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Platelets have long been acknowledged for their essential roles in hemostasis and 
thrombosis; however, recent insights highlight their broader involvement as key 
participants in host responses during infection. Beyond their classical functions, 
platelets exhibit diverse anti-infective capabilities, such as direct pathogen 
internalization, receptor-mediated pathogen recognition, the release of 
antimicrobial peptides, cytokines, and chemokines, and the generation of 
immunomodulatory extracellular vesicles. These intrinsic platelet attributes 
enable dynamic interactions with pathogens and immune cells, significantly 
contributing to pathogen capture, neutralization, and the orchestration of 
innate and adaptive immune responses. This review examines the multifaceted 
intrinsic roles of platelets and delineates the beneficial outcomes of their 
activation, providing an integrated perspective on platelet-driven immunity and 
defense mechanisms during infection. 
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GRAPHICAL ABSTRACT 

Overview of platelet activation, its intrinsic roles and functional outcomes during infection. This schematic illustrates the transition of platelets from 
the resting to activated state and their multifaceted involvement in infection. Upon activation, platelets execute four major functions: (1) formation of 
immunothrombosis involving fibrin, neutrophil extracellular traps (NETs), and S. aureus to restrict pathogen spread; (2) direct interactions and inter
nalization with various pathogens including bacteria, fungi, and viruses; (3) release of antimicrobial substances via degranulation and generation of 
platelet-derived microparticles (PMPs) and exosomes (PL-EXOs); and (4) modulation of immune responses through immunomodulatory factor re
lease, chemokine secretion, and direct interaction with leukocytes. These activities are grouped into three functional roles—coagulatory, anti-infec
tive, and immunoregulatory—ultimately contributing to pathogen sensing and capture, promotion of pathogen clearance, and modulation of 
immune responses. 
Introduction 

In recent years, accumulating evidence has highlighted that 
platelets actively participate in host immune responses—including 
pathogen recognition, inflammatory regulation, and tissue repair— 
alongside their classical roles in coagulation and thrombosis (1–7). 
Abbreviations: CLEC-2, C-type lectin-like receptor 2; CCR, CC chemokine 

receptor; CXCL, CXC chemokine ligand; CR,complement receptor; Chemokine 

(C-X-C motif) receptor 4(CXCR-4);GPVI, glycoprotein VI; GPIba, glycoprotein 

Ib alpha; JAM-C, junctional adhesion molecule-C; MSCRAMM, microbial 

surface components recognizing adhesive matrix molecules; NET, neutrophil 

extracellular trap; NETosis, neutrophil extracellular trap formation; PL-EXO, 

platelet-derived exosome; PMP, platelet-derived microparticle; PMV, platelet 

microvesicle; SAT, sepsis-associated thrombocytopenia; TRIM, transfusion-

related immunomodulation. 
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They express an array of immune receptors, including pattern 
recognition receptors (PRRs) (8–11), adhesion molecules (12–15), 
and cytokine/chemokine receptors (16, 17), enabling platelets to 
directly sense and respond to pathogens and inflammatory stimuli 
(18–20). Upon activation by microbial components or inflammatory 
stimuli, platelets initiate immune defense by first capturing and 
internalizing pathogens through receptor-mediated recognition, 
targeting a broad range of microbes including bacteria, fungi, and 
viruses (4, 10, 21–27). They subsequently promote the formation of 
immunothrombosis, a coordinated intravascular response involving 
fibrin deposition, neutrophil extracellular traps (NETs), and platelet 
aggregation that serves to localize pathogens and prevent their 
systemic dissemination (28–30). Concurrently, activated platelets 
undergo degranulation, releasing antimicrobial peptides such as 
thrombocidins and defensins from a-granules, which exert direct 
microbicidal effects (31–34). In addition, platelets release platelet-
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derived microparticles (PMPs) and exosomes (PL-EXOs), which 
carry cytokines, chemokines, and immunomodulatory molecules, 
thereby amplifying the local immune response and facilitating 
crosstalk with other immune cells (35–37). 

Clinically, platelet count and functionality have also emerged as 
significant prognostic markers in infectious diseases (38–41). 
Thrombocytopenia, commonly observed in severe infections and 
sepsis, is strongly associated with increased morbidity and mortality 
(39, 42–49). Additionally, disseminated intravascular coagulation 
(DIC), a severe complication characterized by systemic coagulation 
dysregulation commonly seen in advanced stages of sepsis, further 
underscores the critical interplay between platelets and immune-

mediated pathological conditions (50, 51). 
Physiologically, platelet counts range from 150 to 450 × 109/L. 

However, in clinical contexts such as hematologic malignancies or 
allogeneic hematopoietic progenitor cell transplant, a threshold of 
approximately 10 × 109/L is often sufficient for prophylactic platelet 
transfusion to prevent spontaneous bleeding (18, 52–55). This 
considerable functional reserve strongly suggests that platelets 
exert additional biological functions beyond hemostasis (18, 56–59). 

Given that platelets exhibit intrinsic functional roles that extend 
beyond coagulation regulation to include coordinating immunological 
defense mechanisms during infection, understanding these diverse 
platelet roles and their functional outcomes in infectious diseases yields 
valuable insights that may inform the development of therapeutic 
interventions, such as platelet-mediated immunoregulatory, strategies 
to promote platelet regeneration, and transfusion guidance for 
managing thrombocytopenia in infectious conditions. 

In this review, we summarize the multifaceted intrinsic roles of 
platelets and their functional outcomes and discuss the clinical 
implications of platelet depletion in infectious diseases. 
 

 

 

Methods 

To systematically summarize existing scientific evidence

regarding the roles of platelets during infection, we conducted a 
targeted literature review using PubMed, Web of Science (ISI), and 
the Chinese Biomedical Literature Database (CBM), covering both 
English and Chinese publications up to 1 April 2025. The search 
strategy employed Boolean logic to combine three conceptual 
domains: (1) platelets and platelet transfusion-related products, 
(2) infection and sepsis-associated conditions, and (3) 
immunological mechanisms and related cellular processes. Search 
terms included both MeSH terms and free-text keywords and are 
provided in the Supplementary Material (Supplementary Table S1). 

After initial retrieval, duplicate records were removed using 
EndNote and manual verification. We then screened titles and 
abstracts to identify studies of relevance, prioritizing original 
research and high-quality review articles that explored the 
intrinsic roles and functional outcomes of platelets during 
infection. Full-texts of eligible articles were obtained. This review 
synthesizes the current evidence, aiming to provide an integrated 
perspective on the intrinsic roles and functional outcomes of 
platelet activation during infection. 
Frontiers in Immunology 03 
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Coagulatory role of platelets in infection 

In infection, particularly sepsis, the coagulation cascade is 
systemically activated through pathogen-driven and platelet-
mediated mechanisms, contributing to immune thrombosis and 
DIC (7, 50, 60–62). Platelets activated by microbial pathogen-
associated molecular patterns (PAMPs), such as lipopolysaccharide 
(LPS), release procoagulant factors and facilitate thrombin generation 
on their surfaces, significantly enhancing clot formation. 
Concurrently, bacterial-induced tissue damage and inflammation 
upregulate tissue factor (63), initiating the extrinsic pathway of 
coagulation (64, 65). Additionally, pathogens trigger activation of 
coagulation factor XII (FXII) through PAMPs, facilitating the 
intrinsic coagulation pathway, while activated platelets enhance 
NETosis, further amplifying immunothrombosis (28, 29, 66). 
Notably, recent evidence from SARS-CoV-2 infection demonstrates 
that fibrin forms complexes with the viral spike protein, generating 
proinflammatory clots that drive oxidative stress, immune 
dysregulation, and neuronal injury in both the lungs and brain 
(30). Despite compensatory fibrinolytic responses aimed at 
resolving excessive fibrin deposition, pathological impairment of 
fibrinolytic activity sustains persistent thrombotic states, resulting 
in DIC, characterized by systemic microthrombosis and bleeding, 
ultimately progressing toward multi-organ failure (67). 
Anti-infective role of platelets in infection 

Platelets exert multifaceted anti-infective capabilities through 
degranulation and interactions with pathogens, involving receptor-
mediated binding, indirect interactions via plasma proteins, and 
rapid responses to microbial toxins and viral mediators. 

Interactions with pathogens 
Direct interactions 

Platelets directly interact with pathogens through a broad 
repertoire of surface receptors and innate immune sensors, 
enabling rapid pathogen recognition, internalization, and 
immunoregulatory (Figure 1). For bacterial pathogens, classical 
integrins such as GPIIb-IIIa (68–70) and  GPIba (68, 71–73) 
mediate adhesion and internalization (Figure 1). IsdB protein of 
Staphylococcus aureus (S. aureus) (69, 74) and  PadA  of
Streptococcus gordonii (S. gordonii) (70) directly bind GPIIb-IIIa 
independently of fibrinogen. GPIba, part of a  leucine-rich
glycoprotein complex, binds bacterial proteins such as SrpA from 
Streptococcus sanguinis (72), GspB from S. gordonii (72), and SarP 
from S. aureus (75), facilitating pathogen capture and host defense. 
In addition, platelets recognize PAMPs through PRRs, including 
Toll-like Receptors(TLRs), C-type Lectin Receptors(CLRs), and 
NOD-like Receptors(NLRs) (76–79). TLR4 detects bacterial LPS, 
initiating platelet activation, cytokine release, and immune response 
modulation (80–86). Intracellular TLRs (TLR3 (87–89), TLR7 (10), 
TLR9 (90)) recognize viral nucleic acids, stimulating inflammatory 
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responses (Figure 1). CLRs, notably CLEC2, mediate platelet 
activation critical in viral infections (91, 92), whereas NLRs, 
particularly NLRP3 and NOD2, enhance cytokine secretion and 
platelet functions upon pathogen detection (93, 94). 

Furthermore, viral particles can also engage platelet integrins 
such as GPIIb and aVb3, which facilitate adhesion and 
internalization, as observed with hantaviruses and adenoviruses 
(95–97). Other integrins, including a2b1, mediate binding to 
rotaviruses (98), while coxsackievirus B utilizes the Coxsackie and 
adenovirus receptor (CAR) for platelet interaction (99). Platelet 
GPVI, classically involved in collagen sensing, has been shown to 
recognize hepatitis C virus (HCV) (100). C-type lectin domain 
family 1-member B(CLEC-2) and Dendritic Cell-Specific 
Intercellular adhesion molecule-3-Grabbing Non-integrin(DC

SIGN) also serve as viral interaction points, particularly in the 
context of HIV and dengue virus (DENV) (101) (Figure 1). These 
multifaceted receptor-mediated interactions highlight the direct 
role of platelets in viral recognition and immune activation, 
complementing their antibacterial functions and reinforcing their 
importance in antiviral defense. 

The internalization of bacteria by platelets was initially observed 
with S. aureus, demonstrated to occur independently of the open 
canalicular system (OCS) in vacuoles expressing activation markers 
Frontiers in Immunology 04
CD62P and GPIIb-IIIa (21–24). Bacterial internalization mechanisms 
differ among pathogens; S. aureus requires platelet activation (e.g. by 
ADP or thrombin) for internalization, whereas Porphyromonas 
gingivalis (P. gingivalis) can independently induce its internalization 
by platelets via aggregation mechanisms alone (23). Similarly, 
Platelets internalize various viruses, including HIV (10), influenza 
virus (eg.H1N1) (4), DENV (102), and HCV (103, 104), and these 
interactions lead to distinct downstream consequences (4, 10, 25–27). 
Viral internalization typically triggers platelet activation and 
degranulation, contributing to viral clearance; however, in certain 
contexts, this process may instead favor viral persistence. For 
instance, Koupenova et al. observed HIV localized within platelet 
vacuoles that fuse with a-granules rich in inflammatory peptides, 
potentially facilitating viral degradation (10). In contrast, HCV 
internalization by platelets appears to shield the virus from 
immune clearance, limiting uncoating without promoting 
elimination (27). Platelets harboring DENV have shown negative-
stranded viral RNA, suggesting the possibility of limited replication, 
though no productive infection or viral transmission to other cells has 
been documented (27). This duality—clearance versus concealment 
—likely depends on the virus type and host context, representing a 
promising but still underexplored area of platelet immunobiology 
with potential therapeutic implications. 
FIGURE 1 

Diagram of platelet interactions with pathogens and downstream responses in infection. During the process of infection and inflammation, platelets 
sense pathogens such as bacteria and viruses through direct and indirect interactions, and respond by releasing granules and vesicles, and binding to 
immune cells, ultimately exerting anti-infective and immunoregulatory effects. (GPVI, glycoprotein VI; GPIb, glycoprotein Ib; GPIIb/IIIa, glycoprotein 
IIb/IIIa; CLEC-2, C-type lectin-like receptor 2; DC-SIGN, dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin; TLR, toll-
like receptor; FcgRII, Fc gamma receptor II; CD40L, CD40 ligand; MHC-I, major histocompatibility complex class I; NETs, neutrophil extracellular 
traps; PMP, platelet-derived microparticles; PL-EXOs, platelet-derived exosomes). 
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Indirect interactions 
In addition to direct receptor–ligand binding, platelets participate 

in pathogen recognition and clearance through a variety of indirect 
mechanisms mediated by plasma proteins and soluble immune 
components. Key among these are immunoglobulins, von 
Willebrand factor (vWF), fibrinogen, and components of the 
complement system (105–111). 

Some GPIIb-IIIa binds to microbial surface components 
indirectly (21–24, 68–73, 112), recognizing adhesive matrix 
molecules (MSCRAMMs) (113), including ClfA (114), ClfB (115) 
and Fnbp (A and B) proteins (116) of  S. aureus, and  Fbl of

Streptococcus lugdunensis (S. lugdunensis) (117). And GPIba and 
GPIIb-IIIa, the principal platelet adhesion receptors, contribute to 
indirect pathogen engagement through bridging molecules such as 
vWF and fibrinogen, respectively (106, 118). S. aureus protein A 
binds to vWF, subsequently interacting with platelet GPIba, thus
promoting bacterial adhesion and aggregation (109). Glycoprotein
fibrinogen interactions further contribute to pathogen capture, 
involving various bacterial surface proteins such as ClfA (116), 
ClfB (114), FnbpA/B (117) from  S. aureus, and  Fbl  from  S. 
lugdunensis (115), each interacting with distinct fibrinogen domains. 

Complement receptor interactions, including C1q receptor 
gC1q-R expressed on platelets, bind complement-coated 
pathogens, enhancing pathogen clearance while also marking 
platelets as targets for complement-mediated lysis under 
pathological conditions, emphasizing the dual immune and 
hemostatic roles of platelets (119–124). For instance, Epstein-Barr 
virus (EBV) binds platelet complement receptor CR2 (110), while 
HIV engages multiple receptors on platelets, including CXCR4, 
CCR1, CCR3, and CCR4, contributing to platelet activation and 
modulation of the antiviral response (111). 

Similarly, platelets express FcgRIIa, a low-affinity receptor for 
IgG, which enables them to recognize and internalize IgG
opsonized pathogens, including SARS-CoV-2 (125). This 
internalization process facilitates fusion with a-granules that 
contain antimicrobial peptides, thereby promoting intracellular 
degradation of the pathogens (105–108, 126). Moreover, FcgRIIa 
mediates platelet responses to virus–antibody immune complexes 
(124, 127). In DENV infection, such immune complexes trigger 
platelet activation and aggregation via FcgRIIa, leading to efficient 
clearance of virus-coated platelets in the spleen, a key organ for 
platelet turnover and immune surveillance (128). Similarly, HCV 
infection, immune complexes are cleared through platelet-mediated 
mechanisms in the liver, underscoring the importance of tissue-
specific immune environments in antiviral defense (100). 

Microbial toxins and viral soluble mediators 
Platelets play a critical role in host defense by responding to a 

variety of pathogen-derived toxins and soluble factors. 
Several bacterial toxins directly interact with platelet 

membranes or receptors, leading to platelet activation and 
degranulation. For instance, a-toxin from S. aureus (129) and

protease-activated receptor (PAR) activators from P. gingivalis 
(130) directly target platelet receptors, initiating cellular activation 
similar to thrombin. Other toxins, including pneumolysin from 
Frontiers in Immunology 05 
Streptococcus pneumoniae (S. pneumoniae) and streptolysin from 
Streptococcus pyogenes (S. pyogenes) interact with platelet 
membranes, potentially inducing platelet activation and 
degranulation, thus mediating innate defense mechanisms (106, 
127, 131–133). 

In viral infections, platelets can be activated indirectly via host-
virus interaction intermediates. HIV-derived Trans-Activator of 
Transcription (TAT) protein binds to platelet CCR3 and integrin 
b3, promoting activation (101, 134). Additionally, the non
structural protein 1 (NS1) of dengue virus directly binds to 
platelet TLR4, inducing platelet activation and contributing to 
dengue-associated thrombocytopenia and hemorrhage (135). 

In viral infections, platelets can be activated indirectly via host-
virus interaction intermediates. HIV-derived Trans-Activator of 
Transcription (TAT) protein binds to platelet CCR3 and integrin 
b3, promoting activation (101, 134). Additionally, the non
structural protein 1 (NS1) of dengue virus directly binds to 
platelet TLR4, inducing platelet activation and contributing to 
dengue-associated thrombocytopenia and hemorrhage (135). 

Collectively, these findings underscore the sensitivity of platelets 
to microbial and viral products and their participation in both 
proinflammatory and antiviral host responses. More details are 
summarized in Table 1. 
Degranulation 

Upon activation, platelets release a spectrum of granule 
contents essential for their anti-infective functions. These 
granules include a-granules, dense granules, lysosomes, and 
specialized T-granules, each contributing distinct functions. 

The a-granules, the most abundant platelet granules, contain 
various proteins, cytokines, chemokines, and growth factors, 
including adhesion molecules (GPVI, GPIIb/IIIa, GPIb-IX-V 
complex),  coagulation  proteins  (e.g. ,  vWF,  fibrinogen,  
fibronectin), and cytokines/chemokines (e.g., platelet-derived 
growth factor [PDGF], transforming growth factor-b [TGF-b], 
CCL3, CCL5 (RANTES), and CXCL4/PF4 (31). These mediators 
facilitate not only platelet aggregation and pathogen immobilization 
but also immunoregulatory (see Section 3) (32, 33, 148). PF4 
(CXCL4) binds to polyanionic structures on E. coli, undergoes 
conformational changes, and exposes neoepitopes that promote 
opsonization by anti-PF4/polyanion antibodies (128). PF4 also 
suppress HIV infection in some contexts (149, 150), while 
paradoxically enhancing HIV replication in others (151). CXCL7 
is proteolytically cleaved into active fragments such as NAP-2 and 
connective tissue-activating peptide III (CTAP-III). Further C-
terminal processing yields thrombocidins, a subclass of platelet-
derived microbicidal peptides effective against S. aureus, B. subtilis, 
E. coli, and  L. lactis (152). In addition, platelets also release 
Defensins, which exert direct antimicrobial effects upon release 
(153–155). For example, b-defensin 1 is stored in cytoplasmic 
compartments and released in response to S. aureus a-toxin 
(153), while a-defensin impairs the growth of E. coli (155). 
Platelets release antiviral peptides, such as PD1–PD4 and RW1– 
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TABLE 1 Examples of the interaction between platelets and pathogens. 

Pathogen Pathogen 
molecules 

Bridging 
protein 

Platelet 
receptor 

Platelet response Reference 

Direct interactions 

DAMPs - PRRs 

G- bacterial LPS – TLR4 Thrombocytopenia; Promote & inhibit platelet 
activation; Promote microvascular thrombosis in 
endotoxemia; induces the formation of NETs in liver 
and lung. 

(25) 

P. gingivalis Lipopeptides – TLR1/2 Platelet PI3K/Akt activation, formation of platelet
neutrophil aggregates; lead to proinflammatory and 
proangiogenic responses 

(136) 

HCMV Envelope 
glycoproteins 

– TLR2 Release of proinflammatory CD40L and interleukin
1b and proangiogenic vascular endothelial-derived 
growth factor. 

(137) 

Virus(influenza,HIV, HCV, 
EMCV, DENV. etc) 

ssRNA/dsRNA – TLR3/7/9 
(intracellular) 

Release of complement C3, mild thrombocytopenia 
and increased platelet-neutrophil aggregate 
formation, without any prothrombotic effect. 

(25) 

HIV-1,DENV, Salmonella 
Typhimurium (STm) 

C1q CLEC2/NLRP3/ 
DC-SIGN 

Activates platelets via CLEC2 to release extracellular 
vesicles (EVs), including exosomes (EXOs) and 
microvesicles (MVs). 

(91–94) 

coxsackievirus B CAR P-selectin and phosphatidylserine (PS) exposure (138) 

Streptococcus sanguinis/S. 
gordonii/S. aureus 

SrpA/GspB/SarP – GPIb 
platelets adhesion; the organism colonize; the 
expression of SraP appears to be a virulence 
determinant in endovascular infection. 

(72, 75, 139) 

S. aureus/S. gordonii 
/Staphylococcus epidermidis/ 
hantaviruses/adenoviruses 

IsdB/PadA/SdrG – GPIIbIIIa 

platelet adhesion, dense granule secretion and 
platelet spreading; SdrG alone is sufficient to support 
platelet adhesion and aggregation through both 
direct and indirect mechanisms. 

(70, 74, 140) 

HIV 
CXCR4/CCR1/ 
CCR3/CCR4 

platelet activation and modulation of the 
antiviral response. 

(141) 

HCV GPVI playing a role in viral transport and persistence. (142) 

Indirect interactions 

S. aureus protein A vWF GPIb Platelet adhesion and aggregation (109) 

S. aureus/S. lugdunensis ClfA/ClfB/Fnbp A/ 
B/Fbl 

Fibrinogen GPIIbIIIa Stimulate rapid platelet aggregation; 
Infective endocarditis. 

(117, 143) 

SARS-Cov-2/HCV spike protein IgG FcgRIIA Enhanced platelet-mediated thrombosis. (108, 125) 

viral and bacterial pathogen S. aureus protein A C1q gC1q-R/CR2 platelet and monocyte/neutrophil activation; marking 
platelets as targets for complement-mediated lysis 
under pathological conditions; enhancing 
pathogen clearance. 

(127, 132, 133, 
144–146) 

Microbial toxins and viral soluble mediators 

S. aureus a-toxin – – a-toxin form transmembrane pores and trigger 
calcium mobilization to mediate platelet activation. 

(129) 

– ADAM10 Platelet intoxication prevents endothelial barrier 
repair and facilitates formation of injurious platelet
neutrophil aggregates 

(79) 

S. pneumoniae pneumolysin – – lyse platelets and to activate serum to 
become chemotactic. 

(127, 132) 

S. pyogenes streptolysin – – Activates human platelets via Streptolysin S-
Mediated Calcium Ion influx 

(131, 133) 

(Continued) 
F
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RW5, upon thrombin stimulation (156). Platelet-derived ROS and 
RNS (e.g., H2O2, NO3

-, NO) also impair viral replication, including 
that of human cytomegalovirus (HCMV) (157). 

Dense granules, containing smaller molecules such as ADP, 
serotonin, polyphosphates, histamine, and Ca²+, play a significant 
role in platelet activation and aggregation, thereby promoting rapid 
responses at infection sites (158). Platelet lysosomes, enriched with 
hydrolytic enzymes, are implicated in extracellular matrix 
degradation, receptor cleavage, and potentially autophagic 
clearance of pathogens (158). Additionally, platelets possess 
specialized T-granules containing TLR9, enabling recognition of 
bacterial DNA CpG sequences, thus actively participating in innate 
immune responses against pathogens (159). 
The immunoregulatory role of 
platelets in infection 

Platelet-derived immunoregulatory 
mediators 

Soluble mediators and chemokines 
Upon activation, platelets release a diverse array of 

immunomodulatory factors, including. vasoactive agents like 
serotonin (142) and platelet-activating lipids like TXA2 (160) and 
PAF (161), which modulate endothelial and immune cell activity. 
Growth factors such as PDGF (162) and TGF-b (141, 163–166) 
influence monocyte differentiation and lymphocyte regulation, 
while platelet-derived chemokines, including CXCL7, PF4, and 
CCL5, orchestrate neutrophil and monocyte recruitment, 
reinforcing host defense (167–170). Notably, PF4 also promotes 
the formation of neutrophil extracellular traps (NETs), thereby 
enhancing bacterial clearance (171), and supports antiviral 
immunity by recruiting leukocytes to the lungs during influenza 
infection (172) and modulating interferon responses during 
flavivirus infections such as dengue and Japanese encephalitis 
(173). Recognition of viral single-stranded RNA (e.g., from HIV 
or influenza) via TLR7 induces release of a-granule contents, 
CD40L, and P-selectin, also enhancing platelet-neutrophil 
aggregation and NET formation (174, 175). In parallel, activation 
of the NLRP3 inflammasome promotes cytokine secretion, while 
platelet-derived complement C3 amplifies neutrophil responses 
through further NET induction (4, 93, 119). Platelets also secrete 
Frontiers in Immunology 07 
antimicrobial peptides like thrombocidins and cytokines including 
IL-1b (146, 176), high mobility group box 1(HMGB1) (177, 178), 
and soluble CD40L ligand (sCD40L) (179) amplify  immune

signaling. As reservoirs of these immunomodulatory mediators, 
platelets not only regulate inflammation but also store and release a 
wide range of chemokines and cytokines that influence immune cell 
recruitment, wound healing, immune tolerance, and tumor 
metastasis (5, 111, 180, 181). Expressing multiple chemokine and 
cytokine receptors, platelets actively sense and respond to 
inflammatory signals, positioning them as key intermediaries 
linking innate and adaptive immunity. 

Extracellular vesicles 
Activated platelets also release extracellular vesicles classified 

into two main types: PMPs. and PL-EXOs (34), which are actively 
involved in immunoregulatory. 

PMPs first reported in 1946 (182), represent the most abundant 
circulating microvesicle population, identifiable through enrichment via 
centrifugation and characterized by retained procoagulant activities (35, 
36, 183). PMPs are heterogeneous vesicles released from the platelet 
plasma membrane, with diameters ranging from 100 nm to 1 μm (184). 
Under conditions of platelet activation or apoptosis, vesicles form 
through budding at specific sites of the cell membrane and eventually 
detach; some pseudopodia fragment, releasing debris into the 
bloodstream, thereby generating PMPs. This formation process 
involves calcium ion influx, phosphatidylserine exposure, and the Bax/ 
caspase signaling pathway (185, 186). PMPs contain bioactive lipids (e.g., 
phosphatidylserine, tissue factor, arachidonic acid), surface proteins (e.g., 
CD41, CD31, P-selectin), and various microRNAs, supporting roles in 
coagulation, vascular repair, and immunoregulatory (187). Functionally, 
PMPs exert potent immunomodulatory effects. They activate 
neutrophils and endothelial cells via CD62P, enhancing neutrophil
endothelium adhesion (35), and facilitate monocyte recruitment 
through transfer of GPIba (36). In viral infections, platelet activation 
by dengue virus (DENV) or SARS-CoV-2 triggers increased PMP 
release through CLEC-2 (91) or CD47  (188), respectively. These 
PMPs subsequently activate neutrophils and macrophages via TLR2 
and TLR4 signaling, promoting NETosis and cytokine release, thereby 
amplifying inflammation (37). While PMP elevation is observed in 
many pathological states, the precise immunoregulatory mechanisms 
remain incompletely understood and merit further investigation. 

PL-EXOs typically have diameters smaller than 100 nm, 
originating from early endosomes and multivesicular bodies 
TABLE 1 Continued 

Pathogen Pathogen 
molecules 

Bridging 
protein 

Platelet 
receptor 

Platelet response Reference 

Microbial toxins and viral soluble mediators 

P. gingivalis Hgp44 – PARs The Hgp44 adhesin on the surface of bacterial cells is 
processed by Rgp and Kgp proteases and is necessary 
for platelet aggregation induced by Pseudomonas 
gingivalis in PRP. 

(130) 

Dengue virus NS1 (nonstructural 
protein 1) 

– TLR4 Platelet activation, activating inflammasome to 
trigger IL-1b processing and release ATP. 

(147) 
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(MVBs). They are released through fusion with the platelet cell 
surface and the OCS (184), a process dependent on ESCRT (138). 
PL-EXOs are enriched in tetraspanins (CD63, CD9, CD81) and 
endosomal sorting complex-related proteins (TSG101) (189). 
Additionally, exosomal cargo includes both mRNA and miRNA, 
exhibiting diverse types and abundant content (138). These vesicles 
mediate critical intercellular signaling, modulate immune and 
inflammatory responses, and facilitate tissue repair through 
miRNA delivery and receptor transfer (190, 191). 

Moreover, PMPs and PL-EXOs can interact with distant tissues, 
including bone marrow, lymph nodes, and synovial fluids, 
highlighting their role in systemic communication during 
infections and other inflammatory conditions (138, 192). 
Platelet-mediated immune cell interactions 

Platelets profoundly modulate immune responses through 
dynamic interactions with. innate and adaptive immune cells, 
facilitated primarily by direct cell-cell contacts and the release of 
immunomodulatory mediators. Platelets significantly modulate 
immune responses through interactions with various leukocytes, 
including dendritic cells (144, 145, 193), neutrophils (35, 71, 194, 
195), monocytes (58), lymphocytes (196), even mast cell (197). 

Innate immunity 
Among innate immune cells, platelets play a pivotal role in 

regulating neutrophil. function. by forming platelet–neutrophil 
aggregates via P-selectin/P-selectin glycoprotein ligand 1(PSGL-1) 
and glycoproteins such as GPIba and GPIIb, which promote 
neutrophil adhesion and transmigration to sites of inflammation 
(138, 185, 193, 194). They also induce neutrophil extracellular trap 
(NET) formation, a critical mechanism for trapping and 
neutralizing pathogens. In addition, platelet-derived chemokines 
like PF4 and CCL5 (RANTES) enhance neutrophil recruitment and 
activity, particularly under conditions such as acute lung injury (35, 
71, 194, 195, 198–202). Recent studies have unveiled key 
mechanisms linking platelet activation to NETosis and 
immunothrombosis during sepsis. For instance, STING signaling 
in platelets has been shown to amplify granule secretion and 
intravascular thrombosis (203), while gasdermin D(GSDMD)

mediated platelet pyroptosis (66), driven by S100A8/A9–TLR4 
signaling, promotes the release of oxidized mitochondrial DNA 
that enhances NET formation. These mechanisms establish a 
pathogenic feedback loop between platelets and neutrophils, 
contributing to excessive inflammation and tissue injury (Figure 2). 

For monocytes, activated platelets form platelet–monocyte 
aggregates (PMAs) primarily via P-selectin–PSGL-1 binding, with 
co-stimulatory interactions involving CD40L–Mac-1 and GPVI– 
CD147,driving monocyte polarization toward an inflammatory M1 
phenotype, amplifying cytokine secretion and contributing to 
immune activation in conditions like sepsis (58, 205–207). 
Conversely, in a murine model of systemic inflammation, the 
interaction of CLEC-2 on platelets with podoplanin on tissue-
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resident macrophages establishes an anti-inflammatory axis that 
mitigates immune cell infiltration and preserves vascular integrity 
during sepsis (208). 

Platelets also engage with dendritic cells (DCs) through axes 
such as CD40–CD40L, P-selectin–PSGL-1, and JAM-C–Mac-1, 
promoting DC maturation, antigen internalization, and 
subsequent presentation to T lymphocytes—thereby bridging 
innate and adaptive immunity (144, 145, 168, 193, 209–213). 
Additionally, platelet-derived mediators such as CXCL4 and 
soluble CD40L (sCD40L) reinforce DC functions by upregulating 
costimulatory molecules and pro-inflammatory cytokines 
(210, 211). 

Although less extensively studied, mast cells are another innate 
immune population influenced by platelet interaction (197). These 
interactions may modulate early inflammatory signaling and 
histamine release, further integrating vascular responses into 
immune defense. 

Adaptive immunity 
In adaptive immunity, platelets bridge innate signals and 

adaptive responses by directly, store and express substantial 
amounts of functional major histocompatibility complex class I 
(MHC-I) molecules, facilitating antigen processing and 
presentation to CD8+ T cells upon activation, thus enhancing 
adaptive immune responses (214). In T cells, platelet-derived 
CXCL4 (PF4) and serotonin are key immunoregulatory factors (5, 
8, 215–217), while surface molecules such as CD62P, GPIIb/IIIa, 
and CD40L facilitate direct interaction with activated T 
lymphocytes (218–220). These interactions influence T-cell 
activation, proliferation, and trafficking to secondary lymphoid 
organs, with context-dependent outcomes—platelets may enhance 
or suppress T-cell effector functions depending on the immune 
context (216, 221–225). Moreover, platelets interact with B-cells via 
the CD40-CD40L axis, significantly affecting B-cell proliferation, 
differentiation, class switching, and memory formation, thereby 
modulating antibody-mediated immunity (199, 217, 226, 227). 
Conversely, platelets also contribute to inflammation resolution. 
In a murine model of bacterial pneumonia, they promote Treg 
expansion and macrophage polarization via TGFb and CD62P
sCD40L interactions (179). Platelets further enhance T helper (Th) 
1, Th17 differentiation of CD4+ T cells via cell–cell contacts and 
release of PF4, CCL5 (RANTES) and TGFb (223). 

Furthermore, in shaping humoral immunity, platelet 
interactions with natural killer (NK) cells—mediated by immune 
checkpoint molecules like GITRL and RANKL—can suppress NK 
cell cytotoxicity and IFN-g production, modulating immune 
responses under both infectious and neoplastic conditions 
(211, 212). 

Interestingly, lymphocytes can also influence platelet biology: 
through the use of platelet-derived prostaglandin H2 (PGH2), 
lymphocytes synthesize PGI2, a potent inhibitor of platelet 
activation. This bidirectional regulation highlights the complex 
interplay between platelets and lymphocytes in shaping adaptive 
immunity (228, 229). 
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Transfusion-related immunomodulation 
Instead of immunoregulatory functions of endogenous platelets, 

transfused allogeneic platelets can also exert potent immunomodulatory 
effects, which may be either beneficial or detrimental depending on the 
clinical context. TRIM refers to immune alterations associated with 
blood transfusions, encompassing immunosuppressive and pro-
inflammatory effects potentially contributing to adverse clinical 
outcomes such as cancer recurrence, postoperative infections, 
multiorgan failure, and increased mortality (230, 231). 

A large single-center cohort study demonstrated that allogeneic 
platelet transfusion during cardiac surgery was significantly associated 
with an increased risk of bloodstream infections, but showed no 
significant correlation with hospital-acquired pneumonia or surgical 
site infections. This suggests that platelet transfusion may selectively 
increase the risk of specific infections through immunomodulatory 
mechanisms (232). Kah et al. reported a case of an acute lymphoblastic 
leukemia patient who developed disseminated Fusarium infection and 
endogenous fungal endophthalmitis following leukocyte-depleted 
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platelet transfusion. This supports the hypothesis that platelet-
derived immunomodulatory factors may compromise host immune 
defenses through TRIM mechanisms, thereby increasing susceptibility 
to opportunistic infections (233). Regarding immunosuppressive 
effects, Sadallah et al. revealed that extracellular vesicles from stored 
platelets can redirect monocyte differentiation towards immature 
dendritic cells (iDC), which subsequently mature into DC, while 
simultaneously downregulating inflammatory responses in human 
macrophages (234). Using an in vitro whole-blood transfusion 
model, Perros et al. demonstrated that platelets modulate immune 
responses by suppressing DC-associated pro-inflammatory cytokines 
through soluble mediators while enhancing the anti-inflammatory 
cytokine IL-10 (235). 

Multiple factors underlie TRIM, including the transfusion of 
allogeneic monocytes, soluble leukocyte-derived mediators, and 
circulating soluble HLA peptides within allogeneic plasma (230). 
Platelets have emerged as significant contributors to TRIM, with 
transfusion-associated platelet-derived molecules such as sCD40L, 
FIGURE 2 

Representative molecular pathways involved in platelet resistance to infection. This illustration summarizes three recent reported, sequentially linked 
molecular pathways by which platelets participate in infection: (A) Mechanosensing-mediated migration (204). Upon vascular injury or inflammation, 
platelet integrin GPIIb senses fibrin(ogen)-rich matrix exposure and initiates mechanosensing through Ga13–c-Src–14-3-3z signaling. This promotes 
platelet polarization and lamellipodia formation, enabling directional migration toward sites of endothelial damage—a critical early step in immune 
hemostasis. (B) STING-dependent activation and NETosis (203). In sepsis, platelets are activated via STING (stimulator of interferon genes), which is 
triggered by cytosolic cGAMP or mitochondrial DNA. Activated STING interacts with the SNARE machinery through STXBP2 to promote granule 
secretion (e.g., P-selectin), facilitating platelet–neutrophil interactions and subsequent formation of NETs. (C) GSDMD-mediated pyroptosis (66). As 
inflammation escalates, platelet pyroptosis is induced through a S100A8/A9–TLR4–NLRP3 axis. Mitochondrial ROS trigger inflammasome assembly, 
leading to caspase-1 activation and cleavage of GSDMD. The resulting GSDMD-N fragments form membrane pores, causing pyroptotic cell death 
and the release of oxidized mitochondrial DNA (ox-mtDNA), which further enhances NET formation. NETs in turn release S100A8/A9, establishing a 
feedforward loop that amplifies platelet pyroptosis and inflammatory signaling. (GPIIb, glycoprotein IIb (integrin aIIb); Src, proto-oncogene tyrosine-
protein kinase Src; 14-3-3z, 14-3–3 zeta protein; STING, stimulator of interferon genes; STXBP2, syntaxin-binding protein 2; SNARE, soluble N
ethylmaleimide-sensitive factor attachment protein receptor; cGAMP, cyclic GMP-AMP; NETs, neutrophil extracellular traps; TLR4, toll-like receptor 
4; NLRP3, NOD-like receptor family pyrin domain-containing 3; GSDMD, gasdermin D; ox-mtDNA, oxidized mitochondrial DNA; ROS, reactive 
oxygen species; IL-1b, interleukin-1 beta; ASC, apoptosis-associated speck-like protein containing a CARD; PMNs, polymorphonuclear neutrophils). 
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soluble OX40 ligand (sOX40L), soluble MHC class I (sMHC-I), and 
soluble FAS ligand (sFASL) increasing during storage and 
potentiating proinflammatory and immunomodulatory effects 
following transfusion (5, 6, 230, 236–242). 
Functional outcomes 

Pathogen sensing and capture 
Upon vascular injury in infection, platelet integrin GPIIb senses 

fibrin(ogen)-rich matrix exposure and initiates mechanosensing 
through Ga13–c-Src–14-3-3z signaling (204)(Figure 2). This 
promotes platelet polarization and lamellipodia formation, 
enabling directional migration toward sites of endothelial damage 
and forming immunothrombosis (204),which represents a critical 
component of the innate intravascular immune response, exerting 
multiple protective functions including pathogen containment, 
elimination, and immune coordination (243, 244). It achieves 
pathogen capture and confinement primarily through fibrin 
network formation within thrombi, preventing pathogen 
dissemination and tissue invasion (245). Additionally, the 
localized thrombotic environment supports innate immune cell 
recruitment and releases antimicrobial peptides at sites of 
pathogen entrapment, thereby enhancing pathogen clearance and 
immune defense mechanisms (3). 

Platelets, which possess cellular structures facilitating virus 
attachment, internalization, and replication, further contribute to 
antiviral defense by sensing viral components through PRRs (3). 
Upon virus binding and internalization, platelets become activated, 
triggering granule secretion and promoting platelet-neutrophil 
interactions, which collectively enhance antiviral responses. For 
instance, in mouse models, platelets detect encephalomyocarditis 
virus via TLR7, resulting in significant platelet-neutrophil aggregate 
formation and rapid platelet consumption, leading to protective 
immunity (10). Similarly, during influenza infections, platelet-
mediated virus internalization through TLR7 initiates the release 
of complement component C3, inducing neutrophil DNA release 
and aggregation, thus underscoring platelet-neutrophil crosstalk as 
a critical mechanism in orchestrating host immune and 
complement responses (4, 10). 
Platelet-mediated transport and induction 
of immune responses 

Platelets significantly contribute to adaptive immune responses 
by facilitating pathogen transport and antigen presentation. Some 
platelet-bound bacteria persist in circulation long enough to be 
transported to the spleen, where they are recognized by CD8a+ 
dendritic cells, subsequently eliciting cytotoxic T-cell responses 
(246, 247). Similarly, in DENV infection, immune complexes 
trigger platelet activation and aggregation via FcgRIIa, leading to 
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the efficient clearance of virus-coated platelets in the spleen, a key 
organ for platelet turnover and immune surveillance (128). In the 
case of HCV infection, immune complexes are cleared through 
platelet-mediated mechanisms in the liver (100). 

In addition to transport, platelets influence pathogen fate via 
surface receptors. Platelet-expressed GPIb, for example, modulates 
the handling of pathogens opsonized by complement factor C3b. 
While C3b-coated bacteria are typically cleared by macrophages in 
the spleen, engagement by platelet GPIb redirects these complexes 
toward splenic dendritic cells, thereby enhancing adaptive immune 
responses (248, 249). 

Moreover, megakaryocytes—precursors of platelets—express 
MHC class I molecules and actively process and cross-present 
antigens on their surface, initiating CD8+ T-cell activation and 
proliferation; during thrombopoiesis, these antigen-loaded MHC 
class I complexes are transferred to proplatelets (250). Given that 
platelets and megakaryocytes harbor all components necessary for 
antigen processing and presentation, platelets can directly interact 
with T-cells and also facilitate B-cell maturation and antibody class 
switching. Collectively, these mechanisms underscore the intricate 
interactions among platelets, antigen-presenting cells, and 
lymphocytes, highlighting the crucial role of platelets in 
orchestrating pathogen-specific adaptive immunity. 
Release of pathogen-inhibiting substances 
or factors promoting pathogen clearance 

Upon activation, platelets release multiple substances that 
directly inhibit pathogen growth or facilitate pathogen clearance. 
Platelet-derived b-defensins, a group of cationic antimicrobial 
peptides, inhibit bacterial proliferation by disrupting membranes 
and induce NETosis (153); platelets aggregate around pathogens 
such as S. aureus, release b-defensins, and trigger NETosis to 
effectively trap and neutralize the bacteria (66, 153). Similarly, 
thrombocidins—truncated variants of neutrophil-activating 
peptide-2 (NAP-2) originally isolated from platelet granules— 
demonstrate potent bactericidal effects against diverse bacterial 
strains, including B. subtilis, L. lactis, and possess fungicidal 
activity against C. neoformans (152). Moreover, platelet-secreted 
cytokines such as IL-1b, released upon bacterial LPS stimulation or 
viral infection, augment bacterial phagocytosis (3, 93, 251) and 
further amplify macrophage-derived IL-1b production, reinforcing 
antimicrobial defenses (252). Additionally, platelet-expressed GPIb 
modulates the fate of pathogens opsonized by complement factor 
C3b; typically, macrophages clear C3b-coated bacteria in the spleen, 
yet if platelets engage bacteria through GPIb, the platelet-pathogen 
complexes are redirected towards splenic dendritic cells, enhancing 
adaptive immune responses (248, 249). Collectively, these platelet-
driven antimicrobial pathways significantly contribute to pathogen 
containment and the orchestration of both innate and 
adaptive immunity. 
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Discussion 

In this review, we have comprehensively outlined the intrinsic 
roles of platelets during infection and their corresponding functional 
outcomes. Platelets actively engage in immune defense by employing 
PRRs such as TLRs to detect pathogens (18, 19), initiating responses 
like immunothrombosis to limit pathogen spread (28, 29). Activated 
platelets undergo extensive degranulation, releasing antimicrobial 
peptides such as thrombocidins and b-defensins, as well as 
cytokines like IL-1b and various chemokines, thereby enhancing 
immune cell recruitment and effectively orchestrating innate and 
adaptive immune responses (31–34). These multifaceted mechanisms 
highlight platelets as central players not only in preserving vascular 
integrity but also in coordinating robust immune defenses during 
infectious states. 

Platelets are essential intravascular sentinels capable of rapidly 
responding to pathogens or other abnormalities. Upon pathogen 
encounter, platelets initiate immunothrombosis, effectively restricting 
pathogen spread and promoting pathogen clearance through 
transport to immune-rich organs such as the liver and spleen (246, 
247). Similarly, in malignant neoplasm pathophysiology, by shielding 
circulating tumor cells (CTCs) from shear stress, mediating immune 
evasion, and neoangiogenesis, platelets may facilitate metastasis 
(253), highlighting platelets’ broader biological functions beyond 
hemorrhage prevention and their intricate role in clinical scenarios 
like sepsis-associated thrombocytopenia (SAT). 
Clinical evidences and implications 

Thrombocytopenia is a common complication in patients with 
sepsis (254, 255). Clinical data demonstrates that the prevalence of 
SAT varies among different research in intensive care units (ICUs), 
ranging from 10% to 83.5% (44, 46, 48, 256–262). Studies have 
shown that thrombocytopenia in sepsis patients correlates with 
increased mortality rates and extended ICU stays (263, 264). 
Furthermore, evidence indicates that persistent thrombocytopenia 
has an association with poor clinical outcomes (263). Recent 
research underscores the prognostic significance of both static 
and dynamic platelet indices in sepsis. For instance, Chen et al. 
reported that a lower platelet count (PC) and higher mean platelet 
volume (MPV) were independently associated with increased risks 
of intraventricular hemorrhage and mortality in preterm infants 
(265), and that transfusions at higher PCs may paradoxically 
increase adverse outcomes (265–267). Wang et al. identified 
distinct platelet trajectory subphenotypes in adult septic patients, 
showing that stable or declining trajectories during the first four 
ICU days were independently associated with increased 28-day 
mortality compared to ascending patterns, with thrombocytopenia 
mediating up to 37% of this risk (268). Cheng et al. confirmed that 
SAT, particularly when severe or persistent, correlates with higher 
in-hospital mortality in patients with sepsis-induced coagulopathy, 
namely, DIC (42). Similarly, Ye et al. emphasized that dynamic 
monitoring of platelet counts, rather than single time-point 
measurements, enhances the predictive accuracy for hospital 
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mortality in sepsis, underscoring the importance of incorporating 
longitudinal platelet indices into clinical risk stratification 
models (28). 

Platelet transfusion remains the most effective and widely 
adopted intervention to raise circulating platelet levels and is 
considered a cornerstone of SAT management (269–271). 
However, the optimal prophylactic transfusion threshold remains 
controversial (268, 272–274), and current clinical guidelines are 
hindered by the lack of high-quality evidence to support a 
standardized approach (275–278). Furthermore, emerging 
evidence indicates that a lower transfusion threshold (platelet ≤ 
20x109/L) may not confer significant clinical benefits in SAT 
patients (38, 271, 279, 280). 

Regarding antiplatelet therapies, several clinical investigations 
have explored their potential role in infection-associated 
coagulopathy, particularly in the context of COVID-19. A meta-

analysis involving 87,824 patients suggested that antiplatelet 
therapy might be associated with lower mortality in COVID-19 
based on observational data (OR: 0.72, 95% CI: 0.61–0.85) (281). 
However, randomized controlled trials did not confirm a clinical 
benefit of adding antiplatelet therapy to standard care, regardless of 
baseline illness severity or concomitant anticoagulation (282–285). 

Regarding anticoagulant therapies, recombinant human 
thrombomodulin (rhTM), an anticoagulant targeting excessive 
thrombin generation, has been widely used in Japan for sepsis-
associated DIC (286). However, the SCARLET trial failed to 
demonstrate a mortality benefit of rhTM in a broader population 
with sepsis-associated coagulopathy, suggesting that the degree of 
coagulopathy in these patients may have been insufficient to benefit 
from this therapy (287). Complementary to pharmacologic 
strategies, Olas reviews the potential of natural phenolic 
compounds—such as resveratrol, curcumin, and quercetin—for 
their anti-platelet, antioxidant, and anticoagulant properties (288). 
Although these compounds show promise in modulating 
hemostasis and reducing oxidative stress in cardiovascular 
disease, their clinical relevance in COVID-19 remains speculative 
and largely unsubstantiated by in vivo evidence (288). About the 
immunoregulatory therapies for platelet, clopidogrel was recently 
used to successfully inhibit platelet inflammasome assembly and, 
thus, the release of pro-inflammatory IL-1b and IL-18 under septic 
conditions resulting in improved renal function (56, 176). 
Hypothesis 

Given the complex and dynamic roles of platelets in infection 
revealed in this review, we propose that platelet function during 
sepsis is not static, but evolves in tandem with disease progression. 
Early in sepsis, immune hyperactivation predominates, whereas in 
later stages, patients may transition to an immunosuppressed state 
(3–5, 289, 290), often complicated by the development of DIC (1, 2, 
61, 291, 292). Therefore, the predominant role of platelets likely 
shifts over time—from immune surveillance and modulation in 
early disease to consumptive coagulopathy during advanced stages. 
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This temporal heterogeneity underpins the need for stage-
specific strategies. 

Based on current evidence regarding the prognostic utility of 
platelet indices (38, 42, 263, 268)—including absolute counts and 
dynamic trajectories—we hypothesize that SAT may encompass 
two distinct phases. Initially, platelet consumption may reflect their 
active participation in anti-infective and immunoregulatory 
processes. In patients with disease progression, however, a 
secondary phase may emerge where platelets are rapidly 
consumed due to microthrombus formation in the context of 
overt or subclinical DIC. 

This leads to a conceptual therapeutic implication: prophylactic 
platelet transfusion should be considered early to preserve platelet 
numbers and functionality, potentially preventing irreversible 
transition to DIC. Interventions aimed at preserving or restoring 
platelet function may be more effective in this “pre-DIC window”. 
In contrast, antiplatelet and anticoagulant agents—although 
beneficial in certain coagulopathic settings—may exacerbate 
functional platelet inhibition that is difficult to reverse in critically 
ill patients. Moreover, in the context of DIC progression, platelet 
dysfunction induced by pharmacologic agents which are lack of 
reversal agents (293), may not be mitigated by transfusion alone, 
possibly heightening the risk of spontaneous hemorrhage 
(293–296). 
 

Limitations 

Despite significant advances in understanding the intrinsic roles 
and functional outcomes during infection, several limitations 
remain that may impact the interpretation and generalizability of 
current findings. 

First, a major constraint lies in the scarcity of human 
interventional data. Much of the mechanistic evidence regarding 
platelet immune functions originates from murine models or in 
vitro studies, which may not fully recapitulate the complexity of 
human immunopathology. Notably, species-specific differences in 
platelet receptor expression and signaling pathways can lead to 
divergent immune outcomes. For example, murine platelets express 
higher levels of TLR4—facilitating stronger responses to LPS— 
whereas human platelets exhibit reduced TLR4 expression and a 
less pronounced pro-inflammatory profile (297, 298). Moreover, 
discrepancies in intracellular signaling molecules (e.g., TLN1, 
CALM3, PRKCB in humans vs. RASGRP2, ITGB2, MYL9 in 
mice) may modulate platelet reactivity and immune crosstalk (299). 

Second, variability in platelet preparation protocols, such as the 
use of different agonists in ex-vivo (e.g., thrombin, LPS), 
anticoagulants, and storage conditions, can influence platelet 
activation states and introduce inconsistencies across studies, 
whereas in vivo models like ARDS or S. pneumoniae infection 
demonstrate platelet-mediated tissue protection and resolution 
(300, 301). These technical variables may exaggerate or obscure 
specific immunological phenotypes. 

Third, the inflammatory context and disease phase profoundly 
affect platelet function. In acute infection models such as CLP-
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induced or LPS-induced sepsis, platelets tend to exhibit pro-
inflammatory behaviors, promoting NETosis, cytokine release, 
and immune cell recruitment (298, 302, 303). In contrast, chronic 
or resolving models—such as cancer-associated inflammation or 
post-viral recovery—often reveal platelet-mediated resolution and 
immune regulation, including promotion of Treg expansion or 
macrophage polarization (298, 302, 303). This functional 
dichotomy is not contradictory, but rather reflects the dynamic 
and context-dependent nature of platelet roles in immunity. 

Finally, methodological heterogeneity across studies—including 
model choice, timing of sampling, and outcome assessment— 
further complicates data integration and cross-comparison. 

Future investigations should aim for standardized protocols and 
longitudinal designs to better delineate the immunological 
spectrum of platelet function in infection. 
Perspectives 

Basic and translational research 
Future research, including basic and translational research, 

needs to emphasize the primary roles and diverse functional 
outcomes of platelets in driving disease progression across various 
clinical conditions, particularly in bloodstream infections frequently 
observed in sepsis. And combining acute and chronic inflammation 
models, and employing a diverse array of experimental techniques 
—from in vivo imaging to single-cell omics—will be essential to 
dissect the multifaceted roles of platelets. Particular attention 
should be given to the temporal dynamics of platelet activity, as 
their contribution likely varies across different stages of 
inflammation, including initiation, propagation, and resolution. 
Cross-species comparative studies may also provide valuable 
insights into the evolutionary conservation and diversification of 
platelet-mediated immune regulation, thereby informing both basic 
mechanistic understanding and translational applicability 
in humans. 

Diagnose 
Emerging evidence suggests that platelets, beyond their classical 

hemostatic functions, possess diagnostic utility in infectious 
diseases through their immunological responsiveness. They 
express a range of PRRs, including (76–79), which enable the 
detection of microbial components and DAMP. Differential 
activation of these receptors—for example, TLR4 in sepsis or 
TLR7 in viral infections—may serve as a cellular signature of 
pathogen type. Then, upon activation, platelets release 
immunomodulatory mediators such as PF4, CD40L, P-selectin, 
and IL-1b (31, 146, 174–176, 179), which are detectable in plasma 
and correlate with disease severity, offering potential as accessible 
biomarkers. Furthermore, specific pathogens  induce distinct

platelet responses—for instance, dengue virus activates the 
NLRP3 inflammasome via TLR4 (93, 94), while viruses such as 
HIV and HCV interact through CLRs (91, 92). These mechanistic 
differences may help discriminate between bacterial and 
viral infections. 
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Together, these features position platelet-derived signatures as 
promising diagnostic indicators for pathogen profiling, immune 
status assessment, and infection severity stratification. 

Therapy 
Given the central involvement of platelets in inflammation, host 

defense, immune. modulation, and coagulation, it is imperative to 
refine evidence-based protocols for prophylactic platelet 
transfusion, as well as to evaluate the therapeutic use of platelet-
activating agents and anti-platelet drugs. As underscored by the 
2022 NHLBI and OASH Transfusion Medicine State of Science 
Symposium (304), a deeper understanding of how donor and 
recipient characteristics influence not only hemostatic but also 
non-hemostatic platelet functions—such as immune regulation, 
inflammatory response, and vascular repair—may yield critical 
insights for clinical practice. These evolving clinical and 
experimental observations also support the hypothesis that 
transfused platelets can modulate immune responses, urging

further elucidation of the molecular mediators involved in 
transfusion-related immunomodulation (TRIM). 

Targeting the immunoregulatory functions of platelets— 
beyond their traditional hemostatic roles—represents a promising 
frontier in therapeutic innovation. Interventions that modulate 
platelet–immune cell interactions, such as inhibition of 
inflammasome assembly or disruption of platelet–leukocyte 
aggregates, hold potential to deliver immune benefits without 
compromising hemostasis (305). Notably, clopidogrel has recently 
demonstrated efficacy in suppressing platelet inflammasome 
activation, thereby reducing the release of IL-1b and IL-18 and 
improving renal outcomes in sepsis models (56, 176). These 
findings exemplify the translational promise of platelet-directed 
immunotherapies and highlight the need for further mechanistic 
and clinical exploration. 
Conclusion 

In summary, platelets function far beyond hemostasis, actively 
bridging infection sensing, immune coordination, and pathogen 
elimination.  These  insights  suggest  novel  avenues  for  
immunomodulatory strategies in infection-related clinical scenarios. 
As our understanding of platelet immunobiology continues to evolve, 
targeting their immunoregulatory functions opens new avenues for 
diagnostics, prognostics, and therapeutics in infectious diseases. 
Future research should prioritize the temporal dynamics of platelet 
function and explore stage-specific interventions to optimize both 
immune support and vascular integrity in critically ill patients. 
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Binding of the Streptococcus gordonii surface glycoproteins GspB and Hsa to specific 
carbohydrate structures on platelet membrane glycoprotein Ibalpha. Mol Microbiol. 
(2005) 58:380–92. doi: 10.1111/j.1365-2958.2005.04830.x 

140. Keane C, Petersen HJ, Tilley D, Haworth J, Cox D, Jenkinson HF, et al. Multiple 
sites on Streptococcus gordonii surface protein PadA bind to platelet GPIIbIIIa. 
Thromb Haemost. (2013) 110:1278–87. doi: 10.1160/TH13-07-0580 

141. Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas. J 
Clin Invest. (2012) 122:787–95. doi: 10.1172/JCI59643 

142. Kral JB, Schrottmaier WC, Salzmann M, Assinger A. Platelet interaction with 
innate immune cells. Transfus Med Hemother. (2016) 43:78–88. doi: 10.1159/ 
000444807 

143. Kerrigan SW, Clarke N, Loughman A, Meade G, Foster TJ, Cox D. Molecular 
basis for Staphylococcus aureus-mediated platelet aggregate formation under arterial 
frontiersin.org 

https://doi.org/10.1128/JVI.02405-09
https://doi.org/10.1111/j.1600-065X.2007.00532.x
https://doi.org/10.1186/1743-422X-6-25
https://doi.org/10.1074/jbc.M110.142992
https://doi.org/10.1111/jth.12782
https://doi.org/10.1099/vir.0.81826-0
https://doi.org/10.1099/vir.0.81826-0
https://doi.org/10.1128/JVI.00136-06
https://doi.org/10.1182/blood-2014-09-598029
https://doi.org/10.1590/S1517-838246220140553
https://doi.org/10.1590/0037-8682-1627-2013
https://doi.org/10.1590/0037-8682-1627-2013
https://doi.org/10.1006/immu.1994.1004
https://doi.org/10.1111/j.1538-7836.2011.04264.x
https://doi.org/10.1046/j.1525-139X.2003.03013.x
https://doi.org/10.1046/j.1525-139X.2003.03013.x
https://doi.org/10.1016/j.exphem.2006.06.015
https://doi.org/10.1160/TH11-12-0891
https://doi.org/10.1160/TH11-12-0891
https://doi.org/10.4049/jimmunol.159.8.3984
https://doi.org/10.1182/blood.V96.13.4046
https://doi.org/10.1182/blood.2021014966
https://doi.org/10.1099/00221287-144-12-3387
https://doi.org/10.1111/j.1365-2958.1994.tb00304.x
https://doi.org/10.1046/j.1365-2958.1998.01050.x
https://doi.org/10.1002/j.1460-2075.1987.tb02511.x
https://doi.org/10.1099/mic.0.27337-0
https://doi.org/10.1007/s00018-009-0207-z
https://doi.org/10.4049/jimmunol.0902810
https://doi.org/10.3389/fcvm.2019.00131
https://doi.org/10.1055/s-0037-1613450
https://doi.org/10.1016/j.molimm.2010.05.009
https://doi.org/10.1073/pnas.1707364114
https://doi.org/10.1073/pnas.1707364114
https://doi.org/10.1016/j.jtha.2024.12.015
https://doi.org/10.1016/j.jtha.2024.12.015
https://doi.org/10.1126/scitranslmed.abf8654
https://doi.org/10.1128/CVI.00296-10
https://doi.org/10.1128/iai.34.1.171-176.1981
https://doi.org/10.1126/science.aai8128
https://doi.org/10.1016/S0021-9258(18)77312-2
https://doi.org/10.2217/fmb.09.18
https://doi.org/10.1086/jid.2005.192.issue-6
https://doi.org/10.1055/a-2369-8680
https://doi.org/10.1159/000544951
https://doi.org/10.1111/j.1538-7836.2010.04168.x
https://doi.org/10.1371/journal.ppat.1007625
https://doi.org/10.1111/j.1538-7836.2011.04193.x
https://doi.org/10.1111/j.1538-7836.2011.04193.x
https://doi.org/10.1161/ATVBAHA.114.303287
https://doi.org/10.3390/ijms22189701
https://doi.org/10.3390/ijms22189701
https://doi.org/10.1111/j.1365-2958.2005.04830.x
https://doi.org/10.1160/TH13-07-0580
https://doi.org/10.1172/JCI59643
https://doi.org/10.1159/000444807
https://doi.org/10.1159/000444807
https://doi.org/10.3389/fimmu.2025.1616783
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Hu et al. 10.3389/fimmu.2025.1616783 

 

shear in vitro. Arterioscler Thromb Vasc Biol. (2008) 28:335–40. doi: 10.1161/ 
ATVBAHA.107.152058 

144. Han P, Hanlon D, Arshad N, Lee JS, Tatsuno K, Robinson E, et al. Platelet P
selectin initiates cross-presentation and dendritic cell differentiation in blood 
monocytes. Sci Adv. (2020) 6:eaaz1580. doi: 10.1126/sciadv.aaz1580 

145. Nakanishi T, Inaba M, Inagaki-Katashiba N, Tanaka A, Vien PT, Kibata K, et al. 
Platelet-derived RANK ligand enhances CCL17 secretion from dendritic cells mediated 
by thymic stromal lymphopoietin. Platelets. (2015) 26:425–31. doi: 10.3109/ 
09537104.2014.920081 

146. Boilard E, Nigrovic PA, Larabee K, Watts GF, Coblyn JS, Weinblatt ME, et al. 
Platelets amplify inflammation in arthritis via collagen-dependent microparticle 
production. Science. (2010) 327:580–3. doi: 10.1126/science.1181928 

147. Quirino-Teixeira AC, Rozini SV, Barbosa-Lima G, Coelho DR, Carneiro PH, 
Mohana-Borges R, et al. Inflammatory signaling in dengue-infected platelets requires 
translation and secretion of nonstructural protein 1. Blood Adv. (2020) 4:2018–31. 
doi: 10.1182/bloodadvances.2019001169 

148. Moore CM, O'Reilly D, McCallion N, Curley AE. Changes in inflammatory 
proteins following platelet transfusion in a neonatal population. Pediatr Res. (2023) 
94:1973–7. doi: 10.1038/s41390-023-02731-x 

149. Auerbach DJ, Lin Y, Miao H, Cimbro R, DiFiore MJ, Gianolini ME, et al. 
Identification of the platelet-derived chemokine CXCL4/PF-4 as a broad-spectrum 
HIV-1 inhibitor. Proc Natl Acad Sci. (2012) 109:9569–74. doi: 10.1073/ 
pnas.1207314109 

150. Solomon Tsegaye T, Gnirß K, Rahe-Meyer N, Kiene M, Krämer-Kühl A, 
Behrens G, et al. Platelet activation suppresses HIV-1 infection of T cells. Retrovirology. 
(2013) 10:48–. doi: 10.1186/1742-4690-10-48 

151. Schwartzkopff F, Grimm TA, Lankford CSR, Fields K, Wang J, Brandt E, et al. 
Platelet factor 4 (CXCL4) facilitates human macrophage infection with HIV-1 and 
potentiates virus replication. Innate Immunity. (2009) 15:368–79. doi: 10.1177/ 
1753425909106171 

152. Krijgsveld J, Zaat SAJ, Meeldijk J, van Veelen PA, Fang G, Poolman B, et al. 
Thrombocidins, microbicidal proteins from human blood platelets, are C-terminal 
deletion products of CXC chemokines. J Biol Chem. (2000) 275:20374–81. doi: 10.1074/ 
jbc.275.27.20374 

153. Kraemer BF, Campbell RA, Schwertz H, Cody MJ, Franks Z, Tolley ND, et al. 
Novel anti-bacterial activities of beta-defensin 1 in human platelets: suppression of 
pathogen growth and signaling of neutrophil extracellular trap formation. PloS Pathog. 
(2011) 7:e1002355. doi: 10.1371/journal.ppat.1002355 

154. Yeaman MR. Platelets: at the nexus of antimicrobial defence. Nat Rev Microbiol. 
(2014) 12:426–37. doi: 10.1038/nrmicro3269 
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