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Background: Crohn’s disease (CD) is a complex and heterogeneous inflammatory

disease whose most important feature is immune dysregulation. As a basic cell

response, cellular senescence (CS) can regulate the immune response involved in a

variety of inflammatory diseases. However, the role of CS in the pathogenesis and

diagnosis prediction of CD are still unknown.

Methods: We utilized CD-related datasets from the GEO database for differential

gene expression analysis, and CS related differentially expressed genes (CSRDEGs) in

CD by a comprehensive bioinformatics analysis encompassing GSEA, WGCNA, and

various interaction networks. The support vector machine (SVM) algorithm, random

forest algorithm and LASSO regression analysis was used to construct a diagnostic

model. And based onCSRDEGs, we further constructed a Cellular senescence score

(CSscore)model. Different disease subtypes (cluster1/cluster2) were identified by the

consensus clustering method. The assessment of immune cell infiltration and its

correlation with CSRDEGs was analyzed by ssGAEA and CIBERSORT.

Results: We identified 10 hub CS related differentially expressed genes (CSRDEGs)

in CD. Based on CSRDEGs, we further constructed a diagnostic model (AUC =

0.880) containing 5 CSRDEGs (CDKN1A, IL1A, PML, SIRT1, and STAT3) through

machine learning algorithm and other methods and analyzed the correlation with

immune cell infiltration. In addition, a CS Scores model (Low or High) based on the

7 CSRDEGs (CDKN2B, IGFBP7, IL1A, IL6, PML, SIRT1, and STAT3) shows different

characteristics, reaffirming the inflammatory regulatory role of CS in CD. Finally,

the subtype construction (cluster1 and cluster2) based on 10 CSRDEGs shows the

heterogeneity of the disease and affirms that CS is a prominent feature of CD.

Conclusions: These results suggest that CS is an important feature of CD, and

CSRDEGs can be used to construct disease diagnostic models and distinguish

disease subtypes. Further investigation of themechanismof immune dysregulation

caused by CS can deepen our understanding of the pathogenesis of CD.
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Introduction

Crohn’s disease (CD), a chronic and debilitating form of

inflammatory bowel disease (IBD), can affect any part of the

gastrointestinal tract. Its clinical course is progressive and

destructive (marked by alternating phases of inflammatory flares

and remission), however, the exact pathogenic mechanism is still

unclear (1, 2). Recognized by the World Health Organization

(WHO) as a “modern refractory disease” and colloquially termed

“green cancer” (3), CD has witnessed escalating incidence rates in

industrialized regions, imposing substantial socioeconomic burdens

(4, 5). While current treatments, including immunosuppressants,

biologics, and surgical interventions, provide symptomatic relief,

their efficacy is constrained by high relapse rates (6), significant

adverse effects, and particularly poor responsiveness in structuring

(B2) and penetrating (B3) phenotypes (7, 8). This underscores the

urgent need to explore disease heterogeneity at the molecular level

to identify novel therapeutic targets.

Previous studies have indicated that cellular senescence plays a

critical role in various chronic inflammatory diseases (9, 10).

Characterized by irreversible cell cycle arrest triggered by DNA

damage or oxidative stress (10), senescent cells perpetuate tissue

dysfunction through the senescence-associated secretory phenotype

(SASP), releasing pro-inflammatory cytokines (e.g., IL-6, CXCL8),

matrix metalloproteinases, and growth factors that exacerbate tissue

damage and impair regeneration (11). Groundbreaking work by

Tindle et al. (12) using patient-derived organoids (PDOs) and

multi-omics profiling has redefined CD heterogeneity, identifying

two molecular subtypes: an immune-deficient infectious subtype

(IDICD) and a senescence-driven fibrostenotic subtype (S2FCD).

The S2FCD subtype (prevalent in 39% of CD cases) exhibits hallmark

senescence features, including g-H2AX foci accumulation and

elevated SA-b-gal activity, coupled with fibrogenic gene signatures

(e.g., BAMBI downregulation). Notably, whole-exome sequencing

revealed enrichment of mutations in the DNA damage-YAP-IL18

pathway, mechanistically linking replicative senescence to stricturing

complications (13). Functional assays demonstrated impaired barrier

integrity in S2FCD PDOs, evidenced by reduced transepithelial

electrical resistance (TEER) and increased FITC-dextran

permeability in stricturing (B2) subtypes, suggesting senescence-

mediated epithelial dysfunction as a critical driver of fibrotic

progression. Recent reports have posited that chronic inflammation

is an endogenous factor driving cellular senescence, with

inflammation-related molecular patterns promoting senescence,

which in turn propagates further inflammation via SASP, thus

establishing a vicious cycle (9). Immune cells play a pivotal role in

recognizing and eliminating senescent cells; however, the effects of

inflammation and SASP can lead to T cell pool dysfunction and

chronic antigenic stimulation, precipitating premature senescence in

immune cells. This results in immunosenescence, which

consequently disrupts the structural integrity of immune organs

and impairs immune response functions, diminishing the capacity

to respond to infections and diseases, thereby increasing susceptibility

to disease, enhancing inflammation, and elevating the risk for

senescence-associated diseases (9, 14–16). Clinical data reveal a
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steady increase in the incidence of CD among elderly patients,

coupled with poorer prognosis (17), further underscoring the

pivotal role of senescence mechanisms in CD pathogenesis.

The pathogenesis of CD is extraordinarily complex, implicating

intricate interactions among genetic, environmental, immunological,

and gut microbiota factors (18). The intestinal immune system plays a

vital role in defending against pathogenic invasions while maintaining

immunological tolerance to gut microbiota; however, dysregulation of

the intestinal immune system may precipitate the onset of CD (19).

Research has demonstrated that regulatory T (Treg) cells in aged mice

exhibit significantly diminished functionality in suppressing T

conventional (Tconv) cell activity in IBD models, as well as reduced

capacity to prevent Tconv cell senescence in radiation-induced

senescent mouse models when compared to their younger

counterparts (20). Recent investigations have shown a marked

increase in the incidence of CD among the elderly with progressively

severe implications for older patients (21). Additionally, studies suggest

that cellular and immune-level senescence may correlate with CD

pathology in aging populations (22). These findings suggest that

senescence may play critical roles in modulating the progression of

CD, and targeting senescence could open new avenues for the

prevention and treatment of this disease in the future.

This study aims to identify hub biomarkers of cellular

senescence related differentially expressed genes (CSRDEGs) and

immune-related pathways associated with cellular senescence in CD

through a comprehensive bioinformatics analysis encompassing

differential expression analysis, Gene Set Enrichment Analysis

(GSEA), Weighted Gene Co-expression Network Analysis

(WGCNA), and the construction of various interaction networks.

This multifaceted approach seeks to elucidate gene expression

alterations and their underlying mechanisms in detail while

identifying key regulatory factors, thereby providing a theoretical

foundation for subsequent clinical applications.
Methods

Data download

Gene expression profiles for CD were downloaded from the GEO

database (23) (GSE95095, GSE102133 (24) and GSE179285 (25)). The

sequencing platforms were was GPL14951 (GSE95095), GPL6244

(GSE102133) and GPL6480 (GSE179285). Sample composition was

as follows: (1) GSE95095: 60 intestinal tissues (48 CD, 12 healthy

controls); (2) GSE102133: 77 intestinal tissues (65 CD, 12 healthy

controls); (3) GSE179285: 199 intestinal tissues (168 CD, 31 lesion-

adjacent normal tissues) (see Supplementary Table S1 for full details).

All tissue samples were obtained from publicly available multicenter

cohorts. We acknowledge that due to limitations in original metadata

documentation: (1) specific biopsy locations (ileum vs. colon;

inflammatory vs. non-inflammatory zones) were not uniformly

available across samples, and (2) disease activity status (active vs.

remission) could not be ascertained for all CD patients. Control

samples primarily consisted of healthy intestinal tissues or

macroscopically non-inflamed areas adjacent to lesions. Cellular
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senescence related genes (CSRGs) were retrieved from GeneCards

database (https://www.genecards.org/) (26). yielding 55 protein-

coding CSRGs (Supplementary Table S2, relevance score > 5).

The study workflow is illustrated in Figure 1A.
Identification of DEGs and CSRDEGs

Datasets (GSE95095, GSE102133, and GSE179285) were

integrated to form a combined cohort comprising 281 Crohn’s

disease (CD) samples and 55 normal control samples. To ensure

data comparability and minimize technical artifacts arising from

different platforms or batches, rigorous preprocessing was applied:

(1) Probe Annotation: Probes were mapped to gene symbols using

the annotation provided by the respective microarray platforms. (2)

Batch Effect Correction: The removeBatchEffect function from the

limma R package (version 4.1.2) (27) was utilized to explicitly

model and remove potential batch effects associated with the

different source datasets (GSE IDs). (3) Normalization: Between-

array normalization was performed on the batch-corrected data

using the normalizeBetweenArrays function (limma package),

employing the default ‘quantile’ method to make expression

distributions comparable across all samples. All subsequent

analyses, including differential expression, visualization (e.g.,

heatmaps, box plots), and network construction, were performed

exclusively on this preprocessed, batch-corrected, and normalized

combined dataset.

Differential gene expression analysis between the CD group

(n=281) and the control group (n=55) was conducted on the

preprocessed combined dataset using the limma package. Genes

exhibiting an absolute log2 fold-change (|logFC|) > 0 and an

adjusted p-value (Benjamini-Hochberg (BH) method) < 0.05 were

defined as Differentially Expressed Genes (DEGs). CSRDEGs were

subsequently identified as the intersection between the DEG list and

the CSRG list.
GSEA, GO and KEGG enrichment analysis

The clusterProfiler package of R software was used to conduct

GSEA (28) for all genes in the combined dataset, and perform Gene

Ontology (GO) function enrichment analysis (29) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway

enrichment analysis (30) for CSRDEGs with screening criteria of

adjusted P-value < 0.05 and value of false discover rate (FDR)

(q.value) < 0.05.
Construction of gene co-expression
network

A co-expression network was constructed using the WGCNA R

package (31) on the preprocessed combined dataset expression

data. To focus the analysis on highly variable genes, genes ranked

within the top 40% by variance across all samples were selected as
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input. An unsigned adjacency matrix was built using a soft-

thresholding power (b) of 5, chosen based on the scale-free

topology criterion to approximate a scale-free network (R² >

0.85). The adjacency matrix was transformed into a Topological

Overlap Matrix (TOM), and hierarchical clustering with dynamic

tree cutting was performed on the TOM-based dissimilarity to

identify gene modules. The minimum module size was set to 60

genes. Modules exhibiting high similarity (dissimilarity < 0.20) were

merged. Module eigengenes (MEs), representing the first principal

component of each module, were calculated. The association

between each module (represented by its ME) and the CD

phenotype (coded as a binary trait: CD vs. Control) was

quantified using Pearson correlation. Modules showing the

strongest significant correlations (positive or negative) with CD

status were selected as modules of interest. All genes within these

significant modules were considered highly correlated with CD and

designated as module feature genes.
Construction of mRNA-drug, mRNA-TF,
mRNA-miRNA and mRNA-RBP interaction
networks

Comparative Toxicogenomics Database (CTD) (http://

ctdbase.org/) (32) was used to predict potential drugs or small

molecule compounds that interact with CSRDEGs; CHIPBase

database (version 3.0) (https://rna.sysu.edu.cn/chipbase/) (33) and

hTFtarget database (34) were used to find transcription factors (TF)

that bind to CSRDEGs. ENCORI database (https://starbase.

sysu.edu.cn/) (35) was used to predict miRNAs and RNA-binding

proteins (RBP) that interact with CSRDEGs. Data visualization

using Cytoscape software.
Construction of CSRDEGs diagnostic
model

In order to obtain the CSRDEGs diagnostic model of the

Combined dataset, we employed the following workflow. First,

support vector machine (SVM) model (36) was constructed using

the expression matrix and grouping information (CD/Control).

CSRDEGs were screened based on the number of genes yielding

the highest accuracy and lowest error rate. Second, a random forest

(RF) model (37) was built using the randomForest package based on

the expression of these CSRDEGs. Third, a logistic diagnostic model

was constructed using CSRDEGs meeting screening criteria (P-

value < 0.05), with results visualized via Forest Plot. Fourth, Least

Absolute Shrinkage and Selection Operator (LASSO) logistic

analysis (38) was applied to these CSRDEGs using the glmnet

package in R (parameters: set.seed (500), family = “binomial”) to

construct Logistic-LASSO model.

riskScore   =  o
i
Coefficient   (ERSRDEGsi)*mRNA   Expression  

(ERSRDEGsi) (Coefficient_i denotes the regression weight for the

*i*-th gene derived from LASSO analysis on the training set.

Expressioni represents the normalized expression value of the *i*-
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FIGURE 1

Identification and functional enrichment of CSRDEGs in CD. (A) Workflow of the study design. (B) The volcano plot of all DEGs (CD vs Control) in
Combined dataset. (C) The ridge plot of GSEA enrichment analysis of all DEGs (CD vs Control). (D) Venn diagram of the intersection of the CSRGs and
DEGs (CD vs Control). 19 CSRDEGs were found, and heatmap and box plot showed the expression of all the genes. (E) GO and KEGG network diagram
analysis of the CSRDEGs. The blue dots represent CSRDEGs, and the orange dots represent specific pathways. CD, Crohn’s disease; GSEA, Gene Set
Enrichment Analysis; CSRGs, Cellular senescence related genes; CSRDEGs, Cellular senescence related differentially expressed genes; GO, Gene
Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; WGCNA, weighted correlation network analysis; CSscore, Cellular senescence score;
LASSO, least absolute shrinkage and selection operator; ssGSEA, single-sample gene-set enrichment analysis. *P < 0.05, **P < 0.01 and ***P < 0.001.
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th shared CSRDEG in each sample. The coefficient quantitatively

reflects both the strength and direction (positive or negative) of

association between each CSRDEG and disease status (CD vs.

Control). Larger absolute coefficient values indicate greater

contribution to the risk model.)

Common CSRDEGs present in all three models (Logistic-

LASSO, SVM and RF) were identified using Venn analysis. The

final diagnostic model and corresponding risk scores were

computed by applying the LASSO-derived coefficients of these

common CSRDEGs to the Combined dataset expression data. A

Nomogram was generated using R packages to visualize individual

gene contributions to the diagnostic model. Finally, a Decision

Curve Analysis (DCA) plot created with the ggDCA package

evaluated the clinical utility and net benefit of the CSRDEG

diagnostic model.
Calculation of cell senescence phenotype
score and identification of disease
subtypes based on combined dataset

To identify the potential mechanism, related biological features

and pathways of CSRDEGs in CD, the single-sample gene-set

enrichment analysis (ssGSEA) algorithm was used to calculate the

Cellular senescence score (CSscore) based on the expression matrix

of each sample in the combined dataset with help of GSVA package

of R software.

The consensus clustering method of ConsensusClusterPlus

package of R software was used to identify different disease

subtypes (cluster1/cluster2) based on the expression of CSRDEGs

in the Combined dataset. The parameters of the analysis

were as follows: maxK=8, reps=50, pItem=0.8, pFeature=1,

clusterAlg=“km”, distance=“euclidean”. The group expression

difference of CSRDEGs among samples of different disease

subtypes in the Combined dataset was calculated by Wilcoxon

rank sum test. P value < 0.05 was considered statistically significant.
Assessment of immune cell infiltration and
its correlation with CSRDEGs

The enrichment score of 28 immune cells was calculated by

ssGSEA algorithm with help of R-GSVA package (version 1.46.0) of

R software (39) and used to represent the relative abundance of each

immune cell infiltration in each sample (40). The enrichment score

of 22 immune cells was calculated by CIBERSORT (41). The

difference of infiltration levels of immune cells between different

groups of the Combined dataset (CD group and controls, high score

and low score groups, consistency cluster between different clusters)

was shown by boxplot. The correlation between the immune cells of

the combined dataset was visualized by correlation heat maps. The
Frontiers in Immunology 05
correlation between immune cells and genes of the Combined

dataset was visualized by the correlation dot plot drawn by R

package ggplot2.
Statistical analysis

All data processing and analysis were performed using R

software (Version 4.1.2). For comparisons between two groups of

continuous variables, the independent Student’s t-test was

employed to assess statistical significance for normally distributed

variables, while the Mann-Whitney U test (i.e., Wilcoxon rank-sum

test) was used to analyze differences between non-normally

distributed variables. Unless otherwise specified, Pearson

correlation analysis was applied to calculate correlation

coefficients between different molecules. All statistical p-values

were two-tailed, with p < 0.05 considered statistically significant.
Results

Identification and functional enrichment of
cellular senescence-related differentially
expressed genes in CD

A total of 281 CD patient tissues and 55 healthy control tissues

were included (Figure 1A). After batch effect removal and

normalization, a combined dataset was generated (Supplementary

Figure S1). Differential expression analysis revealed 2,486

significantly upregulated genes and 2,105 downregulated genes in

CD (Figure 1B). GSEA demonstrated significant enrichment of CD/

Control genes in pathways, including PID_IL23_PATHWAY,

PID_IL12_2PATHWAY, PID_IL6_7_PATHWAY, WP_

INFLAMMATORY_BOWEL_DISEASE_SIGNALING, WP_

INFLAMMATORY_RESPONSE_PATHWAY, WP_IL18_

SIGNALING_PATHWAY (Figure 1C, Supplementary Figure S2,

Supplementary Table S3). Intersection of 4,591 DEGs with 55

CSRGs identified 19 CSRDEGs (Figure 1D), including CDKN1A,

CDKN2A, CDKN2B, IGFBP7, IL1A, IL6, LMNA, MAPK3, NUAK1,

PML, PTEN, RB1, SIRT1, SIRT6, STAT3, TERF2, TERT, TP53, and

WRN. Group comparison plots showed 11 downregulated genes

(CDKN1A, CDKN2A, CDKN2B, MAPK3, PTEN, SIRT1, SIRT6,

TERF2, TERT, TP53, and WRN) and 8 upregulated genes (IGFBP7,

IL1A, IL6, LMNA, NUAK1, PML, RB1, and STAT3) (Figure 1D).

Heatmaps validated expression differences of the 19 CSRDEGs

(Figure 1D), and chromosomal mapping illustrated their

distribution (Supplementary Figure S3). GO and KEGG

enrichment analyze revealed that those genes involved in several

important biological processes, including cellular senescence,

regulation of mitotic cell cycle, regulation of cytokine production in

inflammatory response. Detailed analysis results are presented in

Figure 1E, Supplementary Figure S4, Supplementary Table S4.
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Identifying key module genes and potential
therapeutic targets in CD via WGCNA and
multi-dimensional interaction networks

WGCNAwas performed on the Combined dataset to identify co-

expression modules. Initially, genes with top 40% variance were

selected as input, and CD and Control groups were clustered using

a cut height of 0.2. The optimal soft threshold power of 0.85 was

determined (Figure 2A), and DEGs were clustered into 14 initial

modules (e.g., MEyellow, MEpink, MEbrown; Figures 2B, C). These

modules were further merged at a cut height of 0.2 (Figure 2B),

resulting in 11 modules (e.g., MEyellow, MEbrown, MEpink)

significantly associated with grouping (Figures 2C, D). After

excluding the grey module (MEgrey), genes from 10 modules with

significant correlations to grouping (P<0.05, |correlation|≥0.2) were

intersected with CSRDEGs, yielding 10 module-phenotype genes

(CDKN1A, CDKN2B, IGFBP7, IL1A, IL6, MAPK3, PML, SIRT1,

SIRT6, and STAT3) (Figure 2E, Supplementary Table S5).

Four interaction networks were constructed based on these 10

genes (Figure 2F). mRNA-drug interaction network: Predicted via the

CTD database (screening criteria: Reference Count>4), five mRNAs

(IL6, MAPK3, SIRT1, IL1A, STAT3) interacted with 44 drugs (60

pairs; Supplementary Table S6). mRNA-TF interaction network:

Screened using CHIPBase and hTFtarget databases (sample

count>0), six genes (CDKN1A, IL6, MAPK3, PML, SIRT1, and

SIRT6) interacted with 34 transcription factors (43 pairs;

Supplementary Table S7). mRNA-miRNA interaction network:

Identified via the miRDB database (≥5 website records), nine genes

(CDKN1A, CDKN2B, IL1A, IL6, MAPK3, PML, SIRT1, SIRT6, and

STAT3) interacted with 47 miRNAs (75 pairs; Supplementary Table

S8). mRNA-RBP interaction network: Screened using the ENCORI

database (clusterNum>5 and clipExpNum>5), 7 genes (CDKN1A,

CDKN2B, IGFBP7,MAPK3, PML, SIRT1, STAT3) interacted with 21

RNA-binding proteins (47 pairs; Supplementary Table S9).
Construction and validation of a multi-
algorithm-integrated diagnostic model for
CD

A diagnostic model for CD was constructed based on 10 cellular

senescence-related differentially expressed genes (CSRDEGs). The

SVMmodel achieved the highest accuracy when selecting seven genes

(Figures 3A, B). Random forest analysis (IncNodePurity>2)

confirmed the diagnostic value of all 10 genes (Figures 3C, D).

Logistic-LASSO regression further identified six key genes

(CDKN1A, CDKN2B, IL1A, PML, SIRT1, STAT3) (Figures 3E–G),

and intersection with SVM and random forest results yielded 5

consensus genes (CDKN1A, IL1A, PML, SIRT1, and STAT3)

(Figure 3H). The diagnostic model was established using LASSO

regression coefficients: RiskScore = CDKN1A×(-0.439) + IL1A×0.155

+ PML×1.149 + SIRT1×(-0.413) + STAT3×1.609. A nomogram

highlighted IL1A and CDKN1A as the primary contributors

(Figure 3I). Decision curve analysis (DCA) and ROC curves

validated the model’s clinical utility (AUC=0.880; Figures 3J, K).
Frontiers in Immunology 06
Functional similarity analysis (GOSemSim) indicated that PML

exhibited the highest functional similarity to other genes (Figure 3L).
Correlation analysis of immune infiltration
features and cellular senescence genes in CD

To analyze the correlation between immune infiltration features

and cellular senescence genes in CD, we performed ssGSEA on the

Combined dataset to compare the infiltration of 28 immune cells

between CD and Control groups. The results revealed that 25

immune cells (e.g., Activated CD4 T cell, Macrophage, MDSC)

exhibited significant differences in abundance (P<0.05) (Figure 4A).

Pearson correlation analysis demonstrated predominantly positive

correlations among these 25 immune cells, with the strongest

association observed between Macrophage and MDSC (Figure 4B).

Further analysis of the correlations between five common

CSRDEGs (CDKN1A, IL1A, PML, SIRT1, and STAT3) and

immune cells (P<0.05) indicated that STAT3, PML, and IL1A were

predominantly positively correlated with immune cells, whereas

SIRT1 and CDKN1A showed negative correlations. Notably,

Effector memory CD8 T cells exhibited the strongest correlation

with PML (Figure 4C). CIBERSORT analysis of 22 immune cells

identified eight cells (e.g., B cells naïve, Macrophages M1/M2,

Neutrophils) with significant abundance differences between CD

and Control groups (Figure 4D). Pearson correlation analysis

revealed balanced proportions of positive and negative correlations

among these eight immune cells, with the strongest association

observed between Mast cells activated and rested (Figure 4E). The

correlation analysis between the 8 immune cells and 5 common

CSRDEGs demonstrated that Mast cells activated showed the

strongest correlation with IL1A (Figure 4F).
Cellular senescence score grouping reveals
heterogeneity of signature gene expression

Based on the expression of 10 CSRDEGs (CDKN1A, CDKN2B,

IGFBP7, IL1A, IL6, MAPK3, PML, SIRT1, SIRT6, and STAT3) in the

combined dataset, we plotted diagnostic ROC curves, with 7 CSRDEGs

demonstrating moderate diagnostic accuracy for CD (Figure 5A).

These included CDKN2B (AUC=0.763), IGFBP7 (AUC=0.745), IL1A

(AUC=0.738), IL6 (AUC=0.705), PML (AUC=0.829), SIRT1

(AUC=0.728), and STAT3 (AUC=0.806). Using the expression

profiles of these seven CSRDEGs, we calculated the cellular

senescence score (CSscore) for each sample via the ssGSEA

algorithm. A diagnostic ROC curve was generated to evaluate the

predictive capability of CSscore (Figure 5B), which showed moderate

accuracy for CD diagnosis. Comparative analysis of CSscore between

CD and control groups in the Combined dataset revealed statistically

significant differences (Figure 5C). Samples were divided into High/

Low CSscore groups based on the median CSscore. Group comparison

plots demonstrated differential expression of the seven CSRDEGs

between these groups (Figure 5D). All six CSRDEGs except SIRT1

exhibited significant expression differences between High and Low

CSscore groups.
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FIGURE 2

Identifying key module genes and potential therapeutic targets in CD via WGCNA and multi-dimensional interaction networks. (A) The selection of
the value of the soft thresholding for a scale-free network of co-expression genes. (B) The show of the results of gene module aggregation.
(C) Gene cluster dendrogram by dynamic tree cut algorithm. Genes are divided into various modules by hierarchical clustering, and different colors
represent different modules, among which gray defaults to genes that cannot be classified into any module. (D) The heatmap of WGCNA (Weighted
gene co-expression network analysis) analysis of key module genes. (E) The Venn diagram of the intersection of the CSRDEGs and WGCNA. 10 hub
CSRDEGs (CDKN1A, CDKN2B, IGFBP7, IL1A, IL6, MAPK3, PML, SIRT1, SIRT6, and STAT3) were found. (F) The mRNA-Drug, mRNA-TF, mRNA-miRNA
and mRNA-RBP regulatory network was constructed based on 10 hub CSRDEGs.
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FIGURE 3

Construction and validation of a multi-algorithm-integrated diagnostic model for CD. (A) The number of genes with the lowest error rate is obtained by
SVM algorithm. (B) The number of genes with the highest accuracy was obtained by SVM algorithm. (C) Model training error diagram of random forest
algorithm. (D) Th show of CSRDEGs by random forest algorithm. (E) The forest plot of logistic regression model of CSRDEGs. (F, G) Identification of the
minimum value and lambda value for diagnostic biomarker selection using the LASSO logistic regression algorithm. (H) The Venn diagram of the intersection
of the Logistic-LASSO-CSRDEGs, SVM-RFE-CSRDEGs and Random Forest-CSRDEGs, and 5 CSRDEGs (CDKN1A, IL1A, PML, SIRT1, and STAT3) were found.
(I) The nomogram of 5 CSRDEGs (CDKN1A, IL1A, PML, SIRT1, and STAT3) in the diagnosis of CD patients. (J) Decision curve analysis (DCA) of the nomogram
model. (K) ROC curve of the CD diagnostic performance based on 5 CSRDEGs (CDKN1A, IL1A, PML, SIRT1, and STAT3). (L) Analysis of functional similarity
between 5 CSRDEGs (CDKN1A, IL1A, PML, SIRT1, and STAT3).
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FIGURE 4

Correlation analysis of immune infiltration features and cellular senescence genes in CD. (A) Box plot for the enrichment score differences of 28
immune cells between CD and control group based on ssGSEA. (B) A heatmap showing the correlation of 25 differentially infiltrated immune cells.
(C) Dot plot of correlation between 25 differentially infiltrated immune cells and 5 CSRDEGs (CDKN1A, IL1A, PML, SIRT1, and STAT3). (D) Box plot for
the enrichment score differences of 22 immune cells between CD and control group based on CIBERSORT. (E) A heatmap showing the correlation
of 8 differentially infiltrated immune cells. (F) Dot plot of correlation between 8 differentially infiltrated immune cells and 5 CSRDEGs (CDKN1A, IL1A,
PML, SIRT1, and STAT3). ns, no significant, *P < 0.05, **P < 0.01 and ***P < 0.001.
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Heterogeneity analysis of immune features
based on CSscore grouping

To explore the immune feature differences between High and

Low CSscore groups, we systematically analyzed CD samples in the

Combined dataset using ssGSEA and CIBERSORT algorithms.

Samples were divided into High/Low CSscore groups based on
Frontiers in Immunology 10
the median CSscore. ssGSEA results demonstrated that 26 out of 28

immune cells (e.g., activated T cells and macrophages) exhibited

significantly different infiltration abundances between groups

(Figure 6A). Pearson correlation analysis revealed that the 26

immune cells in the Low CSscore group were predominantly

positively correlated, with Immature B cells and Activated B cells

showing the strongest association (Supplementary Figure S5A). A
FIGURE 5

Cellular senescence score grouping reveals heterogeneity of signature gene expression. (A) ROC curve of the CD diagnostic performance based on
different CSRDEGs (CDKN1A, CDKN2B, IGFBP7, IL1A, IL6, MAPK3, PML, SIRT1, SIRT6, and STAT3). (B) ROC curve of the CD diagnostic performance
based on CSscore. (C) The CSscore difference between the CD and Control was compared. (D) Differential expression of 7 CSRDEGs (CDKN2B,
IGFBP7, IL1A, IL6, PML, SIRT1, and STAT3) in CSscore (Low) and CSscore (High). ns, no significant, ***P < 0.001.
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FIGURE 6

Heterogeneity analysis of immune features based on CSscore grouping. (A) Box plot for the enrichment score differences of 28 immune cells
between CSscore (Low) and CSscore (High) group based on ssGSEA. (B) Dot plot of correlation between 26 differentially infiltrated immune cells and
7 CSRDEGs (CDKN2B, IGFBP7, IL1A, IL6, PML, SIRT1, and STAT3) in CSscore (Low) and CSscore (High) group. (C) Box plot for the enrichment score
differences of 22 immune cells between CSscore (Low) and CSscore (High) group based on CIBERSORT. (D) Dot plot of correlation between 10
differentially infiltrated immune cells and 7 CSRDEGs (CDKN2B, IGFBP7, IL1A, IL6, PML, SIRT1, and STAT3) in CSscore (Low) and CSscore (High)
group. ns, no significant, *P < 0.05, **P < 0.01 and ***P < 0.001.
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similar positive correlation trend was observed in the High CSscore

group, where Immature B cells and Activated B cells remained the

most strongly correlated (Supplementary Figure S5B). Further

analysis of the associations between immune cells and the seven

CSRDEGs identified that in the Low CSscore group, Effector

memory CD8 T cells showed the strongest correlation with

IGFBP7, while STAT3, PML, and IGFBP7 were primarily

positively correlated with immune cells, and CDKN2B was

predominantly negatively correlated (Figure 6B). In the High

CSscore group, neutrophils exhibited the strongest correlation

with IL1A, with STAT3, PML, and IL6 showing positive

correlations and SIRT1 and CDKN2B showing negative

correlations (Figure 6B).

To validate the robustness of these findings, CIBERSORT

analysis of 22 immune cells identified 10 cells (e.g., M0/M1/M2

macrophages and regulatory T cells) with significantly different

infiltration abundances between groups (P<0.05) (Figure 6C).

Correlation analysis indicated balanced proportions of positive

and negative correlations among the 10 immune cells in both

High and Low CSscore groups, with resting and activated mast

cells displaying the most significant association (Supplementary

Figures S5C, D). Additionally, M0 macrophages showed the

strongest correlation with IL1A in the Low CSscore group, while

T follicular helper cells exhibited the strongest correlation with

PML in the High CSscore group (Figure 6D). These results suggest

that CSscore grouping effectively reflects the heterogeneity of the

immune microenvironment, and key CSRDEGs demonstrate

coordinated regulatory patterns with specific immune cells.
Molecular subtyping and characterization
of CD based on CSRDEGs

To decipher the molecular heterogeneity of CD in the

Combined dataset, this study classified CD samples into disease

subtypes using consensus clustering based on the expression

profiles of 10 CSRDEGs. The clustering results demonstrated that

the stability was optimal when the cluster number k=2, as evidenced

by the consensus cumulative distribution function (CDF) curves

and Delta area values (Figures 7A–C). Cluster1 contained 176

samples, while cluster2 included 105 samples. Principal

component analysis (PCA) further confirmed significant

transcriptomic differences between the two subtypes (Figure 7D).

Heatmap visualization revealed marked heterogeneity in the

expression of the 10 CSRDEGs between cluster1 and cluster2

(Figure 7E). Mann-Whitney U tests indicated that all genes

exhibited statistically significant expression differences between

the subtypes (P<0.05), with CDKN1A, CDKN2B, MAPK3, SIRT1,

and SIRT6 significantly upregulated in cluster1, whereas IGFBP7,

IL1A, IL6, PML, and STAT3 were highly expressed in cluster2

(Figure 7F). These findings suggest that molecular subtyping based

on CSRDEGs effectively distinguishes disease heterogeneity in CD,

with distinct subtypes potentially corresponding to specific gene

regulatory patterns.
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Immune infiltration heterogeneity and
gene interaction networks across CD
subtypes

To investigate the immune feature differences between CD

subtypes (cluster1/cluster2) in the Combined dataset, we conducted

a systematic analysis using ssGSEA and CIBERSORT algorithms. The

ssGSEA results demonstrated that the infiltration abundances of 28

immune cells (e.g., Activated B cell, Macrophage, Neutrophil) were

significantly different between cluster1 and cluster2 (P<0.05)

(Figure 8A). Pearson correlation analysis revealed that the 28

immune cells exhibited widespread positive correlations in both

subtypes, with the strongest correlation observed between

Immature B cells and Activated B cells (Supplementary Figures

S6A, B). Further analysis of the associations between immune cells

and the 10 CSRDEGs identified that in cluster1, Central memory

CD4 T cells showed the strongest correlation with IGFBP7, while

STAT3, PML, and IGFBP7 were primarily positively correlated with

immune cells, and CDKN2B was predominantly negatively

correlated (Figure 8B). In cluster2, Type 1 T helper cells exhibited

the strongest correlation with IGFBP7, with STAT3, PML, and IL6

showing positive correlations and CDKN2B remaining negatively

correlated (Figure 8B).

Validation using the CIBERSORT algorithm identified 15 out of

22 immune cells (e.g., Macrophages M0/M1/M2, T cells regulatory

(Tregs)) with significantly different infiltration abundances between

subtypes (P<0.05) (Figure 8C). Correlation analysis indicated that

in cluster1, the infiltration abundance of T cells CD4 naïve was

entirely zero, and the remaining 14 immune cells showed balanced

proportions of positive and negative correlations, with the strongest

association observed between Mast cells resting and activated

(Supplementary Figure S6C). In cluster2, the 15 immune cells

displayed similar trends in positive and negative correlations, and

Mast cells resting-activated remained the most strongly correlated

(Supplementary Figure S6D). Gene-immune interaction analysis

demonstrated that in cluster1, Macrophages M2 showed the

strongest correlation with IL1A (Figure 8D), while in cluster2, T

cells follicular helper exhibited the most significant association with

SIRT1 (Figure 8D).
Discussion

CD is a multifaceted IBD that is traditionally viewed through

the lens of immune dysregulation (42). This study systematically

revealed the core regulatory role of CSRDEGs in CD by integrating

multi-cohort gene expression data from the public database.

Through differential expression analysis, WGCNA network

construction, and a multi-algorithm integration model, we

identified 10 CSRDEGs. Notably, pro-inflammatory and pro-

senescence genes including STAT3, IL6, and IL1A showed

significant upregulation, while anti-senescence genes such as

SIRT1 and CDKN1A were markedly downregulated. This

dysregulation suggests that cell cycle exit and senescence signaling
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pathways are fundamentally altered in CD. Remarkably, a multi-

algorithm diagnostic model constructed based on CSRDEGs not

only demonstrated excellent clinical discriminative capability, but

its molecular subtype classification (cluster1/cluster2) also revealed

heterogeneity in CD, providing new perspectives for precise

subtyping. Further ssGSEA and CIBERSORT analyses revealed

that macrophage and T cells regulatory enrichment in the high

CSscore group showed strong positive correlation with STAT3/

PML, suggesting that the synergistic effect between cellular

senescence and immune microenvironment remodeling may serve

as a key mechanism driving CD progression. Our findings not only

enrich current knowledge about CD but also offer potential

therapeutic targets that could be exploited.
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The CSRDEGs identified in this study exhibit well-defined

biological functions in cellular senescence, inflammatory, and

fibrotic pathways. For instance, STAT3, a central node in JAK-

STAT signaling (43), plays a pivotal role in NOD2 risk allele-driven

CD pathogenesis (44). The seminal work by Nayar S et al. (44)

demonstrated that NOD2 loss-of-function remodels the

macrophage-fibroblast interaction network, activates STAT3-

dependent signaling, and subsequently regulates the expression of

pro-fibrotic factors (e.g., IL-11 and WT1) in fibroblasts along with

inflammatory mediators (e.g., IL-6 and CXCL13) in macrophages.

It is noteworthy that the high expression of STAT3 in the cluster2

subtype in this study may suggest that this subtype has the potential

for intestinal fibrosis. Furthermore, IL-6 activates the JAK1/STAT3
frontiersin.or
FIGURE 7

Molecular subtyping and characterization of CD based on CSRDEGs. (A) CD disease consistency cluster (K=2) result. (B, C) Consistent cluster
cumulative Distribution function (CDF) diagram (B), Area Delta diagram under CDF curve (C). (D) PCA analysis results of two CD disease subtypes
(cluster1 and cluster2) were presented. (E) The heatmap of 10 hub CSRDEGs (CDKN1A, CDKN2B, IGFBP7, IL1A, IL6, MAPK3, PML, SIRT1, SIRT6, and
STAT3) in different CD disease subtypes. (F) The box plot of 10 hub CSRDEGs (CDKN1A, CDKN2B, IGFBP7, IL1A, IL6, MAPK3, PML, SIRT1, SIRT6, and
STAT3) in different CD disease subtypes. ***P < 0.001.
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FIGURE 8

Immune infiltration heterogeneity and gene interaction networks across CD Subtypes. (A) Box plot for the enrichment score differences of 28
immune cells between cluster 1 and cluster 2 group based on ssGSEA. (B) Dot plot of correlation between 28 differentially infiltrated immune cells
and 10 CSRDEGs (CDKN1A, CDKN2B, IGFBP7, IL1A, IL6, MAPK3, PML, SIRT1, SIRT6, and STAT3) in cluster 1 and cluster 2 group. (C) Box plot for the
enrichment score differences of 22 immune cells between cluster 1 and cluster 2 group based on CIBERSORT. (D) Dot plot of correlation between
15 differentially infiltrated immune cells and 10 CSRDEGs (CDKN1A, CDKN2B, IGFBP7, IL1A, IL6, MAPK3, PML, SIRT1, SIRT6, and STAT3) in cluster 1
and cluster 2 group. ns, no significant, **P < 0.01 and ***P < 0.001.
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signaling axis via gp130 receptor engagement, inducing HIF1A

mRNA transcription and stabilizing HIF1a protein. The HIF1a-
ERRa interaction suppresses ERRa transcriptional activity, with

reduced function of this critical mitochondrial biogenesis regulator

exacerbating mitochondrial dysfunction and promoting

inflammaging (45). Crucially, STAT3 directly binds the HIF1A

promoter to enhance its expression. Simultaneously, IL-6-mediated

ERRa inhibition potentially establishes a self-sustaining regulatory

loop through PGC1a downregulation. This cascade amplifies local

inflammatory signals while shifting cellular metabolism toward

glycolysis via suppressed oxidative phosphorylation capacity,

thereby establishing a proinflammatory-metabolic dysregulation

feedback loop in chronic inflammation (45). Such mechanisms

demonstrate significant complementarity with IL-18 pathway

dysregulation observed in the S2FCD subtype proposed by Tindle

et al. (12).

Of note, SIRT1, an NAD+-dependent class III histone

deacetylase, exhibits diminished expression that compromises

cellular defenses against oxidative stress. Studies indicate that

SIRT1 maintains redox homeostasis by activating FOXO3-

dependent antioxidant genes (e.g., catalase, MnSOD) and

deacetylating nuclear factor erythroid 2-related factor 2 (Nrf2)

(46). Its downregulation may impair antioxidant capacity in

intestinal epithelial cells, aligning with observed accumulations of

reactive oxygen species (ROS)-related damage markers in CD

patient-derived organoid cultures (PDOs), particularly in the

S2FCD subtype (12). Importantly, SIRT1 suppresses NF-kB
transcriptional activity by specifically deacetylating the Lys310

residue of NF-kB p65 (47). In CD’s chronic inflammatory

microenvironment, reduced SIRT1 expression may attenuate NF-

kB pathway inhibition, leading to excessive secretion of pro-

inflammatory cytokines (e .g . , IL-6, IL-8) and matrix

metalloproteinases (e.g., MMP9)—core components of the

senescence-associated secretory phenotype (SASP) (46).

Additionally, promyelocytic leukemia protein (PML) organizes

into highly ordered PML nuclear bodies (NBs) within the

nucleus. These supramolecular complexes and membrane-less

subcellular organelles critically regulate DNA damage response,

apoptosis, and cellular senescence pathways (23, 48, 49). Research

reveals that functional loss of SP140, an epigenetic “reader” and

essential PML-NB component, drives CD pathogenesis through

dysregulated topoisomerase activity in macrophages (50). Coupled

with this study’s findings of strong PML-immune cell correlations

and PML’s role as a key CD subtype classifier, these observations

suggest that PML may critically influence inflammatory progression

in CD, though its precise mechanisms require further investigation.

Machine learning algorithms have significantly promoted the

construction of clinical models. This study integrated multiple

machines learning algorithms, including Support SVM, RF, and

LASSO, to construct a CD diagnostic model based on five

CSRDEGs (CDKN1A, IL1A, PML, SIRT1, and STAT3), with

robust diagnostic performance validated. Nomogram analysis

revealed that IL1A and CDKN1A contributed most significantly
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to the model, suggesting their potential roles as key diagnostic

drivers. Decision curve analysis demonstrated high net clinical

benefit, particularly across broad risk threshold ranges,

outperforming “all-positive” or “all-negative” diagnostic strategies.

OC curve analysis further confirmed the model’s diagnostic

accuracy, highlighting its superior sensitivity and specificity in

distinguishing CD patients from healthy controls. These findings

collectively support the clinical utility of the five CSRDEGs as

potential biomarkers. Functional similarity analysis uncovered

potential synergistic interactions among the five CSRDEGs across

BP, MF, and CC. Cloud-rain plot visualization indicated PML as the

gene with the highest functional similarity to others, suggesting its

central role in senescence-associated pathways. Notably, CDKN1A,

IL1A, SIRT1, and STAT3 also exhibited substantial functional

overlap, implying their coordinated involvement in regulating

cellular senescence and inflammatory responses through shared

signaling cascades. These insights provide a theoretical foundation

for further exploration of these genes in CD pathogenesis and

potential therapeutic targeting of senescence-related mechanisms.

The CSRDEG-based diagnostic model offers a novel perspective

and tool for CD diagnosis. Compared to existing methods, this

model leverages senescence-associated genes, potentially enabling

earlier detection of disease progression. Furthermore, the five

CSRDEGs (CDKN1A, IL1A, PML, SIRT1, STAT3) are all well-

characterized in senescence and inflammation, ensuring biological

coherence and enhancing model interpretability. Future research

should investigate their utility in therapeutic monitoring and

prognostic evaluation, such as dynamically tracking gene

expression to assess treatment efficacy or predict relapse risk.

CD is a disease characterized by immune response disorder, and

in-depth analysis of it can help us understand the nature of the

disease. This study comprehensively analyzed immune characteristics

across disease control groups, high/low scoring subgroups, and CD

subtypes in the combined dataset using CIBERSORT and ssGSEA

algorithms. Results revealed significant differences in immune cell

infiltration abundance between subgroups and subtypes, with distinct

correlation patterns among immune cells and between immune cells

and CSRDEGs, providing critical insights for therapeutic strategy

development and immune mechanism exploration. Notably, IL1A

(encoding IL-1a) exhibited significant correlations with neutrophil

and macrophage subpopulation (M0/M1/M2) infiltration across all

disease subgroups. IL-1a, constitutively expressed as an active pro-

form in all cells, is uniquely localized to the nucleus, cytoplasm, and

cell membrane with compartment-specific functions (51). Its

underrecognized role in CD pathogenesis has been highlighted by

studies demonstrating that damaged intestinal epithelial cells (IECs)

release substantial IL-1a during spontaneous ileitis and DSS-induced

colitis (52). Downregulated IL1A in TLR4-signaling pathways (53)

further indicates its context-dependent immunomodulatory function,

positioning it as a viable therapeutic target. Neutralizing antibodies

(e.g., FLO1 mAb) could disrupt IL-1a-driven barrier dysfunction

while promoting probiotic enrichment (52), as evidenced by reduced

ileitis/colitis severity upon blockade. This cytokine subsequently
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induces inflammatory mediators (IL-1b, Cox2, MPO) and disrupts

intestinal barrier integrity. Blocking IL-1a with FLO1 mAb (a

murine-specific monoclonal antibody) markedly reduced ileitis/

colitis severity, while paradoxically elevating IL-18 (a gut barrier

integrity promoter) and inflammatory markers. IL-1a silencing was

associated with microbial community restructuring toward probiotic

enrichment, suggesting its dual role in modulating gut microbiome

functionality and CD progression. Emerging evidence implicates IL-

1a in pathogenic immune regulation: senescent immune systems

produce “detrimental” IL-1a that mediates immunosuppression

in lung cancer (54), while necroptotic cancer cells release

IL-1a to recruit immunosuppressive neutrophils/macrophages,

perpetuating tumor immunosuppression post-mortem (55).

These findings underscore the necessity to dissect IL-1a’s
multifaceted immunoregulatory roles in CD for developing novel

therapeutic strategies.

This study reveals that CD subtypes (cluster1/cluster2) exhibit

heterogeneity that likely corresponds to distinct clinical phenotypes

and therapeutic requirements. Cluster1 is characterized by elevated

CDKN1A/SIRT1 expression. High CDKN1A (p21) levels indicate

enhanced cell cycle arrest (56), potentially marking a disease

remission phase or low-inflammatory subtype. Experimental

validation should include SIRT1 overexpression in CD

patient-derived organoids to assess barrier function recovery.

Therapeutically, these patients may benefit from SIRT1 agonists

(e.g., SRT1720) to mitigate intestinal epithelial senescence by

enhancing antioxidant capacity (46). Crucially, epigenetic

modulation via miR-4262 inhibition, shown to upregulate SIRT1

and suppress inflammatory apoptosis in IBD (57) that represents a

novel complementary strategy to restore redox homeostasis in this

subtype. In contrast, cluster 2 demonstrates IL-6/STAT3

overexpression. Crucially, sustained activation of STAT3 has been

mechanistically linked to the development of the fibrostenotic

phenotype in CD (44). This pathological role positions STAT3 as a

compelling therapeutic target for this patient subset. Supporting this

notion, JAK inhibitors (e.g., upadacitinib), which act upstream by

inhibiting the IL-6-gp130-STAT3 axis, have demonstrated clinical

efficacy in improving endoscopic outcomes in CD patients (58). The

role of STAT3 in intestinal inflammation is complex and context-

dependent. Genetic studies have identified STAT3 as an IBD

susceptibility locus in both pediatric and adult populations.

Furthermore, the IL-10/STAT3 signaling axis plays a vital

protective and anti-inflammatory role in the gut, essential for

controlling inflammation and preventing tissue damage (59, 60).

Mechanistically, IL-10 binding to its receptor complex (IL10RA/

IL10RB) activates Jak1 and Tyk2 kinases, leading to STAT3

phosphorylation. Activated STAT3 then translocates to the nucleus

to transcribe genes that suppress inflammation (61). This highlights a

critical dichotomy: while dysregulated, persistent IL-6-driven STAT3

activation promotes fibrosis, the IL-10-driven STAT3 pathway is

fundamentally anti-inflammatory. Based on our cluster 2 findings

(IL-6/STAT3 overexpression linked to fibrosis) and the established

pro-fibrotic role of sustained STAT3 activation, we propose that
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targeted STAT3 inhibition holds specific therapeutic promise for

cluster 2 patients with fibrostenotic CD. Beyond conventional JAK

inhibitors, clinically validated small-molecule inhibitors targeting

PML, such as Arsenic Trioxide (used successfully in acute

promyelocytic leukemia) (62), warrant investigation for CD-

associated fibrosis. For translational validation of STAT3’s direct

role in fibrosis within the cluster 2 context, we propose an in vitro

experimental approach: Utilizing macrophage-fibroblast co-culture

systems modeling the fibrotic niche, specific STAT3 knockdown (e.g.,

via siRNA or CRISPR-Cas9) should be performed. The subsequent

quantification of key fibrotic markers (e.g., COL1A1, a-SMA (63))

would provide direct mechanistic evidence of STAT3’s contribution

to the fibrotic phenotype observed in this cluster. These findings

underscore the mechanistic heterogeneity underlying CD

pathogenesis, emphasizing the need to elucidate subtype-specific

molecular pathways to enable precision subtyping and advance

tailored therapeutic strategies.

This study systematically elucidates the regulatory roles of

CSRDEGs in CD, yet several limitations warrant attention. Firstly,

Sample Heterogeneity and Confounding Factors. Our analysis

relied on public databases encompassing unstratified intestinal

biopsy sites (ileum vs. colon) and disease phases (active vs.

remission). Although rigorous standardization and batch-effect

correction were applied to minimize technical and biological

variations, residual confounding effects from intrinsic tissue

heterogeneity cannot be fully excluded. This is particularly

relevant given CD’s patchy inflammation pattern (64), where

adjacent mucosal zones may exhibit divergent molecular profiles.

Such variability could impact the generalizability of gene expression

signatures. Future studies should prioritize stratified sampling or

subgroup analyses based on standardized anatomic and clinical

annotations. Secondly, Mechanistic Validation Gap. Despite robust

bioinformatic predictions (e.g., WGCNA, GSEA) and stable model

performance, the causal roles of CSRDEGs in intestinal barrier

dysfunction or fibrosis remain experimentally unvalidated. The

absence of functional validation using pathophysiologically

relevant models, such as CD patient-derived organoids (12) or in

vivo systems—limits translational inference. We explicitly

acknowledge this gap and plan targeted experiments (e.g.,

CRISPR-based gene editing in 3D organoid models) to verify the

biological impact of prioritized CSRDEGs. Thirdly, Immune

Microenvironment. While ssGSEA and CIBERSORT algorithms

revealed significant shifts in immune cell abundance, bulk

transcriptome resolution inherently precludes assessment of

functional immune states (e.g., T-cell exhaustion, macrophage

polarization). And the state of immune cells (especially the

expression of MHCI/MHCII) remains a problem that we need to

consider. This constraint may lead to incomplete characterization of

immune senescence dynamics. Finally, Clinical Application Faces

Challenges. The tissue-dependent nature of our diagnostic model

restricts its utility for non-invasive applications. Developing blood-

based biomarkers (e.g., SASP factors) or imaging-compatible

signatures represents an unmet need for point-of-care deployment.
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Building on this study, future research should prioritize the

following directions. Firstly, longitudinal tracking of CD

progression integrated with single-timepoint multi-omics data

(transcriptomic, proteomic) (65) to elucidate dynamic interactions

between cellular senescence and immune responses. Secondly,

leveraging single-cell RNA sequencing (scRNA-seq) and spatial

transcriptomics (66) to map cell type-specific CSRDEG expression

patterns in intestinal epithelial cells, fibroblasts, Treg cells, and other

subpopulations, clarifying their compartmentalized functions.

Thirdly, given the established role of specific pathogens (e.g., AIEC

(67), MAP (68)) in CD pathogenesis, it is imperative to investigate

how CSRDEGs modulate host-pathogen interactions (69). We will

focus on exploring the following aspects in the future. (1) SASP-

mediated alterations in epithelial barrier integrity affecting pathogen

adhesion/invasion (e.g., AIEC). (2) senescence-associated immune

dysregulation (e.g., impaired macrophage phagocytosis or defective

antigen presentation) facilitating intracellular pathogen persistence

(e.g., MAP). (3) CSRDEG-driven changes in autophagy,

inflammasome activation, or antimicrobial peptide production that

may reshape the microbial niche. Integrating host transcriptomics

with metagenomic sequencing and targeted pathogen detection in

future cohorts will be essential to decode these relationships. (4)

Intriguingly, our differential expression analysis revealed significant

upregulation of MHC-II genes (e.g., HLA-DMA, HLA-DPA1, HLA-

DPB1; see Supplementary Table S10). Although current data

limitations preclude direct correlation analysis between CSRDEGs

and MHC expression, future studies should systematically investigate

how senescence-associated genes modulate antigen-presenting

machinery. (5) Analyzing associations between immunosenescence

markers (e.g., CD28-CD57+ T cells (70), SA-b-gal+ macrophages

(71)) and CSRDEGs in elderly CD cohorts (>60 years) may uncover

age-specific vulnerabilities to pathogen-driven inflammation, guiding

the development of age-tailored therapeutic strategies. Notably, while

the current study utilized publicly available datasets lacking detailed

microbial metadata, limiting direct correlation analysis between

CSRDEGs and pathogen burden, resolving this mechanistic gap

represents a critical frontier for understanding CD heterogeneity.
Conclusion

In summary, this study systematically unveils the central

regulatory roles of CSRDEGs in CD heterogeneity and immune

microenvironment imbalance through multidimensional analyses.

It preliminarily explores the complex interplay between cellular

senescence and immune dysregulation, providing a groundbreaking

perspective for understanding CD pathophysiology. The CSRDEG-

based diagnostic model and molecular subtyping (cluster1/cluster2)

offer innovative tools for precision diagnosis and treatment, while

the identification of key targets (e.g., IL1A, STAT3, PML) lays a

foundation for developing senotherapeutics targeting senescence

pathways, such as SASP inhibitors and JAK/STAT3 blockers.

Collaborative efforts across disciplines will be essential to validate
Frontiers in Immunology 17
these findings, optimize targeted interventions, and ultimately

improve the quality of life for patients with CD and other chronic

inflammatory diseases.
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Glossary
CD Crohn’s disease. IBD, inflammatory bowel disease
Frontiers in Immunol
WHO World Health Organization
SASP senescence-associated secretory phenotype
PDOs patient-derived organoids
IDICD immune-deficient infectious subtype
S2FCD senescence-driven fibrostenotic subtype
TEER transepithelial electrical resistance
CSRGs Cellular senescence related genes
DEGs differential expression genes
CSRDEGs cellular senescence related differentially expressed genes
GSEA Gene Set Enrichment Analysis
ssGSEA single-sample gene-set enrichment analysis
WGCNA Weighted Gene Co-expression Network Analysis
GO Gene Ontology
KEGG Kyoto Encyclopedia of Genes and Genomes
FDR false discover rate
ogy 20
FC fold change
CTD Comparative Toxicogenomics Database
TF transcription factors
RBP RNA-binding proteins
LASSO Least Absolute Shrinkage and Selection Operator
SVM Support Vector Machine
RF random forest
DCA Decision Curve Analysis
CSscore Cellular senescence score
BP Biological Processes
CC Cellular Components
ROS reactive oxygen species
PML promyelocytic leukemia protein
IECs intestinal epithelial cells
scRNA-seq single-cell RNA sequencing
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