are colored blue and otherwise red (with the line weight indicating the
magnitude of the difference), and significant results from paired t-tests are shown (*p< 0.05, ****p< 0.0001).
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datasets for alleles already covered in NetMHCpan-4.1. This yielded

a subset of 41 datasets, of which 26 are SA and 15 are MA. An

overview of the number of unique alleles represented in the old and

combined EL data is shown in Figure 1B. We then trained a new

model, again using cross-validation, including the new datasets that

enriched the covered allelic space. While maintaining the overall

performance on the old EL data (Figure 1C), a significant

performance gain on the new included EL datasets was observed,

as expected, for the model trained with these data (see Figure 1D,

p<1.3*10–5 in all metrics, paired t-tests).

Comparing the MHCs covered by at least 100 peptides with

%-rank less than 20, the method trained including the new EL data

covered a total of 163 MHC molecules, compared to 130 in the

method trained without these new data. Using the two sets of

covered MHC molecules, we compared their estimated population

coverage using data from the allelefrequencies.net database (16).

Here, the extended set of 163 molecules was estimated to have a

total coverage of ~96%, ~93% and ~97.3% for HLA-A, HLA-B and

HLA-C, respectively, corresponding to percentage point increases

of ~6.8%, ~11.4% and ~3.6%, respectively, when comparing to the

model trained without the new data. This suggests that the new EL

data yields a sizable increase in allelic coverage for all three loci.

Interestingly, several non-covered HLA-B molecules, such as HLA-

B*40:05 and HLA-B*35:43, were reported to have high allelic

frequencies in large population sample sizes, and additional

immunopeptidomics data covering these HLA-B alleles would

therefore help to close the coverage gap between HLA-B and the

other two HLA-I loci.
Encoding of deletion composition and
MHC interaction frequency

An important feature of the NNAlign_MA (and NNAlign)

method is the inclusion of insertions/deletions to yield a common

binding core length for all input peptides, regardless of length. For

peptides of length > 9, such deletions ideally should correspond to

residues bulging outwards in the peptide-MHC complex facing T

cell interaction. This means that deleted residues potentially could

share amino acid composition and/or structural properties enabling

such protrusions, allowing for potential epitope T cell engagement.

To investigate this, we modified the NNAlign_MA algorithm to

encode novel features related to amino acid deletions. In short,

peptide-MHC residue contacts were extracted from a set of peptide-

MHC structures from the PDB database (17), and the frequency of

MHC interactions for each peptide position was calculated as an

average across all structures for the given peptide length. The

average of these interaction values across the deleted positions,

along with the average BLOSUM50 encoding of the deleted amino

acids, was then encoded as additional inputs (for more details see

Methods and Materials). The rationale was that by informing the

model of the deleted residues’ amino acid composition along with

how often the given residues’ positions on average interact with the

MHC molecule, the method can make a more informed decision

about where to place the deletion within the peptide.
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Using this updated NNAlign_MA method, different models

were trained and evaluated using cross-validation on the extended

EL data set. Evaluating the impact of including only the deletion

BLOSUM50 composition (comp), a small but consistent

performance gain was observed for peptides of length 10-14

(p<0.001 in all metrics, paired t-tests). Furthermore, adding the

positional interaction frequency input feature (comp+freqs) gave an

additional gain in performance for these longer peptides (see

Figure 2A, p< 4.9·10–5 for AUC 0.1 and PPV, paired t-tests). We

further show the performance on a per peptide length basis in

Supplementary Figures S2–S8, illustrating that while similar

performance, as expected, was observed between all three

methods for length 8 and 9, an improved performance was

observed in the methods with the novel features across 10–14 mers.

We then checked if there was a difference in the placement of

deletions for peptides of length > 9 after training with the new input

features. Here, the cross-validated predictions for all positive 10–14

mers in the EL training data with a %-rank less than 20 were

included [this to exclude potential MHC irrelevant co-

immunoprecipitated contaminants from the analysis (18)], and

the positional deletion frequencies were next compared to those

obtained from a random sampling of deletions in the same peptide

sets (see Figure 2B, Supplementary Figure S9). These results show

that the comp+freqs method had a clear enrichment of deletions

placed in the middle of the peptide. This corresponds well with the

observed positional interaction frequency vectors which show that

the middle positions are rarely interacting with the MHC (Figure 2B

lower panel). It should be noted that, regardless of the input features

used, deletions are found to be depleted near the peptide termini.

This is expected due to the presence of MHC-I anchor positions in

these areas.

Given that the new interaction frequency input feature is

guiding the model to place its deletions at positions having

generally less contact with the MHC, we hypothesized that the

methods would learn to delete a different composition of amino

acids. To investigate this, we did a simple analysis and calculated the

log10 frequency ratio of each amino acid across all deleted residues

in the peptide subset described above, comparing the model with

the new features to the model without them. We then compared

these log10 ratios to the frequency of MHC interaction for each

amino acid in structures for peptides of length 10-14 (Figure 2C).

For details on how these amino acid frequencies of MHC

interaction were calculated, refer to materials and methods.

Interestingly, we observed that the log10 deletion frequency ratios

had a significant negative Pearson’s correlation with the MHC

interaction frequencies (correlation=-0.66, p=0.0015, exact

distribution test), indicating that residues which are more

enriched in deletions by the method with the new features are

observed to interact less with the MHC.

To complement this analysis, we investigated the source of the

improved predictions in the method with the new features. Briefly,

we looked at positive 10–14 mer peptides which had a lower %-rank

score in the model with the new features compared to the model

without these features, and where the %-rank score in the model

with the new features was less than 2 (in order to focus on high-
frontiersin.org
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confidence binders). For each MHC molecule, we then constructed

log10 deletion frequency ratios per amino acid and per peptide

position and visualized these as heatmaps in Supplementary Figures

S10–S15. The heatmaps reveal subtle differences between the

different MHC molecules in their deletion enrichment patterns.
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We highlight these results, along with logo plots of the predicted

binding cores for the methods without and with the new features,

for HLA-A*02:01 in Supplementary Figure S16. Here, the model

with the new features had an enriched deletion of amino acids such

as glycine (G), which was reflected in the logo plots mainly at
FIGURE 2

New input features and their impact. (A) Performance on peptides of length 10–14 in the EL training data for methods trained without new features
(old), with average deletion composition (comp) and with average deletion composition and positional interaction frequency (comp+freqs). Each dot
is an EL dataset, Significant results from paired t-tests are shown (***p< 0.001, ****p< 0.0001). (B) Top: Log10 ratio of observed frequencies for
deletion placements in 13-mers divided by frequencies obtained through random sampling of deletions in the same peptide set, for the methods
without new features (old), with average deletion composition (comp) and with average positional interaction frequency for deletion (comp+freqs).
Bottom: the positional interaction frequency vector for peptide length 13 (which was used for the training of the comp+freqs method) is shown.
(C) Relationship between observed peptide-MHC amino acid interaction frequencies and amino acid deletion. The x-axis is the log10 ratio between
amino acid frequency in the comp+freqs and old model deletions in all positive 10–14 mers in the EL training data with a %-rank less than 20
evaluated in cross-validation. The y-axis is the normalized frequency of observed interaction between the given amino acid and an MHC molecule
(for details see materials and methods). (D) The 12-mer peptide LVLEVDPNIQAV (red) and HLA-A*02:01 (grey) complex was modelled using
ColabFold (19) v1.5.5 and visualized in PyMOL (20) (for more details see materials and methods). Deletions predicted by the old and comp+freqs
models are highlighted and labeled in blue and green, respectively. Contacts between deleted residues and MHC residues within 4 Ångstrøm are
shown with dashed lines.
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positions 4 and 5. Further, when looking at the per-position

deletion frequencies in 10-mers, the highest enrichment of

deletions is observed at P4.

As a final validation of the new features’ positive impact on the

predictions, we selected one of the improved peptides from above

binding HLA-A*02:01 (LVLEVDPNIQAV) which had different

deletions predicted by the methods with and without the new

features, and modeled the peptide-HLA complex using ColabFold

(19) v1.5.5. Note, that this peptide was not part of any of the PDB

structures used to define the interaction frequency input feature. As

illustrated in Figure 2D, the method with the new features predicted

a deletion of positions 6-8 (DPN, shown in green) which are bulging

outwards from the MHC binding cleft, with two out of three

residues not having any contact with the MHC using a distance

threshold of 4 Ångstrøm. On the other hand, the method without

the new features predicted a deletion of positions 2-4 (VLE, shown

in blue) which are all in contact with the MHC, again using a

threshold of 4 Ångstrøm. Together, these results suggest that the

model with the new features has learned biologically relevant

information and can more accurately identify which amino acids

are relevant for the peptide’s interaction with the MHC and which

are bulging outwards from the binding cleft facing interaction with

potential T cell receptors.
Incorporation of peptide context

For MHC class II, residues flanking the peptide in the source

protein have been shown to contain important information

regarding antigen processing, and incorporating this peptide

context information into the NetMHCIIpan methods has been

shown to boost antigen presentation prediction performance (21).

To investigate to what degree a similar approach could boost the

performance for class I, the comp+freqs model described above was

retrained using peptide context and evaluated in the same cross-

validation setup. As described earlier for MHC class II (21), peptide

context was here defined as a 12-mer sequence consisting of three

residues flanking the peptide’s N- and C-terminal in the source

protein, along with the first three residues in the peptide’s N- and C-

terminal. In line with previous results for MHC class II, a highly

significant performance increase was observed for the model

including context across all metrics (p<2.4·10–12 in all cases,

paired t-tests, see Supplementary Figure S17). In line with

previous research (22, 23), however, inclusion of peptide context

did not yield improved performance for prediction of CD8+

epitopes (see Supplementary Figure S18).
Model refinement on epitope data

Having arrived at an updated model that improves performance

on prediction of antigen presentation, we next focused on the

uttermost important task in the context of MHC class I, namely

epitope prediction. Specifically, we sought to improve the model’s

ability to identify epitopes through transfer learning by refining the
Frontiers in Immunology 06
model trained to predict antigen presentation on experimentally

validated epitopes. We employed a set of epitope and neoepitope

data downloaded from the IEDB and CEDAR databases,

respectively. The datasets were initially merged with the EL and

BA training data and divided into cross-validation partitions,

ensuring no peptide overlap between partitions. Then, epitope

subsets of these datasets were extracted for training and testing,

such that there was no 8-mer overlap between the test and training

epitopes. Using these datasets, we investigated how refining on each

dataset (IEDB vs CEDAR) impacted the model’s ability to predict

the unseen test set epitopes from either database. As baselines, we

used predictions from NetMHCpan-4.1, the non-refined version of

the comp+freqs method, as well as models trained on the epitope

training sets with NNAlign-2.1 (24). For more details on the

training and test set construction and the NNAlign baselines,

refer to materials and methods.

Evaluating first the performance on the IEDB test set, we

observed that the model fine-tuned on IEDB epitopes had the

highest overall performance, with a significant gain over all the

baseline methods (Figure 3A). However, this performance gain was

not present for the model refined on the CEDAR data. Here, a

performance loss was observed compared to the non-fine-tuned

model. A similar observation was found for the models evaluated on

the CEDAR test data. Here, a significant gain in AUC compared to

the NNAlign baseline, as well as a significant gain in AUC 0.1 over

NetMHCpan-4.1 and our new non-refined method, was observed

for the method refined on the CEDAR neoepitopes (Figure 3B).

However, the model fine-tuned on IEDB data demonstrated a

performance loss compared to the baseline models for this

evaluation data set. These observations indicate that the transfer

learning approach works favorably only when applied to the test set

from the same data source used for the fine-tuning, suggesting that

the features defining immunogenicity in the IEDB and CEDAR

datasets differ and do not transfer to each other.

To further investigate this observation and understand what the

refined models had learned from the epitope and neoepitopes, we

looked at the differences in amino acid composition of high-ranking

peptides in each method. Here, the amino acid composition of the

top 1% of 125,000 random 8–12 mer peptides across all MHC

molecules with unique pseudo-sequences (25) in the IEDB and

CEDAR training data MHCs was calculated for both the refined

methods and the non-refined method, and the log-odds ratio

between the amino acid frequencies in the refined methods and

the non-refined methods were visualized in Figure 3C.

Comparing these amino acid compositions, we observed a

significantly higher proportion of tryptophan (W) in the IEDB-

refined predictions compared to the non-refined method

(Benjamin-Hochberg adjusted p=0.0004, permutation test with

10,000 resamples). Likewise, we find that this enrichment is

absent from the CEDAR refined method, aligning with findings

in previous research on epitope immunogenicity (7). Furthermore,

both the IEDB and CEDAR refined methods had an increased

frequency of cysteine (C) than the non-refined method (Benjamin-

Hochberg adjusted p=0.0004 in both cases, permutation tests with

10,000 replications). Cysteine is underrepresented in MS-based
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immunopeptidomics data (26), but not so in epitopes, and therefore

fine-tuning on epitopes has at least in part corrected for this bias.

A similar analysis as above was done in order to investigate

potential compositional differences in amino acid deletions across

the different methods (see Supplementary Figure S19). Here, we

observed that hydrophobic amino acids were highly enriched

among deletions in both the IEDB-refined and CEDAR-refined

methods compared to that of the non-refined method.

Overall, refinement on neoepitopes yielded a smaller performance

gain on the CEDAR test set in comparison to the IEDB test

performance after IEDB epitope refinement. This is likely at least in
Frontiers in Immunology
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part due to the smaller neoepitope training dataset size, with only 3,297

CEDAR data points compared to 23,891 IEDB data points. As a side

remark, inclusion of peptide context in the context of model refinement

also did not yield improved performance after refinement for both the

IEDB and CEDAR datasets (see Supplementary Figure S18).

Overall, these findings suggest that the refined methods have

captured signals defining the different amino acid compositions

between MS identified antigen presented peptides and epitopes, and

that these differences serve as a driving factor behind the improved

predictive performance after fine-tuning on data from IEDB

and CEDAR.
FIGURE 3

Transfer learning yields improved epitope and neoepitope prediction. (A) Performance on the IEDB test set for netMHCpan-4.1, NNAlign-2.1 trained
on IEDB (NNAlign_iedb), our non-refined method (before_finetune), and our methods refined on IEDB (finetune_iedb) and CEDAR (finetune_cedar).
(B) Performance on the CEDAR test set for netMHCpan-4.1, NNAlign-2.1 trained on CEDAR (NNAlign_cedar), our non-refined method
(before_finetune), and our methods refined on IEDB (finetune_iedb) and CEDAR (finetune_cedar). In (B, C) each dot is an MHC-I molecule, and
significant results from paired t-tests are shown (*p< 0.05, **p< 0.01, ***p< 0.001, ****p< 0.0001). (C) Log-odds ratios of average amino acid
frequencies in the top 1% of 125,000 random 8–12 mer peptides across all MHC molecules with unique pseudo-sequences in the IEDB and CEDAR
training data. Each bar is equal to the log10 of the average frequency in the refined method divided by the average frequency in the non-refined
method. The result from a permutation test with 10,000 replications between the amino acid frequency vectors across MHCs is shown above each
bar (ns, not significant, *p< 0.05, **p< 0.01, ***p< 0.001, p-values are adjusted for multiple testing using Benjamini-Hochberg correction). Amino
acids are grouped by the properties of their side chains.
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NetMHCpan-4.2

The final models were implemented as a webserver available at

https://services.healthtech.dtu.dk/services/NetMHCpan-4.2.

Predictions can be made in three ‘modes’, namely antigen

presentation prediction (EL and BA method), pathogen epitope

prediction (IEDB fine-tuned method), and neoepitope prediction

(CEDAR fine-tuned method). Furthermore, an option to include

peptide context is available for the antigen presentation method.
Discussion

Here we aimed to enhance the predictive accuracy of MHC-I

antigen presentation and epitope identification by integrating newly

curated binding affinity (BA) and eluted ligand (EL) datasets,

refining the NNAlign_MA machine learning framework, and

leveraging transfer learning for epitope prediction.

The inclusion of newly curated EL data sets yielded an increase

in both the number of unique MHC alleles covered and their

estimated population coverage based on allelic frequency data,

improving our method’s worldwide applicability. Furthermore,

the use of amino acid deletion composition and interaction

frequency as input features to the NNAlign_MA method

significantly enhanced prediction accuracy for longer 10–14 mer

peptides. When investigating the deletions by our method in these

peptides, the amino acid composition was found to be strongly

inversely correlated with the composition of residue interactions in

peptide-MHC protein structures from the PDB. Importantly, this

correlation was found to be absent for the model trained without

this additional input, suggesting that the new model has captured

essential structural properties associated with the positional and

amino acid compositional importance of residues interacting with

the MHC and residues facing out towards the T cell receptor.

Our study also explored the incorporation of peptide context in

MHC-I binding predictions, a feature previously demonstrated to

be important for MHC-II predictions. The observed improvement

in predictive performance across all evaluation metrics suggests that

flanking residues contribute meaningfully to MHC-I antigen

processing and presentation. However, and in line with earlier

work, this performance gain did not carry over to the prediction

of CD8 epitopes.

Refinement of the predictive model using transfer learning on

epitope datasets of pathogen (from the IEDB) or cancer (neo-epitopes

from CEDAR) origin demonstrated that epitope-specific features could

be learned to enhance immunogenicity predictions. The performance

gain observed in IEDB and CEDAR test sets after dataset-specific fine-

tuning however demonstrated a dataset-specific nature of epitope

prediction. That is, methods refined on pathogen derived epitopes

did not demonstrate improved performance on neo-epitopes and vice

versa. Investigating the amino acid enrichment among predicted

binders revealed subtle differences in amino acid preferences between

the IEDB- and CEDAR-refined methods, suggesting that these

differences may prevent performance improvement on opposite
Frontiers in Immunology
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datasets. One clear example of this is the enrichment of tryptophan

(W), which was only present in the IEDB-refinedmethod, aligning well

with previous studies which have shown a lack of tryptophan

enrichment in neoepitopes (7). However, both refined methods

shared a clear enrichment of cysteine, which likely stems from the

underrepresentation of cysteine in MS immunopeptidomics data

which is not present in the IEDB or CEDAR epitope datasets.

Overall, especially for neoepitopes, the performance gains after

transfer learning were limited. This finding is in contrast to previous

publications which have claimed large performance improvements

over antigen presentation predictions methods through neo-epitope

transfer learning (11, 12). Our results thus call into question

potential issues of performance overestimation of these earlier

studies, and the extent to which the current availability of

validated epitope data is sufficient to significantly improve

predictive accuracy of machine learning methods.

In conclusion, our findings illustrate the benefits of integrating high-

quality immunopeptidome data, refining computational frameworks,

and leveraging transfer learning to improve MHC-I antigen

presentation and epitope prediction. The final model is publicly

available at https://services.healthtech.dtu.dk/services/NetMHCpan-4.2,

facilitating broader application in immunological research.
Materials and methods

Allelic frequencies

Allelic frequencies for HLA-A, HLA-B and HLA-C were

obtained from the allelefrequencies.net database (16). Only

datasets with the gold or silver standard were considered, which

includes datasets with at least two-digit HLA typing. The allele

frequencies were then calculated as an average over world-wide

populations of size 100 and above, weighted by population size

capped at a maximum value of 10,000. For a complete list of the

calculated frequencies, see Supplementary Table S2.
Binding affinity data

Binding affinity (BA) data was sourced from the Immune

Epitope Database (IEDB) and includes 197,504 measurements

covering 173 MHC-I molecules. Of these, 8,624 measurements

were not included in the NetMHCpan-4.1 BA training data. The

IC50 affinity values were transformed as described earlier (27) into

the [0,1] range using the following relation:

f (x) = 1 −
log (x)

log (50, 000)

Furthermore, artificial negative BA data points with assigned

target values of 0.01 were generated for each allele by sampling 100

random peptides of length 8–14 from the given allele’s organism’s

proteome, ensuring that none of the sampled peptides were present

in the true BA data.
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Eluted ligand data

As a starting point, we collected the eluted ligand (EL) training

data from NetMHCpan-4.1, keeping all the positive peptides of

length 8-14. We then queried the Immune Epitope Database

(IEDB) for MHC class I immunopeptidomics datasets derived from

recent publications not included in NetMHCpan-4.1 and with at least

1000 ligands listed in the IEDB. These immunopeptidome datasets

were extracted manually from each publication, keeping only samples

with full HLA typing and including all peptides of length 8–14

without post-translational modifications. The new EL datasets were

combined with the NetMHCpan-4.1 training data for further data

processing described below.

The peptide ligands from each EL dataset (both from the newer

publications and the NetMHCpan-4.1 training data) were mapped

to the proteome of the given source organism in order to define

ligand context. Around 2.2% of the ligands could not be mapped

and were thus discarded.

After removing 96,404 {peptide, HLA type} combinations in the

new EL data which were also present in the NetMHCpan-4.1 EL

data, each EL dataset was then supplemented with random negative

peptides derived from the proteome of the given sample’s source

organism. This enrichment was done in a per-sample id manner by

uniformly sampling 8–14 mer peptides in an amount equal to five

times the number of ligands for the most common peptide length in

the given sample. By sampling the negatives from the same

proteome as the positives for each dataset, we ensured that no

information was leaked between samples of different source

organisms. Furthermore, since the sampling was done uniformly

across peptide lengths, we ensured that differences in peptide length

distribution across datasets would not affect the learning.

Before filtering away new EL samples not used during training

(see below), the EL dataset consists of 1,509,068 positive ligands and

31,595,388 random negative peptides across 465 samples. Of these,

the new EL data consists of 861,258 positives and 18,276,213

negatives across 215 samples.

Only a subset of the new EL samples were ultimately included in

the training and evaluation. These datasets had alleles with peptide

counts less than 100 (excluding peptides with %rank > 20 in the

cross-validation) in the old EL data. A total of 41 new EL samples

from nine publications were included here (28–36). An overview of

the entire training dataset can be found in Supplementary Table S3.

Furthermore, an overview of the EL datasets not included in our

final training data set is included in Supplementary Table S4. The

entire EL training dataset consists of 792,905 positives and

16,556,256 negatives, of which 145,095 positives and 3,237,081

negatives are from the newly included EL samples. In total, the

EL training data covers 201 MHC class I molecules, of which 27 are

completely unique to the newly included EL samples.
Epitope data

The IEDB was queried for positive and negative class I epitope

assays. Only epitopes of length 8–14 with MHC allele typing, no
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post-translational modifications and with known source protein

were considered. Each epitope-allele pair was labeled a positive if

that pair had at least one positive assay, and otherwise negative. In

order to investigate the impact of peptide context encoding on

epitope prediction, only epitopes which could be mapped to their

annotated source protein were included. This led to a total of 42,921

data points (10,302 positives and 32,619 negatives).
Neoepitope data

A set of neoepitopes were downloaded from the Cancer Epitope

Database and Analysis Resource (CEDAR), keeping only

neoepitopes of length 8–14 with HLA allele typing. Similarly to

the IEDB data, {neoepitope, HLA allele} pairs with at least one

positive assay were labeled as positive, and the rest as negatives.

Furthermore, the wild-type peptide variants of the neoepitopes were

mapped to the human proteome to define peptide context. Here,

~1.7% of the wild-type peptides could not be mapped and the

corresponding neoepitopes were therefore discarded. This resulted

in a total of 5172 data points (1188 positives and 3984 negatives).
Data partitioning

The EL, BA, epitope and neoepitope datasets were merged and

split into five cross-validation partitions using the common motif

approach (37), ensuring that peptides sharing at least an 8-mer

overlap were placed in the same partition.
Peptide-MHC interaction frequency

A set of peptide-MHC-I structures were downloaded from the

Protein Data Bank (PDB) (17). For each structure, we required that

its accompanying FASTA file contained a peptide of length 10–14

with standard amino acids. After filtering away structures with

other protein chains than the MHC (e.g. T-cell receptors and

antibodies), a total of 213 structures were retrieved (a complete

list of the included structures is given in Supplementary Table S5).

For each structure, we counted how many times each peptide

position’s residue was within 4 Ångstrøm of a residue in the

MHC molecule, ensuring that only positions with standard amino

acids contributed. To counteract the low number of available

structures for longer peptides, a pseudocount of 1 was added to

each position in every count vector. Each count vector was then

transformed to a frequency vector by dividing each element by the

count vector sum. Finally, the average frequency vector for each

peptide length across the included structures was calculated. For

each peptide length, the average frequency vector thus indicates

how often each peptide position is in contact with the MHC

(regardless of which residue is in the given peptide position)

across the structures with peptides of the given length.

A per-amino acid frequency of interaction was used to

investigate the correspondence between peptide amino acid
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deletions and the deleted residues’ propensity to interact with the

MHCmolecule. This was done by first counting for each amino acid

how many peptide-MHC residue contacts within 4 Ångstrøm were

observed across all structures and normalizing that count by the

number of PDB structures that included these contacts. These

normalized counts were then transformed to frequencies by

dividing by the sum across all amino acids.
Training on EL and BA data

All models were trained with the NNAlign_MA machine

learning framework (2) using either the original method or a

modified version (see below). We used a similar training setup to

that used for NetMHCpan-4.1 (3). That is, each model consists of

an ensemble of 100 neural networks each with one hidden layer

holding either 56 or 66 hidden neurons, with 10 random weight

initializations for each of the 5 cross-validation folds (2

architectures, 10 seeds, and 5 folds). The weights were initialized

randomly as either -0.1 or 0.1. All models were trained using

backpropagation with stochastic gradient descent using a constant

learning rate of 0.05, for 200 epochs with early stopping. Only single

allele (SA) data were included in the training for a burn-in period of

20 epochs. Subsequent training cycles included multi-allele

(MA) data.

To investigate the performance impact of the new EL data, two

initial models were trained with the original NNAlign_MAmethod.

One of these models used BA data along with only the EL data

found in the NetMHCpan-4.1 training data. The other model

included new EL datasets that contained alleles covered with less

than 100 peptide annotations (with %-rank< 20) in the older

NetMHCpan-4.1 EL data.

The NNAlign_MA machine learning method was next

modified to include new encoding options related to amino acids

deletions. Firstly, the deletion composition was encoded with 20

input values corresponding to the average BLOSUM50 encoding

vector of the deleted residues. Furthermore, the average positional

MHC interaction frequency from the vectors described earlier was

encoded with two input values, average frequency and 1 - average

frequency. For 8- and 9-mer peptides, no deletions are performed,

and in these cases the novel features were instead represented by 20

zeros for the average BLOSUM50 deletion encoding, and [0,1] for

the average positional interaction frequency encoding. The same

was done for 10+ mers for which a 9-mer sub-sequence without

deletions is selected as the binding core.

Another set of models were trained to investigate the impact of

the new input features. The first of these included the deletion

composition, and the second one included both the deletion

composition and the average positional interaction frequency.

The model with both new input features was included in the

NetMHCpan-4.2 method as the base EL/BA prediction method.

The final model described above was also trained with peptide

context encoding. Here, peptide context refers to three residues

flanking the peptide’s N- and C-terminal in the source protein,

along with the first three residues in the peptide’s N- and C-
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terminal, all concatenated into a sequence of 12 amino acids. In

cases of missing context residues due to the peptide being located

near the ends of the protein sequence, each missing residue was

represented by X and encoded with 20 zeros. An overview of the final

NetMHCpan-4.2 model architecture is shown in Supplementary

Figure S20.
Structural modelling and visualization

The 12-mer peptide LVLEVDPNIQAV in complex with HLA-

A*02:01 was modelled using ColabFold (19) v1.5.5 (accessed at

https://colab.research.google.com/github/sokrypton/ColabFold/

blob/main/AlphaFold2.ipynb). The query sequence was set as the

full-length HLA-A*02:01:01:01 sequence spanning positions 25 to

204 [as obtained from the IPD-IMGT/HLA database (38)] followed

by a colon and the peptide sequence LVLEVDPNIQAV. All other

parameters were set as default. Among the five models generated,

the top-ranked model was selected and visualized using PyMOL

(20) version 3.0.3.
Fine-tuning on epitope data

The models obtained from training on EL and BA were used as

a starting point to transfer learn epitope prediction. In order to

fairly evaluate the impact of the fine-tuning, training and external

test sets were made as described below.

For each of the IEDB and CEDAR datasets, we constructed an

external test set with at least 5 positives and 5 negatives for each

allele. This was done by first considering the set of epitopes without

8-mer overlap to the EL data, BA data and epitope data from the

opposite source (such that none of the selected IEDB test epitopes

would overlap with any potential CEDAR training epitopes and vice

versa). Then, for each allele in this epitope set, we added 2/3 of the

positives and negatives to the test set if this fraction corresponded to

at least 5 positives and 5 negatives. This was done to ensure that

alleles in the external test set were also represented in the training

data. All other epitopes were then assigned to their respective cross-

validation partition if they did not have an 8-mer overlap to the

constructed test set. This resulted in test sets of 10,621 IEDB

epitopes (2,298 positives and 8,323 negatives) and 1,486 CEDAR

neoepitopes (315 positives and 1,171 negatives). The reduced

training sets (each consisting of five cross-validation partitions)

then consisted of 23,891 IEDB data points and 3,297 CEDAR

data points.

The final models obtained from training on EL and BA data

were fine-tuned by continuing the training on the BA and epitope/

neoepitope training and validation partitions, where each model

was trained for up to 100 epochs, applying early stopping. For the

epitope and neoepitope training partitions, we applied label

smoothing by assigning target values of 0.95 and 0.05 instead of 1

and 0 to positives and negatives, respectively, in order to reduce

overfitting. Furthermore, for the CEDAR refinement we used a focal

loss function for the neoepitope predictions with alpha=0.5 and
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gamma=1.0 (39), and applied a burn-in period of 20 epochs in

which we upsampled positive neoepitopes to have an even

proportion of positive and negative neoepitopes for training.

The performances of the refined models were compared with

baseline models trained using NNAlign-2.1 (24). For both the IEDB

and CEDAR datasets, an ensemble of 25 models was trained

corresponding to five random seeds for each CV partition. Each

network had 10 hidden neurons, and the same input features except

for the new features introduced in this manuscript were used. The

models were trained for 100 epochs with early stopping and with

the burn-in option turned off.

The final refined models included in NetMHCpan-4.2 were

fine-tuned on the entire IEDB or CEDAR epitope training sets

without removed data points for the purpose of external test set

construction, using the same training procedure as described above.
Performance evaluation

Predictive performance was evaluated in a per-sample or per-

allele manner in terms of the area under the Receiver Operating

Characteristic (ROC) curve (AUC), area under the ROC curve

integrated up to a false positive rate of 10% (AUC 0.1) and positive

predictive value (PPV). Here, PPV is defined as the fraction of true

positives in the top N predictions, where N is the number of

positives for the given sample or allele. For the EL performance

evaluation, only samples with at least 5 positive peptides were

included. We are aware that using the same test fold for both early

stopping and performance evaluation can in some cases lead to

performance overestimation. However, we show in Supplementary

Figure S21 that training our final models without early stopping

yields virtually the same cross-validated EL performance, thus

justifying that the degree of performance overestimation is very

limited if at all present.
Data visualization

Data visualizations were created in Python 3.12.9 using the

matplotlib (version 3.10.1) and seaborn (version 0.13.2) libraries.

Sequence logos were generated with Seq2Logo-2.0 (40).
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SUPPLEMENTARY FIGURE 1

Motif deconvolution reveals high levels of ‘trash’ peptides in new datasets.
Motif deconvolutions were performed for four newly analyzed single-allele

datasets corresponding to HLA-A29:02, HLA-B54:01, HLA-B57:01, and HLA-

C04:01, based on cross-validation predictions. The datasets were obtained
from Sarkizova et al., 2020 (PMID: 31844290) and Mei et al., 2020 (PMID:

32357974). For each dataset, peptides with a %-rank >20 were annotated as
‘trash’, while those with a %-rank ≤20 were annotated as binders for the

corresponding HLA molecule. Each row represents one dataset and shows,
from left to right: the number of peptides assigned to the HLA and trash

categories, peptide length distributions, the motif of predicted binders, and

the motif of predicted trash peptides.
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SUPPLEMENTARY FIGURE 2

Cross-validated performance on peptides of length 8 for methods trained
without new features (old), with average deletion composition (comp) and

with average positional interaction frequency for deletion (comp+freqs). Each
point is a dataset from the EL training data. Significant results from paired t-

tests are shown (*p< 0.05).

SUPPLEMENTARY FIGURE 3

Cross-validated performance on peptides of length 9 for methods trained
without new features (old), with average deletion composition (comp) and

with average positional interaction frequency for deletion (comp+freqs). Each
point is a dataset from the EL training data. Significant results from paired t-

tests are shown (*p< 0.05).

SUPPLEMENTARY FIGURE 4

Cross-validated performance on peptides of length 10 for methods trained
without new features (old), with average deletion composition (comp) and

with average positional interaction frequency for deletion (comp+freqs). Each
point is a dataset from the EL training data. Significant results from paired t-

tests are shown (*p< 0.05).

SUPPLEMENTARY FIGURE 5

Cross-validated performance on peptides of length 11 for methods trained
without new features (old), with average deletion composition (comp) and

with average positional interaction frequency for deletion (comp+freqs). Each
point is a dataset from the EL training data. Significant results from paired t-

tests are shown (*p< 0.05).

SUPPLEMENTARY FIGURE 6

Cross-validated performance on peptides of length 12 for methods trained
without new features (old), with average deletion composition (comp) and

with average positional interaction frequency for deletion (comp+freqs). Each
point is a dataset from the EL training data. Significant results from paired t-

tests are shown (*p< 0.05).

SUPPLEMENTARY FIGURE 7

Cross-validated performance on peptides of length 13 for methods trained
without new features (old), with average deletion composition (comp) and

with average positional interaction frequency for deletion (comp+freqs). Each
point is a dataset from the EL training data. Significant results from paired t-

tests are shown (*p< 0.05).

SUPPLEMENTARY FIGURE 8

Cross-validated performance on peptides of length 14 for methods trained
without new features (old), with average deletion composition (comp) and

with average positional interaction frequency for deletion (comp+freqs). Each
point is a dataset from the EL training data. Significant results from paired t-

tests are shown (*p< 0.05).

SUPPLEMENTARY FIGURE 9

Log10 ratio of observed frequencies for deletion placements in 10-14-mers
divided by frequencies obtained through random sampling of deletions in the

same peptide set, for the methods without new features (old), with average
deletion composition (comp) and with average deletion composition and

positional interaction frequency for deletion (comp+freqs). Below each log10
frequency ratio plot, the positional interaction frequency vector for the given

peptide length (which was used for the training of the comp+freqs method)

is shown.

SUPPLEMENTARY FIGURE 10

Log10 deletion frequency ratio per amino acid across alleles, calculated between

the method with the new features and the method without the new features per
amino acid. The ratios were calculated based on 10–14 mer peptides with

improved %-rank in the method with the new features compared to the

method without, and where the %-rank for the method with the new features
was less than 2. Only alleles with at least 100 peptides were included.

SUPPLEMENTARY FIGURE 11

Log10 deletion frequency ratio per position in 10-mer peptides, calculated
between the method with the new features and the method without the new

features per amino acid. The ratios were calculated based on peptides with

improved %-rank in the method with the new features compared to the
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method without, and where the %-rank for the method with the new features
was less than 2. Only alleles with at least 100 peptides were included.

SUPPLEMENTARY FIGURE 12

Log10 deletion frequency ratio per position in 11-mer peptides, calculated

between the method with the new features and the method without the new
features per amino acid. The ratios were calculated based on peptides with

improved %-rank in the method with the new features compared to the
method without, and where the %-rank for the method with the new features

was less than 2. Only alleles with at least 100 peptides were included.

SUPPLEMENTARY FIGURE 13

Log10 deletion frequency ratio per position in 12-mer peptides, calculated
between the method with the new features and the method without the new

features per amino acid. The ratios were calculated based on peptides with
improved %-rank in the method with the new features compared to the

method without, and where the %-rank for the method with the new features
was less than 2. Only alleles with at least 100 peptides were included.

SUPPLEMENTARY FIGURE 14

Log10 deletion frequency ratio per position in 13-mer peptides, calculated

between the method with the new features and the method without the new
features per amino acid. The ratios were calculated based on peptides with

improved %-rank in the method with the new features compared to the
method without, and where the %-rank for the method with the new features

was less than 2. Only alleles with at least 100 peptides were included.

SUPPLEMENTARY FIGURE 15

Log10 deletion frequency ratio per position in 14-mer peptides, calculated
between the method with the new features and the method without the new

features per amino acid. The ratios were calculated based on peptides with
improved %-rank in the method with the new features compared to the

method without, and where the %-rank for the method with the new features

was less than 2. Only alleles with at least 100 peptides were included.

SUPPLEMENTARY FIGURE 16

Impact of new features onmotif deconvolution for HLA-A02:01. The plots are

based on peptides with improved %-rank in themethod with the new features
compared to the method without, and where the %-rank for the method with

the new features was less than 2. (A) Sequence logos of predicted binding
cores for the methods without and with the new features. (B) Log10 deletion

frequency ratio per amino acid (left) and per position in 10-mer peptides

(right), calculated between themethodwith the new features and themethod
without the new features.

SUPPLEMENTARY FIGURE 17

Cross-validated performance of models trained without and with context
encoding. Each point is a dataset from the EL training data. Pairings

corresponding to greater than or equal performance in the w_context

method are colored blue and otherwise red (with the line weight indicating
the magnitude of the difference). Significant results from paired t-tests are

shown (****p< 0.0001).

SUPPLEMENTARY FIGURE 18

Performance of models without and with context encoding on external epitope

and neoepitope test sets. (A) Performance on external IEDB test set before

(wo_context_before, w_context_before) and after (wo_context_finetune_iedb,
w_context_finetune_iedb) fine-tuning on the IEDB training data. (B)
Performance on external CEDAR test set before (wo_context_before,
w_contex t_be fore ) and a f te r (wo_contex t_fine tune_ceda r ,

w_context_finetune_cedar) fine-tuning on the CEDAR training data. In (A, B),
significant results from paired t-tests are shown (*p< 0.05, **p< 0.01,

***p< 0.001).

SUPPLEMENTARY FIGURE 19

Log-odds ratios of average amino acid frequencies in the deletions of top 1%
of 75,000 random 10–12 mer peptides across all MHCmolecules with unique

pseudo-sequences in the IEDB and CEDAR training data. Each bar is equal to
the log10 of the average frequency in the refined method divided by the

average frequency in the non-refined method. The result from a permutation

test with 10,000 replications between the amino acid frequency vectors
across all MHCs is shown above each bar (ns: not significant, *p< 0.05, **p<
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0.01, ***p< 0.001, p-values are adjusted for multiple testing using Benjamini-
Hochberg correction). Amino acids are grouped by the properties of their

side chains.

SUPPLEMENTARY FIGURE 20

Overview of the NetMHCpan-4.2 architecture. The input layer consists of a
list of features related to the peptide and MHC molecule. The input features

are connected to a single hidden layer, which in turn is connected to an
output layer with two neurons predicting either binding affinity or eluted

ligand likelihood. Orange boxes correspond to sequence inputs which are
encoded using the BLOSUM50 matrix. Green boxes correspond to the novel

features related to residue deletions. Note that the peptide context input is

only used for the models trained with this feature.

SUPPLEMENTARY FIGURE 21

Cross-validated performance when training models using the final

NetMHCpan-4.2 architecture with and without early stopping. In the ‘with
early stopping’ method, each model was trained for up to 200 epochs, and

the model with the lowest squared error In our cross-validation, the early

stopping is done on the same test fold which is used to evaluate the models.
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SUPPLEMENTARY TABLE 1

Overview of the included new EL samples and their alleles with low peptide
counts in the old EL data.

SUPPLEMENTARY TABLE 2

Allelic frequencies from allelefrequencies.net. The frequencies are provided

in the external file ‘table_s2.xlsx’.

SUPPLEMENTARY TABLE 3

Complete training data overview. The table is provided in the external

file ‘table_s3.xlsx’.

SUPPLEMENTARY TABLE 4

Overview of datasets not included in the final NetMHCpan-4.2 training data.
The table is provided in the external file ‘table_s4.xlsx’.

SUPPLEMENTARY TABLE 5

Overview of peptide-MHC structures obtained from the PDB database used

for calculating positional and amino-acid specific interaction frequencies.

The table is provided in the external file ‘table_s5.xlsx’.
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