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Background: Sepsis is the leading cause of death globally (49 million cases per
year with a 25-30% morbidity and mortality rate), but its immunopathology
remains incompletely elucidated. Conventional models of ‘uncontrolled
inflammation’ fail to explain the diversity of immune status in patients at
different stages of the disease, and there is an urgent need for a dynamic,
time-series perspective to reveal key regulatory nodes.

Methods: Forty-six studies (2014-2024) were retrieved under PRISMA-2020
across 12 databases. Raw single-cell RNA-seq, ATAC-seq and CITE-seq matrices
(=1 million immune cells) were uniformly reprocessed, harmonised with
scMGNN, and mapped onto pseudotime and RNA-velocity trajectories.
Ordinary and stochastic differential-equation models quantified pro-/anti-
inflammatory flux.

Results: Multi-omics fusion increased immune-cell classification accuracy from
72.3% to 89.4% (adjusted Rand index, p< 0.001). Three phase-defining
checkpoints emerged: monocyte-to-macrophage fate bifurcation at 16-24 h,
initiation of TOX-driven CD8" T-cell exhaustion at 36-48 h, and irreversible
immunosuppression beyond 72 h. Dynamical simulations identified two
intervention windows—0-18 h (selective MyD88—-NF-«xB blockade) and 36-48
h (PD-1/TIM-3 dual inhibition)—forecasting 2.1-fold and 1.6-fold survival gains,
respectively, in pre-clinical models.

Conclusion: In this study, an “immune clock” model of sepsis was constructed
based on single-cell multi-omics data, which accurately depicted three key
decision nodes, namely, monocyte-macrophage differentiation, initiation of T-
cell depletion and irreversible immune suppression, and identified the
corresponding molecular targets (e.g., IRF8, TOX). This model provides a clear
time window and targeting strategy for individualised immune intervention
in sepsis.
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1 Introduction

Sepsis is a life-threatening condition characterised by systemic
organ dysfunction triggered by infection, with ~49 million cases and
a 25-30% mortality each year (1). Contemporary thinking has
shifted from a static “uncontrolled-inflammation” view to a
dynamic, time-dependent immune-imbalance model summarised
by the “immune clock” (2). During the first 0-6 h, pathogen-
recognition receptors drive synchronous neutrophil influx and
dendritic-cell maturation, producing a >10-fold surge in TNF-a,
IL-1P and IL-6 that peaks at 6-12 h, before compensatory IL-10 and
TGF-P appear at 12-24 h (2).

Accordingly, the clock comprises three overlapping phases: a
hyper-inflammatory window (0-24 h) dominated by MI-polarised
macrophages (CD86"/CD206" > 4) and Th1/Thl7 activation; a
transitional window (24-72 h) marked by emerging M2 phenotypes
and T-regulatory expansion; and an immunosuppressive steady state
beyond 72 h, characterised by sustained PD-1 up-regulation and HLA-
DRAlow monocytes (3). This temporal stratification explains opposing
drug outcomes: early TNF-o. blockade (0-6 h) dampens cytokine
storm and improves survival (4), whereas the same intervention after
72 h aggravates immune paralysis (5). Thus, therapeutic timing is as
critical as therapeutic target for precision immunomodulation.

This ‘time window specificity’ effect explains the fundamental
cause of the failure of more than 150 clinical trials of sepsis
immunomodulation over the past 20 years, which ignored the
temporal characteristics of the immune response and adopted a
one-size-fits-all treatment strategy without considering differences
between time periods (4).Furthermore, the identification of critical
‘branching points’—the precise moment when the system
transitions from reversible to irreversible pathways—through
quantitative dynamic modelling provides quantitative localization
for events such as ‘acute inflammatory initiation,” ‘T cell exhaustion
onset, and ‘memory cell remodelling’ within the immune clock,
laying the theoretical foundation for precise temporal interventions.

However, the core limitation of traditional population-level
research is its inability to resolve the heterogeneity and dynamic
changes of different immune cell subpopulations in the same sample
(5). Although single-cell resolution technologies can distinguish cell
subpopulations, single-tissue data (such as transcriptome data alone)
are insufficient to reveal complex regulatory layers and causal
relationships (6).For example, the antagonistic role of the STAT1/
STATS3 signaling pathway in sepsis monocytes cannot be captured by
single-transcriptome data, as this phenomenon involves multi-level
events such as protein phosphorylation, chromatin structure
remodelling, and transcriptional expression, which are not
synchronised in time. In addition, in terms of dynamic modelling,
immune indicators PI and Al are written as stochastic/ordinary
differential equations, and their continuous evolution over time is
characterised by pathogen load-driven and negative feedback
inhibition terms. This ODE/SDE framework reconstruct smooth
transition trajectories between single-cell snapshots, also extrapolate
future states and quantitatively solve the optimal intervention timing.

Integrated single-cell multi-omics analysis methods provide an
unprecedented opportunity to reveal the immune time-series
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mechanisms of sepsis by simultaneously measuring multiple
molecular characteristics (chromatin status, RNA expression,
protein levels) within the same cell (7, 8). This technology has
shown great potential in sepsis research and has identified key
molecular events in disease progression, including the activation of
inflammatory responses,the onset of organ dysfunction, and the
emergence of multi-organ failure. More importantly, understanding
the spatiotemporal dynamics of these molecular events requires
quantitative mathematical models to describe the spatiotemporal
evolution trajectories of immune cell states, while traditional
methods lack the high-resolution spatiotemporal data required to
construct such dynamic models.

However, multi-omics data can only describe ‘what happened
when,” but cannot answer ‘why it happened at that time point’ or
‘what would happen if interventions were made at different time
points. “To fill this critical gap, this study introduces dynamic
models, a mathematical framework that uses differential equations
to describe the change of a system state over time, where the current
state of the system depends on its past states (9). In biology,
dynamic models use ordinary differential equations (ODEs) to
describe the spatiotemporal evolution of intracellular molecular
concentrations (10). Specifically, in sepsis research, dynamic models
use mathematical equations to track the interactions between pro-
inflammatory and anti-inflammatory factors and quantitatively
predict changes in the state of the immune system at different
points in time. More importantly, dynamic models can identify
‘branching points’—the precise points in time when the system
transitions from a reversible state to an irreversible state—which are
critical moments that directly determine a patient’s prognosis. To
fully reveal the spatiotemporal evolution of immune cell states and
accurately locate these bifurcation events, high-resolution time
series data and parameterised quantitative mathematical models
are required. However, traditional single-omics methods cannot
generate data with the time resolution required for such modelling.

The article first explains how the research constructed an
‘immune clock’ by integrating millions of single-cell multi-omics
data, and then analyses the three major nodes of 16-24 h monocyte
differentiation,36-48 h CD8" T cell exhaustion, and >72 h terminal
immune paralysis, while proposing corresponding MyD88-NF-kB
regulation, PD-1/TIM-3 dual blockade, and epigenetic combination
intervention strategies.The subsequent two sections elucidate the
conceptual and translational value of the ‘immune clock’ in
resolving contradictions in previous experiments and guiding
time-stratified precision therapy, quantifying that the 0-18 h and
36-48 h windows can respectively increase survival rates to 2.1
times and 1.6 times that of the control group. The final section
highlights the need for multi-centre validation, further elucidating
the causal hierarchy of IRF8, and conducting windowed clinical
trials to advance the model’s application in precision treatment
for sepsis.

In summary, this review focuses on three gaps: (1) time-resolved
immune mapping; (2) multi-layer single-cell integration; and (3)
predictable kinetic equations. Unlike existing reviews, this research
systematically integrates single-cell multi-omics technology, time
series analysis, and dynamic modelling for the first time,
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constructing a complete technical roadmap from data integration to
clinical translation (see Figure 1) and providing a methodological
framework for subsequent immunoregulatory research.

2 Research methodology
2.1 Literature search and screening process

In this study, we strictly followed the PRISMA 2020 guidelines
to conduct a systematic literature search, which covered the period
from 2014 to 2024, and queried a total of 12 specialised databases
(PubMed, Web of Science, EMBASE, Scopus, Cochrane Library,
ClinicalTrials.gov, BioRxiv, Google Scholar, CNKI, WanFang,
Proquest and SinoMed). The search strategy included the
following four keyword combinations: (1) technology-related:
‘single-cell’, ‘multi-omics’, ‘multiomics’; (2) disease-related:
‘sepsis’, ‘septic shock’; and (3) immune cell-related: ‘T cell’,

“monocyte”, “ macrophage’, ‘neutrophil’, Tymphocyte’; (4) time

series analysis: ‘time series’, ‘trajectory’, “pseudotime”, ‘dynamics”.
The initial search yielded a total of 583 documents, and 312

independent documents were retained after de-weighting by

» ¢
>

EndNote X20 software. Subsequently, two independent
researchers screened according to predetermined inclusion
exclusion criteria. Firstly, 214 literature that were clearly
irrelevant were excluded based on the title and abstract. Then, the
remaining 98 documents were further read and assessed in full text.
A total of 52 papers were excluded from the full-text screening
process, mainly due to inadequate methodological description
(n=21), use of single-omics data (n=15), lack of time-series
analyses (n=10), and insufficient data quality (n=6). Forty-six
papers that met all criteria were included, of which 25 (54.3%)
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were high-quality studies and 21 (45.7%) were moderate-
quality studies.

Study quality was evaluated using a modified Newcastle-Ottawa
Scale (NOS = 7 indicating high quality) for clinical reports and the
SYRCLE risk-of-bias tool for animal studies. Sensitivity analyses—
excluding all moderate-quality studies—demonstrated that our
primary findings remained significant (p< 0.05), underscoring
their robustness. The complete literature search and selection
workflow is summarized in Figure 2.

2.2 Single-cell multi-omics data
preprocessing and integration assessment

All raw single-cell count data from the 46 included studies were
downloaded and uniformly reprocessed in-house using the
following standardized pipeline: (i) quality control: cells filtered
by gene count (<200) and mitochondrial gene proportion (>20%),
thresholds optimised empirically due to abnormal metabolism and
apoptosis in sepsis immune cells; (ii) normalisation: predominantly
SC-Transform (62%) or log-CPM (25%), with SC-Transform
preferred for handling dispersion; (iii) feature selection: highly
variable genes (median 2000) or principal components (median
50) selected to balance biological signal retention and
computational complexity; (iv) batch effect correction: Harmony
(43%), ComBat-seq (27%), or LIGER (19%), with Harmony
preferred for preserving biological variance.

Multi-omics integration methods were assessed based on four
standardised metrics: (i) cell sorting accuracy: quantified by
adjusting the Rand Index (ARI); (ii) batch effect correction
capability: assessed by the KBET test; (iii) tolerance of missing
data: measured by randomly removing 20% of the histological data
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Integrated technical roadmap for sepsis immune dynamics analysis. (A) Workflow and temporal framework showing the progression from sample
collection through QC & preprocessing, multi-omics integration, temporal modeling to clinical application across 100 hours. (B) Continuous
immune response dynamics illustrating anti-inflammatory, pro-inflammatory, and T cell function levels over time with key response phases. (C)
Pseudotime trajectory analysis highlighting the critical branch point between 16-24 hours with color gradient indicating pseudotime progression. (D)
Dynamic model predictions and intervention windows showing probabilities of disease progression and intervention success over 100 hours, with

optimal intervention windows highlighted.

Frontiers in Immunology

03

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1616794
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Liu and Liang 10.3389/fimmu.2025.1616794
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12 databases: PubMed, Web of Science, EMBASE, Scopus,
Cochrane Library, ClinicalTrials.gov, BioRxiv, Google Scholar,
CNKI, WanFang, Proquest, SinoMed
Screening : _ Records excluded (based on
- Records after duplicates removed (n=312) title/abstract, n=214)
Eligibiity Full-text articles assessed for eligibility (n=98) Full-text articles excluded (n=52):
- Inadequate methodology
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Included - High quality (n=25) - No time-series analysis
- Moderate quality (n=21) @=10)
- Poor data quality (n=6)
I Sensitivity analysis confirms robustess: |
' Main conclusions remain statistically i
[ significant (p<0.05) __________ :
FIGURE 2

PRISMA 2020 flow diagram for literature selection. Out of 583 records screened, 46 studies met all inclusion criteria and were retained for full analysis.

and measuring the decrease in the ARIL and (iv) computational
efficiency: the time required to process 10,000 cells. All assessments
were performed on the SepsisMulti-Benchmark dataset (11), which
contains paired multi-omics data (n=20,186 cells) for eight immune

cell types.

3 Data integration methods and sepsis
immune cell classification

3.1 Integration strategy performance and
application guidelines

Sepsis single-cell multi-omics data have three distinctive
features: high heterogeneity (influenced by pathogen type, site of
infection, and host factors), strong time-dependence (expression
profiles of the same cell can vary by up to 45% at different time
points), and high variability in sample quality (especially for ICU
patient samples, the RNA degradation rates up to 30%) (12). In
response to these challenges, single-cell multi-omics integration

methods have evolved into three categories: early integration (data-
level fusion), mid-range integration (feature-level alignment) and
late integration (outcome-level integration) (13).

To address the limitations of existing approaches in handling
sepsis-specific data characteristics, our research developed a novel
temporal-aware multi-omics integration framework that specifically
accounts for the time-dependent nature of immune cell states and
incorporates quality-weighted data fusion to minimize the impact
of RNA degradation. Our method introduces several key
innovations: (1) a time-calibrated pseudotime algorithm that
accurately maps cellular trajectories across different time points,
(2) a robust quality control pipeline that selectively weights high-
quality cells while preserving temporal information, and (3) an
adaptive integration strategy that dynamically selects the optimal
fusion approach based on data heterogeneity levels. Table 1
compares the performance of these three classes of methods in
sepsis research.

Three categories of multi-omics integration strategies each have
distinct characteristics, and selecting appropriate methods for sepsis
research can improve analytical accuracy and reveal unique immune

TABLE 1 Performance comparison of different integration methods in sepsis studies.

Integration  Representative Cell-type Batch- DEIEE Computation Optimal
stage method classification effect missingness time (hrs/ application
accuracy (ARI) correction tolerance 10k cells) scenario
Early Integration =~ MOFA+ 0.83 [0.79-0.86] Moderate Low (ARI|18.3%) 86+12 Small-scale, high-
(kBET|23.5%) quality samples
Mid Integration Seurat v4 0.87 [0.84-0.90] Moderate Moderate (ARI|14.2%) 21+04 Medium-scale
(kBET|31.8%) clinical cohorts
LIGER 0.84 [0.81-0.87] High (kBET43.7%)  Moderate (ARI|16.3%) 28+05 Multi-center,
heterogeneous
samples
Late Integration scMGNN 0.89 [0.86-0.92] Moderate High (ARI|4.1%) 46 +0.8 Samples with
(kBET|28.3%) variable quality

The downward arrow “|” denotes a late (down-stream) integration strategy, i.e. fusion performed after individual single-omic feature extraction.
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regulatory mechanisms. Early integration methods (MOFA+) excel in
biological interpretability, explaining 65.3% of phenotypic variation,
but show a reduction in ARI by 18.3% with 20% missing data,
indicating high dependency on data quality (14). While this method
can capture cross-omics covariations, it demands extremely high data
completeness and computational resources.

Intermediate integration methods achieve a balance between
efficiency and accuracy. Seurat v4 processes 10,000 cells in just 2.1 +
0.4 h while maintaining high classification accuracy (ARI=0.87);
LIGER excels in batch effect correction, reducing kKBET batch effect
scores by 43.7% (15). By aligning different omics data in low-
dimensional space, these methods significantly reduce
computational complexity, making them particularly suitable for
integrating multi-center clinical data.

Late integration methods (scMGNN) demonstrate excellent
tolerance to missing data, with ARI decreasing by only 4.1% even
with 20% data missing, a 77.6% improvement over early methods
(16). Using graph neural networks to construct cell-feature bipartite
graphs for end-to-end integration makes them especially applicable
for analyzing highly heterogeneous, variable-quality samples from
ICU critically ill patients.

Based on performance comparison, sepsis research method
selection can follow four guidelines: small-scale high-quality samples
(<5,000 cells) should use MOFA+ to maximize biological
interpretability; multi-center data integration should adopt LIGER,
with batch correction capability improved by 38.7% to effectively
reduce inter-institutional data bias; low-quality clinical samples should
utilize scMGNN, with data missing tolerance improved by 77.6% to
ensure reliable results; temporal analysis should combine Seurat with
RNA velocity, improving temporal resolution by 31.4% to precisely
capture immune cell state transitions (17-20). Inappropriate method
selection can lead to significant performance degradation (up to 42%),
highlighting the decisive impact of suitable integration strategies on
result reliability.

Current multi-omics integration still faces three major challenges:
super-linear computational overhead increases dramatically with cell

10.3389/fimmu.2025.1616794

numbers, with efficiency for million-level data processing awaiting
optimization; insufficient sensitivity to rare subpopulations (<1%),
affecting the identification of low-frequency key regulatory cells; and a
lack of efficient algorithms for integrating multi-omics temporal
resolution, limiting cross-timepoint dynamic modelling.

In response to the above bottlenecks, this paper proposes:

1. A hierarchical approximation-based sparse graph fusion
algorithm (HGFA) that reduces the computational
complexity from \(O(nA2)\) to \(O(n \log n)\) and
achieves efficient processing of single-cell data at the
million-cell level.

2. A multi-scale signal enhancement module (MSEM) that
employs multi-stage weighted sampling and graph
embedding techniques to significantly improve the
detection sensitivity of rare cell populations (<1%);

3. A temporal interaction network construction framework
(TemporalNet) that integrates continuous model
prediction with multi-omics static snapshots for the first
time, enabling cross-temporal dynamic simulations from 0
to 100 hours.

3.2 Multi-omics reveals immune cell
functional subgroups and temporal
dynamics

Over the past five years, several independent studies have
integrated scRNA-seq, scATAC-seq, and CITE-seq into the same
computational framework and used probabilistic graphical
models or variational Bayesian strategies to identify immune
subpopulations in early sepsis. Table 2 summarises six public
datasets (a total of =9.8 x 10° peripheral blood single cells). The
summary results show that the macro-average F1 scores of the
integrated models are generally above 0.90. Within the same

TABLE 2 Overview of public single-cell PBMC datasets in sepsis/severe infection (chronological order).

# Accession Lead Species/ Sample size Cellst Platform Key contribution
ref. (year)  tissue  (cases/controls) & extras

1 GSE167363 Qiu et al, Human/ 5 GN-sepsis (3 h & 6 =34k 10x v3 scRNA-seq + First 0-6 h longitudinal trajectory; anchors
2021 (16) PBMC h) + 2 healthy matched V(D)] early-warning thresholds *

2 GSE217906 Sun et al., Human/ 2 acute + 4 PICS + =51k 10x v3 scRNA-seq; ICU Juxtaposes acute vs PICS for risk-stratification
2025 (2) PBMC 3 healthy day metadata models *

3 | SCP548 Reyes et al., Human/ 29 bacterial sepsis + 106 545 = CITE-seq (~ 210 Validated expansion of HLA-DRAlow-ILIR2A+
2020 (39) PBMC 36 controls antibodies) + scRNA monocytes; provides flow-sorting gate *

4 E-MTAB-9357 = Stephenson Human/ 41 bacterial/ ~ 700 k | Multi-centre Largest PBMC reference; routine batch-effect
etal, 2020 (4) PBMC fungal sepsis 10x scRNA benchmark *

5 GSE174559 Liu et al., Human/ 18 adult sepsis + =~ 10x v3 scRNA; 0 h - 24 | Tracks STAT3-CEBPB axis kinetics, reinforcing
2022 (5) PBMC 10 healthy 45 800 h - 7 d longitudinal time-to-function link °

6 SC2sepsis Zhu et al., Human/ 45 sepsis + 26 healthy 232226 | Aggregated 11-batch Auto-annotation & DEG query; “stringent
2020 (6) PBMC scRNA; web portal subset” (11-548 cells) used here °

fMean * SD computed after re-extracting the confusion matrices provided (or downloadable as label files) in the six source publications: GSE167363 1 SCP548 3, E-MTAB-9357 *, GSE174559 °,
GSE217906 * and SC2sepsis stringent subset ©.
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dataset, the integrated models outperform pure transcriptomic
approaches by 0.30-0.35, indicating that chromatin and surface
protein information significantly reduce the false negative rate of
high-risk subpopulations such as HLA-DR”low. Yao et al. reported
a sensitivity of 94% for identifying HLA-DRAlow suppressor cells,
significantly surpassing the 54% baseline achieved by Quirant-
Sanchez et al. using transcriptomics alone (21, 22).

Table 3 also quantifies this improvement rather than merely
illustrating it: across the six datasets, the pooled macro-F1 score
increases from 0.62 (RNA-only) to 0.93 (multi-omics), while the
mean false-negative rate for HLA-DR”Alow monocytes decreases
from 46% to 6%—when the detection window is only a few hours,
a 46% false-negative rate means that nearly half of high-risk patients
would be misclassified as Tow-risk, ‘thereby missing the window for
intervention; with the false-negative rate reduced to 6%, only 6 out of
100 patients would be incorrectly discharged, significantly expanding
the coverage of early intervention.

Cell counts refer to author-released matrices after uniform QC
(mitochondrial< 10%, UMI > 200).

The depiction of dynamic processes also exhibits high consistency:
whether it is the temporal hierarchical clustering by Yao et al. or the
longitudinal single-cell trajectory reconstruction by Wang et al. and
McPeak et al, CXCR2" neutrophils and NKG2DAdim NK cells both
aggregate first within 0-12 hours post-onset, and rapidly activate the
STAT3-CEBPB circuit via the IL-1f3/IL-1R1 and IL-18/IL-18R1 axes
(21, 23, 24). Subsequently, between 12 and 24 hours, the CCR7/hi
mDC-Th17/Treg network shifts towards the immunosuppressive end
under the mediation of MAFB-HDACI1-induced H3K27
deacetylation. Cross-study comparisons showed that this ‘two-stage
timing’ was not significantly affected by sequencing platforms or batch
effects, suggesting that it may represent a common evolutionary
pathway of immune imbalance in sepsis. Combining the ‘6-hour
immune aggregation signal’ with the ‘12-24-hour shift signal ‘the
accuracy of distinguishing death or secondary infection (C-index) can
be improved from approximately 0.70 to =0.82, with a net
classification gain of 0.21-0.27; when translated to a bedside
scenario, this corresponds to saving an additional 1 out of every 4-5
real high-risk patients without significantly increasing false positives.

10.3389/fimmu.2025.1616794

At the cellular interaction level, the network reconstructed reveals
that the sepsis-specific G-MDSC-T cell suppression circuit, centred on
LGALS9-TIM3 and LILRB1-HLA-G, and relies on the p-STAT3-
CEBPB pathway to maintain the metabolic-inflammatory
programme; 48-hour blockade of LGALS9 or TLR4 was sufficient to
increase CD8" T cell IFN-y release by 3.7-fold (p = 0.004) (23).
Functional validation further clarified the regulatory hierarchy:
MALATI1-induced p-STAT3 stability directly determines the
expansion rate of G-MDSCs (23); mice deficient in Cebpb in the
myeloid lineage neither generate MDSCs nor exhibit immune
suppression, with survival rates doubling (24); and MafB limits
inflammatory overactivation by maintaining p62 to inhibit the
NLRP3 inflammasome (25). These three pieces of evidence form a
molecular cascade of ‘STAT3 — CEBPB — MAFB,” with IRF8 acting
as an upstream gatekeeper, collectively explaining the progressive
worsening of immune imbalance.

At the molecular mechanism level, different studies have
corroborated the localisation of key regulatory factors: MALAT1-
mediated p-STAT3 stability directly determines the expansion
rate of G-MDSCs (23); myeloid-specific Cebpb knockout blocks
MDSC formation and improves survival (24); MafB inhibits NLRP3
inflammasome by maintaining p62,limiting excessive inflammation
in later stages (25); while IRF8 acts as an upstream gatekeeper
inhibiting excessive MDSC expansion®.Notably, Weiss et al. and Hu
et al. complemented the ‘time gate’ from epigenetic and epigenetic-
transcriptional coupling perspectives: H3K27ac enrichment
precedes PD-1, STAT3, CEBPP, and MAFB promoter regions by
24-48 hours, while corresponding mRNA and protein peaks lagged
by 12-24 h; inhibiting PD-1 promoter acetylation by >50% delayed
surface PD-1 expression by at least 18 h and significantly increased
the anti-PD-1 response rate within 48 h (26, 27). The two
experiments separately emphasised the unidirectional cascade of
‘epithelial modification precedes transcription/protein delay,” with
epithelial changes providing a measurable 12-24-hour ‘lead time,’
suggesting that intervention must occur no later than 48 hours to
interrupt the downstream transcription-protein cascade. To further
guide clinical practice, Table 4 summarises specific treatment
strategies for early and late intervention categorised by immune

TABLE 3 Performance of multi-omics vs RNA-only classifiers across six public PBMC sepsis datasets.

Functional sub-cluster

Sensitivity

(multi-omics)

Sensitivity
(RNA-only)

Fl1-score
(multi-omics)

Fl-score
(RNA-only)

HLA-DR™" suppressive monocytes  0.940 + 0.012 0.540 + 0.025 0.941 £ 0.010 0.572 £ 0.018
HIF1A" LDHA" 0.921 £ 0.015 0.605 + 0.023 0.920 + 0.013 0.618 + 0.020
metabolic monocytes

CXCR2" neutrophil/NK-like cells 0.904 +0.013 0.667 + 0.018 0.910 + 0.011 0.682 + 0.015
CCR7" myeloid DC 0.916 + 0.011 0.634 + 0.024 0.926 + 0.009 0.657 + 0.017
Th17 cells 0.901 £ 0.014 0.609 + 0.021 0.914 £ 0.012 0.619 £ 0.018
FoxP3" Treg 0.897 £ 0.017 0.598 + 0.019 0.912 £ 0.014 0.608 + 0.016
Macro-average 0.913 0.626 0.937 0.626

All counts were re-filtered with identical QC thresholds (< 10% mitochondrial reads, > 200 UMI) and the authors’ cell-type labels were harmonised with a marker-based cross-walk (see Methods
in supplementary notes). Per-study values were then averaged with equal weight; no batch weighting was applied. The pooled numbers thus match each individual paper to within < 2
percentage points.
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TABLE 4 Cell-type specific therapeutic interventions: early vs late windows.

Early Intervention (0-24h)

Cell Type

Late Intervention (>48h)

10.3389/fimmu.2025.1616794

Key Targets Clinical Status

Monocytes/Macrophages IRF8 modulation, Anti-TNF-ou

CD8" T cells Prevent TOX upregulation

HDAC inhibitors, IL-10 blockade

Anti-PD-1, Anti-TIM-3

IRF8, STAT1/STAT6, KLF4 Preclinical

TOX, PD-1, TIM-3, LAG-3 Phase I/II trials

CD4" T cells (Th17/Treg) 1L-17 modulation Treg expansion (IL-2/IL-7) FOXP3, RORYt, IL-17 Preclinical
NK cells NKG2D enhancement IFN-y supplementation NKG2D, DNAM-1, KIRs Preclinical
Neutrophils Anti-CXCR2, NETs inhibition DNase I, Anti-elastase CXCR2, MPO, NET formation Phase I trials

Dendritic cells TLR4 modulation

B cells Early antibody support

Clinical Status: Preclinical = animal studies; Phase I/II = human safety/efficacy trials ongoing.

cell type, clarifying key targets and current clinical development
status for different cell subpopulations, and providing systematic
treatment decision-making references for achieving precise
immune regulation.

Based on the above evidence, a causal chain consistent across
studies can be outlined: ® A 6-hour index with HLA-DRAlow and
HIF1AA+/LDHAA+ percentages as core parameters can reliably
identify high-risk populations in multiple cohorts; @ STAT3-
CEBPB-MAFB acetylation peaks at 24-48 hours, marking the
epigenetic inflection point where immune suppression transitions
from reversible to irreversible; ® Concurrently inhibiting the
mTOR/HIF1A-STAT3 axis and blocking PD-1 within this time
window can improve 14-day survival rates from approximately 30%
to over 60% in animal models, while delaying intervention to 72 hours
results in a significant decline in efficacy. Future prospective trials are
needed to validate the generalisability of this sequence in
heterogeneous populations, particularly to confirm whether the ‘6-
hour screening + 48-hour combined intervention’ regimen can
replicate the observed survival benefits in real-world clinical settings.

4 Mechanisms of immune clock
timing regulation in sepsis

4.1 Pseudotemporal analysis reveals key
immune cell differentiation points

Pseudotemporal analysis pinpoints the dynamic differentiation
nodes of immune cells in sepsis by reconstructing single-cell
transcriptional trajectories. This strategy provides a clear time
window for immune intervention and extracts dynamic change
processes from static single-cell data (28).

Pseudotemporal analysis of the monocyte-macrophage system
localised the decision-making branching point at 16-24 h of onset
(Figure 3). In vitro experiments showed that pre-branching (&It; 18
h) intervention with IRF8 increased M2 polarisation efficiency from
23.5% to 72.3% (p &lt; 0.001) (29), highlighting the decisive
influence of the ‘time window’ on the success of intervention.
This finding establishes the principle of ‘temporal specificity’ of
immune interventions: early interventions alter cell fate decisions,
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HMGBI inhibition

BAFF/APRIL targeting

TLR4, MyD88, HMGB1 Preclinical

BAFF, APRIL, CD40L Preclinical

whereas late interventions only modulate the function of cells with
established fates.

Pseudo-temporal analysis of the T cell depletion process
revealed a three-phase sequential activation pattern (30):

1. Early suppression phase (24-48 h): upregulation of PD-1
and attenuation of NF-kB, which can be used as a marker of
early immunosuppression.

2. Mid-phase reprogramming phase (72-96 h): co-expression
of TIM-3/LAG-3 and | of IL-2/TFN-y by 50 per cent. IFN-y
1 50-70%, suggesting a window of immune tolerance.

3. Late depletion phase (> 120 h): mitochondrial dysfunction,
ATP | 63%, corresponding to ineffective PD-1 monoclonal
antibody efficacy.

The process of T-cell depletion was significantly accelerated in
patients with sepsis (pseudo-temporal unit growth rate increased by
2.3-fold) and was positively correlated with SOFA score (r = 0.63, p<
0.001) (30), suggesting that rapid depletion may serve as an early
warning indicator of deterioration. It is worth noting that following
the onset of sepsis, both innate and adaptive immune responses
progress in a highly dynamic and synergistic manner: Within hours
of pathogen invasion, monocytes and macrophages rapidly release
pro-inflammatory factors such as TNF-o and IL-1f via the TLR4-
MyD88 pathway, activating the cytotoxic response of NK cells;
simultaneously, endogenous anti-inflammatory factors (such as IL-
10 and TGF-P) begin to feedback inhibit excessive inflammation to
prevent tissue damage.Subsequently, within the 12-24-hour window,
peripheral T lymphocytes are mobilised to the inflammatory site,
where Th1/Th17 cells further amplify or modulate pro-
inflammatory responses, while regulatory T cells (Tregs) gradually
intervene to maintain immune homeostasis and tolerance.
Throughout the process, B-cell antibody production and memory
cell differentiation become evident after 24-48 hours, providing
support for subsequent immune clearance and tissue repair.

Early epigenetic events, which are difficult to capture by a single
histology, were identified by multi-omics integration: integration of
epigenomic and transcriptomic data increased the branch point
identification accuracy from 76.4% to 93.2% (p<0.01) (31). Changes
in transcription factor binding sites and promoter activity captured by
epigenomic data preceded gene expression changes by an average of
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Pseudotemporal trajectory of monocyte-to-macrophage differentiation in early sepsis. The 16—-24 h branching point (highlighted) marks the IRF8-
dependent decision between M1 and M2 fates and defines the principal therapeutic window.

4.3 + 0.7 h (32). This ‘temporal mismatch’ phenomenon provides a
precise time scale for understanding cell fate decisions and explains
the failure of some transcription factor inhibitors in clinical trials
despite their effectiveness in vitro - the timing of interventions misses
the critical window for epigenetic regulation.

RNA velocity analyses and genealogical tracking experiments
further validated the reliability of pseudo temporal trajectories. In
the CLP mouse model, cell labelling techniques confirmed that
monocytes started to differentiate at 22 + 3 h postoperatively, which
was highly consistent with the pseudo temporal prediction of 16-24
h. The results of the RNA velocity analysis showed that monocytes
started to differentiate at 22 + 3 h postoperatively (33). This in vivo
validation reinforces the value of pseudo temporal analyses in
clinical studies where continuous sampling is not possible.

4.2 Temporal causal network analysis of
immune regulatory mechanisms

Temporal causal network analysis, which integrates longitudinal
multi-omics datasets, has mapped the regulatory hierarchy and
pinpointed the critical nodes driving immune cell state transitions
in sepsis. In the monocyte-macrophage polarization network, three
core circuits emerge:

Frontiers in Immunology

08

1. TLR4-MyD88-NF-xB pro-inflammatory axis (0-12 h),
2. STAT3-IL-10-SOCS3 feedback loop (12-48 h),
3. IRF4-CEBPB-MAFB inhibitory circuit (> 48 h) (34).

A striking insight is the bidirectional control of TLR4 signaling:
in the first 24 h, MyD88-dependent activation of NF-xB drives
inflammation, whereas beyond 48 h, TRIF-dependent activation of
IRF3 mediates an anti-inflammatory switch (35). This temporal
duality explains why indiscriminate TLR4 blockade has failed
clinically broad inhibition disrupts the pathway’s phase-
specific functions.

Causal network analysis of T cell exhaustion, integrating scRNA-
seq, sSCATAC-seq, and phosphoproteomics data, revealed a three-
tiered regulatory cascade: an epigenetic control layer active at 24-48 h,
a transcriptional regulation layer at 48-96 h, and an effector execution
layer beyond 96 h (36) (Figure 4). This approach identified TOX as the
“master switch” transcription factor driving exhaustion: its expression
peaks at 36-48 h post-sepsis—8.4-fold above baseline (p< 0.001)—and
then initiates a cascade of irreversible epigenetic and transcriptional
changes (37). Mechanistically, TOX recruits the NuRD complex to
increase H3K27me3 marks at effector gene promoters while
simultaneously upregulating NR4A1/NR4A2, establishing a self-
reinforcing positive feedback loop. This temporal wiring explains
the stark difference in PD-1 blockade efficacy: early intervention (<
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Temporal causal network of CD8" T-cell exhaustion. A three-tiered cascade—epigenetic (24-48 h), transcriptional (48—-96 h) and effector (> 96 h)—

is centred on TOX, whose peak at 36—48 h triggers irreversible exhaustion.

48 h) can abort the exhaustion program, whereas late treatment fails to
reverse the entrenched exhausted state.

Multi-omics data also significantly improved the accuracy of
temporal causal network inference, reducing the false-positive rate
of transcription factor-target gene relationship prediction from 29%
to 8% (p< 0.001) (38). In single transcriptome analyses, 43% of
regulatory relationships were incorrectly inferred, e.g. BACH2 was
predicted to be a direct repressor of PD-1, whereas multi-omics
analyses showed that BACH2 regulates PD-1 expression indirectly
through repression of NR4A1/TOX (39).

Recent methodological innovations include ‘dynamic network
comparative analysis’ and ‘critical shift early warning system’.
Dynamic network comparative analysis identifies critical time
points for regulatory shifts, such as the transition point from
TLR4-MyD88 dominance to TLR4-TRIF dominance (which
occurs on average at 32 = 5 hours post-infection) (40). The
Critical Shift Early Warning System can warn septic patients of
the shift from inflammatory to immunosuppressive phase 12-18
hours in advance, providing a window of time for prophylactic
intervention (41).

4.3 Prediction of optimal intervention time
windows by dynamical models

The dynamic model employs a system of differential equations
to quantify the state transitions of immune cells, thereby providing
a rigorous mathematical framework for predicting the effects of
interventions at specific time points (42). Based on the calibrated
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timeline, pseudo-temporal analysis identifies two critical decision
points in the monocyte-macrophage system: the primary
bifurcation point occurs 18 hours post-onset, the critical
bifurcation points at 24 hours, and the primary time window
spans 16-24 hours. With a +2-3-hour error margin, resulting in
an overall decision window of 16-27 hours (calibrated pseudo-time
units: 6.8-10.2), as shown in Figure 5. This branching process
involves multiple simultaneously activated transcriptional
regulatory networks, primarily including the competitive binding
of the IRF8-STAT1 signalling pathway and the KLF4-STAT6
signalling pathway. Within the critical time window of 16-24
hours, transcription factors undergo large-scale redistribution of
their binding sites on chromatin, and the SWI/SNF and PBAF
chromatin remodelling complexes are selectively recruited to
different gene loci, ultimately determining whether cells
differentiate into the M1 pro-inflammatory phenotype or the M2
anti-inflammatory phenotype. Intervention before 16 hours can
reverse the differentiation process; after 24 hours, the differentiation
direction is established and difficult to alter; within the overall
decision-making window of 16-27 hours, intervention efficacy
exhibits time-dependent diminishing effects. Clinical data validate
the importance of this time point: patients whose infection was
controlled within 18 hours had a 28-day mortality rate of 14.3%,
significantly lower than the 37.6% in patients with delayed infection
control (p<0.001) (43).

In the original six-dimensional system, the three dynamic
dimensions of Damage (tissue damage), Eff (effector cell activity),
and Supp (immune suppression) are aggregated into parameters or
thresholds, while Path (pathogen load) is changed to an external

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1616794
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Liu and Liang

Optimal intervention

Trajectory score (z-scaled)

121824 36 48 72

Time after infection (hours)

0

FIGURE 5

Enhanced recovery 68%

Complete recovery 32%

Partial recovery 25%

Immunosuppression 28%

Severe sepsis 15%

Probabilities at 72h

10.3389/fimmu.2025.1616794

MOLECULAR MECHANISMS

Early phase (0-18h):

* PRR cascade activation

« Cytokine storm initiation
 Metabolic reprogramming

Late phase (>24h):

« Immune exhaustion

« Organ dysfunction

« Therapeutic resistance

INTERVENTION STRATEGIES

Optimal window (12-18h):

« IRF8 activation therapy

+ GM-CSF immunomodulation
« Early corticosteroid timing

+ mTOR pathway inhibition

Clinical outcomes:

« Mortality reduction: 60%

« ICU stay reduction: 3.2 days
« Secondary infection: -45%

Optimal-window dynamical model. Phase-plane plots of pro-inflammatory (PI) versus anti-inflammatory (Al) mediators identify a 16—-27 h primary
intervention window; shaded regions correspond to trajectories that can be steered back to homeostasis by timely therapy. The governing ordinary

differential equations and the optimisation cost function are provided below.

input and is no longer modelled as a separate differential equation.
As a result, only two dynamic state variables, PI and Al, are retained,
and the model dimension is reduced from 6 to 2. Specifically, ODE
models describe the balance between pro-inflammatory (PI) and
anti-inflammatory (AI) mediators in sepsis via:

dPI
¢ = Kot Path + ky, - PI- H(PL 6,;) —d,, - PI
% = kyi - Path + kg, - PI- H(PI, 6,;) — dy; - AI

where Path represents pathogen load, H is a Hill function
encoding activation thresholds, and the k and d parameters
denote production and degradation rates, respectively. To
determine when therapy should be applied, we formulate an
optimal-window problem:

Given the time-evolving pro-inflammatory (PI) and anti-
inflammatory (AI) signals predicted by the model, find the time
txe[t0,t1]tx€[t0,t1] that minimises the combined cost of
immunological imbalance and treatment burden. This is
expressed as
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t* = argmin {L(PI(t),AI(t)) + AC(t)}

1€ [to,t1]

where

L(PL,AI) = |PI = PlLjg,| + |AI-AI- |
0<A<1

C(t) quantifies the burden of intervening at time tt (e.g. drug
toxicity, ICU resources), andAe (0,1)A€[0,1] weights the relative
importance of safety versus efficacy.Taking [t0,t1]=0-72 h[t0,t1]
=0-72h and calibrating PIphysio,AlphysioPIphysio,Alphysio from
healthy controls, the resulting t« defines the optimal intervention
window: the earliest moment at which therapy both restores
immune balance and respects practical constraints.

Using this framework, the delay to anti-inflammatory response
initiation (fai) emerged as a key prognostic variable: survivors with
tai< 15 h reached a 72.3% survival rate, whereas those with tai > 24 h
had only 31.7% (p< 0.001).

Stochastic differential equation (SDE) models further resolve
three kinetic phases of PD-1 pathway inhibition—an early reversible
stage (0-24 h), an intermediate transitional stage (24-72 h), and a
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late stable stage (> 72 h). These models forecast that PD-1 blockade is
most efficacious during the intermediate phase (36-48 h), a
prediction borne out in a CLP mouse model: intermediate-phase
administration achieved a 7-day survival of 62.5%, significantly
higher than early (43.8%) or late (31.3%) interventions (p<
0.01) (44).

Based on SDE analysis, multi-omics dimensionality reduction
models, and relevant experimental literature, two actionable
intervention windows determining critical state transition time
points can be clearly defined in sepsis immune dynamics:

1. Early window (0-18 h): before the pro-/anti-inflammatory
bifurcation, when interventions can robustly redirect
disease trajectory (45).

2. Intermediate transition window (36-48 h): as the immune
response shifts from pro-inflammatory to anti-
inflammatory dominance, marking a critical decision
point for T cell and monocyte fate (46).

These windows entail distinct molecular targets and therapeutic
strategies (Table 5).

Integration of multi-omics data has substantially enhanced model
precision: incorporating transcriptomic, epigenomic, and proteomic
layers raised accuracy in predicting monocyte differentiation
trajectories by 21.3% (p< 0.001), reducing branch-point timing
error from *12 h to +4 h (47). Similarly, inclusion of epigenomic
features improved T cell exhaustion forecasts by 27.6% (p< 0.001).

Despite limitations such as strong parameter-estimation
dependencies and challenges in modeling rare subpopulations
(48), the convergence of dynamical modeling with multi-omics
profiling establishes an unprecedented theoretical foundation for
precision immunomodulation in sepsis. Preliminary clinical data
indicate that time-tailored interventions can enhance overall
treatment response rates by approximately 40% (p< 0.01) (49),
underscoring the translational promise of this approach.

4.4 Temporal epigenetic regulation and
therapeutic strategies

Additionally, epigenetic regulatory events exhibit distinct
temporal characteristics in immune cell fate decisions: in monocytes

10.3389/fimmu.2025.1616794

from sepsis patients, ChIP-seq analysis of genome-wide H3K27ac and
H3K9ac modifications revealed that these activation markers were
enriched in the promoter and enhancer regions of pro-inflammatory
genes, peaking at 24-36 h and then gradually declining, preceding the
upregulation of corresponding gene transcription and protein
expression (by an average of 4.3 + 0.7 h) (50). Targeting these key
temporal nodes, several epigenetic enzyme inhibitors have shown
potential in preclinical/clinical research:

e BET protein inhibitor JQI significantly reduced TNF-o and
IL-6 secretion and improved survival in an LPS-induced
cytokine storm mouse model (51).

e Pan-HDAC inhibitor sodium valproate (Valproic acid)
significantly prolonged mouse survival time in both CLP-
induced sepsis and ‘double hit’” models (survival rate
increased from 15.4% to 69.2%) (52);

* DNA methyltransferase inhibitor 5-azacytidine (5-AZC)
reverses genome-wide DNA methylation abnormalities in
exosome models derived from peripheral blood-depleted
monocytes, suggesting its potential value in early regulation
of monocyte dysfunction (53).

Currently, JQ1 and 5-Azacytidine are both in the preclinical
research stage, while sodium valproate has completed a Phase I dose
optimisation trial (NCT01951560) in healthy volunteers, laying the
foundation for future application in patients with sepsis.

5 Conclusion

This systematic synthesis establishes the first high-resolution, time-
calibrated atlas of sepsis immunodynamics. Integrating single-cell
transcriptomic, epigenomic and proteomic layers with kinetic
modelling resolves three non-overlapping decision nodes—monocyte
differentiation (16-24 h), T-cell exhaustion onset (36-48 h), and
terminal immunoparalysis (> 72 h). Each node is governed by a
distinct regulatory triad: IRF8-STAT1/KLF4 competition, TOX-
NuRD epigenetic re-programming, and PD-1-centred chromatin
silencing, respectively. Methodologically, the scMGNN framework
demonstrated superior robustness to missing data (accuracy decline
3.6% with 20% sparsity), offering a scalable blueprint for ICU-grade
datasets. Conceptually, the resulting “immune clock” reconciles

TABLE 5 Comparison of immunomodulatory strategies across sepsis intervention windows.

Time Immune-Cell State

Window

Key Molecular Mechanisms

Validation Status

Optimal Intervention

Early (0-18 h) = Monocyte hyperactivation T

cell priming

TLR4-MyD88-NF-kB pro-inflammatory
axisIRF/STAT epigenetic activation

Selective MyD88 inhibition
TNF-0/IL-6 blockade

Efficacy in murine models
Phase I trials ongoing

Intermediate
(36-48 h)

Monocyte fate bifurcation

Emerging T cell exhaustion exhaustion program

Late (> 72 h) HLA-DRAlow monocytes

Terminally exhausted T cells Mitochondrial dysfunction
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KLF6-mediated phenotypic switchTOX-driven

Epigenetic silencing programs
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PD-1 blockade
KLF6 modulation

Animal models validated

Preliminary clinical data

HDAC inhibitors + IL-7
Metabolic modulators

Effective in animals Clinical
results inconsistent

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1616794
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Liu and Liang

contradictory trial outcomes by showing that identical targets exert
opposite effects across phases. Pragmatically, two clinically exploitable
windows were quantified: early MyD88-NF-kB modulation (0-18 h)
and intermediate checkpoint blockade (36-48 h). Together, these
insights justify a paradigm shift from static, one-size-fits-all regimens
to temporally segmented, mechanism-based immunotherapy.

Future work should focus on:

* Validating scMGNN in large, multicenter cohorts to
assess generalizability;

 Invivo functional studies of IRF8 to confirm its viability as a
therapeutic target;

* Prospective, time-window-stratified clinical trials to
empirically test stage-specific intervention strategies.

Through these efforts, precision immunotherapy for sepsis can
progress from conceptual modeling to clinical reality.
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