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Chronic endometritis (CE) is a persistent inflammatory disorder of the

endometrium, associated with infertility, recurrent pregnancy loss, and

implantation failure. Diagnosis primarily depends on hysteroscopy and

immunohistochemistry, while microbial dysbiosis and antibiotic resistance pose

significant challenges to effective management. The pathogenesis of CE involves

microbial infections that induce immune dysregulation through TLR/NLR signaling

pathways, metabolic reprogramming of immune cells, miRNA-mediated

inflammatory responses, and DNA methylation alterations. The activation of pro-

inflammatory mediators and the NLRP3 inflammasome further aggravates

endometrial dysfunction. Treatment typically includes oral antibiotics and

intrauterine therapies, although their efficacy is variable. Probiotics have

demonstrated potential in restoring microbial balance. This review outlines the

inflammatory mechanisms underlying CE and recent therapeutic advancements,

highlighting potential targets for improving treatment outcomes.
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1 Introduction

Chronic endometritis (CE) is a persistent inflammatory condition localized to the

endometrium, strongly linked to adverse pregnancy outcomes, including infertility,

recurrent pregnancy loss, and recurrent implantation failure (1, 2). Diagnosis primarily

relies on hysteroscopic examination and immunohistochemical staining. Common

hysteroscopic and histological manifestations of CE include stromal edema, focal

congestion, increased stromal cell density, and infiltration of abnormal plasma cells in

the endometrial stroma (3, 4).

Recent developments have shifted the understanding of CE from a purely infectious

etiology to a complex immunological disorder (5). Microbial dysbiosis within the

endometrium disrupts microbial balance and triggers dysregulated immune responses

involving both innate and adaptive immunity (6, 7). Key inflammatory pathways, such as

Toll-like receptors (TLRs), NOD-like receptors (NLRs), and downstream NF-kB signaling,

alongside inflammasome activation and metabolic reprogramming of immune cells, are
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central to the persistence of chronic inflammation and impaired

endometrial receptivity (8–10). Therapeutically, empirical

antibiotic regimens, such as doxycycline and metronidazole, have

shown efficacy in histological resolution and partial improvement

in reproductive outcomes (11, 12). Several studies report significant

increases in clinical pregnancy and live birth rates following

antibiotic treatment in women with CE undergoing in vitro

fertilization (IVF) (13). However, other studies indicate that a

subset of patients with CE experience persistent inflammation or

poor reproductive outcomes despite standard treatment (14, 15),

highlighting the heterogeneity of treatment responses and

underscoring the need for adjunctive strategies such as

intrauterine therapy or immunomodulation.

Despite advancements in characterizing CE pathophysiology

and developing management strategies, several knowledge gaps

persist. The absence of standardized diagnostic criteria, variability

in therapeutic response, and limited understanding of immune-

microbiota interactions continue to impede effective clinical

translation. This review synthesizes current insights into the

immunological mechanisms underlying CE, with a focus on TLR/

NLR signaling, immune cell metabolic rewiring, miRNA-mediated

inflammation, and epigenetic dysregulation, while evaluating recent

therapeutic advances, including antibiotics, intrauterine infusion,

and probiotic-based approaches. By summarizing mechanistic and

clinical evidence, this review provides a comprehensive framework

for guiding future diagnostic and therapeutic innovations in CE.
2 Causes of chronic endometritis

2.1 Microbial infection

CE is characterized by a localized active infection in the

endometrium, disrupting the balance between the uterine

microbiome and immune system. Traditional perspectives have

emphasized the cervix as a key barrier between the uterus and

vagina, with the dominance of lactobacilli in the vaginal microbiota

maintaining uterine sterility by suppressing pathogenic

microorganisms. Cicinelli et al. (16) used microbial culture

techniques to detect a variety of microorganisms in the

endometrium of patients with CE, including Streptococcus,

Enterococcus faecalis, Escherichia coli, and Ureaplasma urealyticum,

thus confirming the presence of microbial communities within the

uterine cavity. Common pathogens associated with acute

endometritis, such as Chlamydia trachomatis and Neisseria

gonorrhoeae, are typically introduced into the uterine cavity

through ascension from the vaginal microbiota (17). However,

these pathogens are rarely detected in patients with CE, suggesting

that the pathogenesis of CE differs from that of acute endometritis.

The presence of microorganisms within the uterine cavity is now

widely accepted, and given the effectiveness of antibiotic therapy,

microbial infection is considered a primary contributor to CE.

However, in some cases, endometrial pathogen cultures are

negative, and antibiotic treatments fail, implying that multidrug-

resistant organisms may play a role in the development of CE (18).
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2.2 Non-infectious factors

Recent research also highlights that non-infectious factors,

including immune dysfunction, endocrine disorders, and

environmental influences, may contribute to CE pathogenesis

(19–21). Elevated levels of pro-inflammatory cytokines and an

increased presence of immune cells, such as T-helper 17 (Th17)

cells and M1 macrophages, are commonly observed in CE,

indicating that immune system dysfunction may perpetuate the

condition (22, 23). Hormonal imbalances, such as those seen in

endometriosis and elevated estrogen levels, may influence the

susceptibility and severity of CE (24). These endocrine

disruptions can affect immune cell function, endometrial

receptivity, and inflammatory responses, further contributing to

the chronicity of the disease (19). Additionally, exposure to

environmental factors, such as smoking (25), may impact

immune function and the microbiome (26), potentially

exacerbating CE. The interaction between environmental toxins

and the immune system may contribute to altered immune

responses, increasing the endometrium’s susceptibility to

chronic inflammation.
3 Immune cells and cytokines in the
pathogenesis of CE

3.1 TLR and NLR in the pathogenesis of
chronic endometritis

Lipopolysaccharide (LPS) is a key pathogen-associated

molecular pattern (PAMP) involved in the pathogenesis of CE.

Elevated expression of pro-inflammatory cytokines and chemokines

has been observed in both tissues and LPS-stimulated endometrial

cells of patients with CE (27). Transcriptomic analyses further

reveal the enrichment of inflammation-related gene sets,

particularly those involved in TLR and NLR signaling (8). LPS

activates pattern recognition receptors (PRRs), triggering the

MyD88/NF-kB and TRIF/IRF pathways, resulting in sustained

production of IL-6, TNF-a, and CXCL8. This signaling cascade

creates a chronic pro-inflammatory microenvironment

characterized by cytokine accumulation, immune cell infiltration,

and disrupted epithelial-stromal interactions (28–30).

3.1.1 Abnormal activation of TLR pathways in
chronic endometritis

TLRs play a critical role in pathogen recognition, with TLR4

specifically binding LPS and TLR2 detecting a broader range of

microbial PAMPs. Both receptors are mechanistically implicated in

CE pathogenesis (31). Endogenous damage-associated molecular

patterns (DAMPs), such as HMGB1 and heat shock proteins

released from necrotic cells, bind to TLR2, TLR4, or their

heterodimeric complexes (32, 33). Moreover, HMGB1-pathogen/

DNA complexes interact with advanced glycation end-product

(AGE) receptors on antigen-presenting cells, activating TLR7/

TLR9 signaling cascades (34). This molecular interaction suggests
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that microbial infections may trigger the release of modified host-

derived molecules that perpetuate inflammatory responses through

sustained activation of TLRs and other PRRs, even after pathogen

clearance. Such mechanisms may contribute to secondary

autoimmune reactions, maintaining chronic inflammation in CE.

Pathological overactivation of TLR signaling pathways has been

shown to accelerate CE progression (35). Upon PAMP recognition,

TLRs initiate downstream signaling through both MyD88-

dependent and independent pathways, resulting in NF-kB and

MAPK activation (36, 37). These transcriptional regulators

subsequently upregulate pro-inflammatory cytokine production,

sustaining leukocyte infiltration.

In vitro studies provide evidence for the central role of NF-kB in

the pathogenesis of endometrial inflammation (9, 10).

Pharmacological studies demonstrate that Epimedium glycosides

alleviate LPS-induced endometritis by dual modulation of TLR4/

NF-kB inhibition and Nrf2 activation (38). Furthermore,

dysregulation of TLR signaling components, such as Akt1

deficiency, enhances MyD88 phosphorylation, potentiating NF-kB
and interferon regulatory factor activity and amplifying

inflammatory cytokine production (39). This highlights the

pivotal role of TLR signaling in CE persistence. Aberrant TLR

activation not only initiates inflammation but also perpetuates an

imbalanced immune response, reinforcing the chronic nature of CE.

3.1.2 NLR pathway dysregulation in chronic
endometritis

NLRs, expressed in both immune and non-immune cells, detect

cytoplasmic PAMPs and biomolecules. NLRP1 and NLRP2

recognize bacterial cell wall degradation products, while NLRP3

forms inflammasomes in response to a range of stimuli, activating

caspase-1 to promote the release of IL-1b and its precursor. NLRP3-
driven inflammation contributes to reproductive pathologies,

including endometriosis, polycystic ovary syndrome (PCOS), and

RPL. NLRP3 activation has been identified in fibrotic ovarian

tissues of PCOS mice and in the endometrial tissues of patients

with idiopathic RPL (40), suggesting its involvement in chronic

inflammation. In vitro studies of LPS-stimulated bovine

endometrial epithelial cells (BEECs), stromal cells, and peripheral

blood mononuclear cells (PBMCs) show increased IL-1b secretion,

particularly in stromal fibroblasts (41). Inhibition of NLRP3 or

caspase-4 through siRNA blocked IL-1b production. A murine CE

model confirmed that LPS-induced endoplasmic reticulum (ER)

stress activates TXNIP, which in turn triggers NLRP3 and IL-1b
expression (42). LPS-exposed goat endometrial stromal cells

exhibited upregulated ER stress, autophagy, and inflammatory

markers, effects reversible by the ER stress inhibitor 4-

phenylbutyrate (43). However, direct evidence of NLRP3

inflammasome activation in human CE endometrial tissue

remains absent, with most findings extrapolated from animal

models or in vitro studies, limiting their clinical applicability. This

lack of clinical evidence constitutes a significant barrier to fully

understanding NLRP3’s role in human CE pathogenesis.

Addressing this gap through rigorous studies of human
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endometrial specimens is crucial for validating these pathways

and guiding targeted therapeutic approaches.

The regulation of NLRP3 involves multiple mechanisms. ER

stress (43), oxidative stress, and inflammation upregulate NLRP3

and pro-IL-1b through TLR pathways, with NLRP3 inflammasome

activation occurring once a threshold is reached (44, 45). Co-

incubation of HMGB1 with trophoblasts increases NLRP3

expression, indicating that NLR pathway activation drives

inflammation (46–48). Elevated extracellular ATP in epithelial

cells also activates NLRP3 in uterine macrophages, linking it to

sterile inflammation (49, 50). While the precise role of NLRP3 in

the initiation of CE remains unclear, it may modulate the Th17/

Treg balance, as observed in patients with RPL (51) and CE (52),

potentially altering the immune environment of the endometrium.

These findings highlight the critical role of NLR pathways,

particularly NLRP3 activation, in amplifying innate immune

signaling and inflammatory cascades in CE.
3.2 Metabolic alterations in endometrial
immune cells

Previous studies suggest significant alterations in immune cell

subsets in CE, with notable increases in pro-inflammatory cells such

as effector T cells and M1 macrophages (53, 54). Immune cell

phenotype stability and function are closely linked to metabolic

states, highlighting specific metabolic reprogramming events as

central drivers of endometrial immune imbalance. This includes

enhanced glycolytic flux in effector T cells and M1 macrophages,

coupled with reduced fatty acid oxidation in Tregs and M2

macrophages. These shifts promote a pro-inflammatory

environment characterized by Th1/Th17 cell dominance (55),

diminished Treg suppressive function, and increased reactive

oxygen species production. These changes collectively sustain a

chronic inflammatory microenvironment, marked by altered

cytokine/chemokine profiles and a disrupted immune cell spatial

distribution in CE tissues. Increased glycolysis supports the

proliferation and migration of pro-inflammatory effector T cells

and M1 macrophages, while inhibiting FOXP3 expression and Treg

stability (56), further exacerbating inflammation. PAMPs activate

TLRs and T cell receptors, modulating mTOR signaling in

macrophages (57). In contrast, TGF-b and IL-4 suppress

glycolysis, promoting mitochondrial and fatty acid oxidation to

sustain anti-inflammatory Tregs and M2 macrophages (58). In CE,

reduced levels of TGF-b/IL-4 may amplify glycolysis, further

driving inflammation. Additionally, lipid biosynthesis influences

immune responses, as LPS-induced activation of SREBP1

reprograms macrophage lipid metabolism, resolving inflammation

through unsaturated fatty acid biosynthesis while suppressing TR4/

NF-kB pathway genes (59, 60). However, the role of lipid metabolic

changes in CE immune cells and their pathogenic contribution

remains unclear. Excessive activation of inflammatory pathways in

CE likely modulates immune cell proliferation, differentiation, and

function through metabolic shifts, perpetuating immune
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dysregulation and endometrial inflammation. In summary,

immune-metabolic reprogramming sustains CE by promoting

pro-inflammatory phenotypes and weakening anti-inflammatory

resilience, effectively bridging microbial sensing with persistent

immune dysfunction.
3.3 MicroRNA-mediated inflammation
development in chronic endometritis

3.3.1 miRNAs regulating inflammatory pathways
miRNAs are small non-coding RNA molecules, typically 20 –

22 nucleotides in length, that primarily regulate gene expression

post-transcriptionally by binding to the 3’ untranslated regions

(UTRs) of target mRNAs, thereby inhibiting translation (61, 62).

Research by Lv et al. (63) demonstrated that LPS stimulation of

bovine endometrial stromal cells led to significant differential

expression of miRNAs, which were notably enriched in the

MAPK, TNF-a, and IL-17 signaling pathways. This suggests that

miRNAs contribute to the inflammatory pathogenesis induced by

LPS. miRNAs may influence the development of CE by modulating

key molecules in these inflammatory pathways, specifically

targeting transcripts such as IRAK1, TRAF6, and components of

the MAPK and NF-kB pathways. This modulation leads to

quantifiable changes in downstream cytokine expression levels

and immune cell subset activation, including CD4+ Th1 bias or

M1 macrophage polarization (27, 63–65). The regulation of miRNA

and mRNA forms a complex network, with much of the current

research on miRNAs in CE being conducted at the level of

individual cell types (66). However, future studies are necessary to

validate the role of miRNAs in CE, particularly through the use of

uterine organoids or human endometrial tissues. Collectively,

miRNAs represent an epigenetic interface that modulates

canonical signaling networks, providing novel targets for

diagnostic and therapeutic interventions in CE (Figure 1).

3.3.2 Exosome-derived miRNAs modulating
endometrial inflammation

Exosomes are extracellular vesicles secreted by host cells, including

epithelial cells, stromal cells, and immune cells, as well as by microbes

(67, 68). These vesicles carry proteins, lipids, mRNAs, and miRNAs,

facilitating intercellular communication by transferring these molecules

to target cells and modulating their functions (69). For instance, Treg

cells release exosomes that transfer exosome-derived miR-let-7d to Th1

cells, inhibiting cell proliferation and g-interferon secretion, thereby

suppressing inflammation (70). Exosome-derived miRNAs in the

uterine cavity fluid play a significant role in regulating inflammation

in CE (61). Exosome-derived miRNAs in cattle with endometritis

undergo dysregulation. For example, the secretion of miR-218 by

BEEC exosomes decreases, reducing its inhibitory effect on MIP-1

expression in target cells, thus promoting inflammation. Furthermore,

exosomes can exert substantial immune-modulatory effects by

transferring PAMPs and other antigenic substances, contributing to

the regulation of inflammation (27). Therefore, exosomes serve as

important mediators of cell-to-cell communication, playing pivotal
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roles in immune dysregulation and the inflammatory response in CE.

Exosome-derived miRNAs, as potent intercellular messengers, reinforce

the inflammatory milieu in CE by linking intracellular regulation with

extracellular communication.
3.4 DNA methylation abnormalities

Microbial infections can induce host cell DNA demethylation.

LPS alters DNA methylation in BEECs, primarily causing

hypomethylation and upregulation of protein-coding genes involved

in immune function, inflammation, proliferation, apoptosis, adhesion,

and extracellular matrix remodeling (71). These changes, including

hypomethylation of AKT1 and IRAK1, activate the TLR/NF-kB
pathway, contributing to LPS-induced endometrial inflammation

(71). Moreover, LPS demethylates the promoters of IL-6 and IL-8,

thereby enhancing their expression. Hypomethylation of HDAC genes

leads to the upregulation of HDACs, exacerbating inflammation

through modulation of lymphocyte signaling, stabilization of HIF-

1a, and acetylation of TLR pathway molecules (72). Persistent

infection-induced methylation changes in regulatory regions may

drive chronic endometrial inflammation in patients with CE. The

role of DNA methylation in the pathogenesis of CE remains unclear,

although studies have shown menstrual cycle-dependent methylation

dynamics in healthy endometria, with distinct patterns observed in

endometriosis and carcinoma (73). Epigenetic reprogramming via

DNA methylation acts as a persistent memory of inflammation, and

its integration with miRNA and immune pathway data could provide

valuable insights into the chronic progression of CE (Table 1).
4 Treatment of chronic endometritis

4.1 Oral antibiotic eradication therapy

Management of CE has proven effective in normalizing

endometrial histopathological features and improving reproductive

outcomes in affected patients (74, 75). Current therapeutic strategies

for CE involve three main approaches: empirical systemic antibiotic

administration, intrauterine antimicrobial instillation, and probiotic

supplementation to restore microbial balance (76, 77). Among these,

oral antibiotic regimens remain the most widely used clinical

approach. Cicinelli et al. (78) conducted a thorough evaluation of

antibiotic protocols tailored for CE individuals with RIF. Johnston-

MacAnanny et al. (79) reported that monotherapy with oral

doxycycline resulted in clinical resolution in approximately 70% of

RIF individuals with confirmed CE. In cases with doxycycline

resistance, combination therapy using ciprofloxacin and

metronidazole was effective in eliminating plasma cell infiltration

from the endometrial stroma, as confirmed by histopathological

examination of endometrial biopsies (80). However, despite

appropriate antibiotic treatment, RIF individuals with CE

consistently showed lower embryo implantation rates compared to

non-CE counterparts. Current clinical guidelines, as outlined in the

2021 Sexually Transmitted Infections Treatment Guidelines,
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recommend an antibiotic regimen initially developed for pelvic

inflammatory disease, including endometritis, which combines

doxycycline with metronidazole (81).
4.2 Intrauterine infusion therapy

Intrauterine infusion represents a targeted therapeutic approach

that enables direct medication delivery into the uterine cavity,

overcoming the limitations of prolonged oral antibiotic regimens

(77, 82). This localized delivery system offers several clinical

advantages, including enhanced drug concentration at the target

site, reduced systemic exposure, and improved cost-effectiveness

(83). A clinical study assessing the efficacy of intrauterine antibiotic

infusion combined with dexamethasone showed promising

reproductive outcomes (84, 85). Comparative analysis revealed

superior therapeutic results in patients with CE treated with
Frontiers in Immunology 05
intrauterine antibiotics compared to those receiving conventional

oral combination antibiotic therapy (77). These findings suggest

that the combined use of intrauterine antibiotics and corticosteroids

constitutes an effective strategy for CE management, leading to

improved pregnancy rates (85).

Beyond conventional antibiotic therapies, emerging evidence

supports the use of intrauterine platelet-rich plasma (PRP) infusion

as an effective treatment for CE (86). PRP, an autologous biological

preparation containing concentrated platelets and bioactive

molecules such as VEGF, PDGF, and TGF-b, exerts multiple

therapeutic effects, including endometrial regeneration, anti-

inflammatory action, and promotion of angiogenesis (87, 88).

Clinical observations have demonstrated that PRP modulates the

uterine immune environment by reducing endometrial populations

of CD8+ T cells, CD56+ NK cells, Foxp3+ Treg cells, and T-bet+ Th1

cells in refractory CE cases (86). This immunomodulatory

reprogramming correlates with enhanced endometrial receptivity
FIGURE 1

The role of inflammation in chronic endometritis progression.
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and improved reproductive outcomes, even in antibiotic-resistant

cases (86, 89). Notably, successful pregnancies have been reported

following PRP treatment after failed antibiotic therapy (90),

highlighting its potential as a salvage treatment.
5 Conclusion

CE is a multifactorial condition driven by a complex interplay of

microbial infections, immune dysregulation, and epigenetic

modifications, all contributing to impaired endometrial receptivity

and adverse reproductive outcomes. The pathogenic mechanisms

encompass pathogen-induced activation of TLR and NLR signaling

pathways, metabolic reprogramming of endometrial immune cells,

miRNA-mediated amplification of inflammatory responses, and

aberrant DNA methylation patterns that sustain chronic inflammation.

Despite notable therapeutic advances, particularly the use of

broad-spectrum antibiotics, persistent CE, treatment resistance, and

recurrent reproductive failure continue to pose significant clinical

challenges. Alternative approaches such as intrauterine infusion

therapies, immunomodulatory strategies, and microbiome-based

interventions have shown promising preliminary results. However,

no unified consensus exists on treatment protocols, especially

regarding the optimal antibiotic regimens, criteria for selecting

intrauterine therapies, or the clinical application of emerging

interventions like PRP. This lack of standardization contributes to

considerable variability in treatment responses, limiting the

comparability of outcomes across studies and complicating

clinical decision-making. Future efforts must focus on addressing
Frontiers in Immunology 06
these gaps by establishing standardized diagnostic criteria and

conducting multicenter randomized trials to evaluate

combinatorial therapies and refine clinical management.

A deeper understanding of endometrial microbiota-immune

interactions may facilitate the development of personalized

therapies, improving pregnancy outcomes in patients with CE.

Additionally, standardized diagnostic protocols and well-designed

randomized trials assessing combination treatments are critical to

optimizing clinical management and improving reproductive

success. Exploring the causal relationships between specific

microbial species and immune dysfunction through integrative

multi-omics approaches could provide valuable mechanistic

insights and support the development of targeted therapies.
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TABLE 1 Inflammatory mechanisms in chronic endometritis.

Mechanism Description
Pathways
Involved

Molecular
Targets

Implications for
CE Pathogenesis

Microbial Dysbiosis
Imbalance in the endometrial microbiota due to
pathogen colonization

TLR, NLR, NF-
kB pathways

Streptococcus, E. coli,
Ureaplasma,
Enterococcus faecalis

Disrupts endometrial receptivity and
immune regulation

Inflammatory
Pathway Activation

Pathogen-associated molecular patterns (PAMPs)
like LPS trigger immune responses leading
to inflammation

TLR4/NF-kB,
NLRP3
inflammasome

IL-1b, IL-6, TNF-
a, Chemokines

Leads to immune dysregulation and
chronic inflammation in
the endometrium

TLR
Pathway
Dysregulation

Overactivation of TLRs results in an exacerbated
inflammatory response

MyD88-dependent
NF-kB, MAPK

TLR4, TLR2, NF-kB
Persistent inflammation in CE,
exacerbating immune cell infiltration

NLRP3
Inflammasome
Activation

NLRP3 inflammasomes activated by LPS-induced
ER stress, leading to IL-1b production

NLRP3, IL-1b,
Caspase-1

NLRP3, IL-1b
Contributes to chronic inflammation and
immune cell activation in CE

Metabolic
Reprogramming in
Immune Cells

Shift towards glycolysis in T cells and
macrophages that enhances inflammation

mTOR, HIF-1a,
glycolytic enzymes

HIF-1a, PFK, mTOR
Accelerates immune cell activation, T-
cell proliferation, and M1
macrophage differentiation

miRNA-
Mediated
Inflammation

Dysregulated miRNAs modulate inflammatory
pathways and immune responses

MAPK, IL-17, TNF-
a signaling

miR-146a, miR-155,
miR-21

Drives inflammation by altering key
inflammatory mediator levels

DNA
Methylation
Abnormalities

Epigenetic changes induced by microbial
infections result in altered gene
expression patterns

DNA demethylation
of immune-
related genes

AKT1, IRAK1, HDACs,
IL-6, IL-8

Sustains inflammatory responses and
immune cell dysfunction in CE
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