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Decoding neuroinflammation in
Alzheimer’s disease: a multi-
omics and AI-driven perspective
for precision medicine
Shiyu Lin, Yijun Zhan, Ruiqi Wang and Jian Pei*

Department of Acupuncture, Longhua Hospital, Shanghai University of Traditional Chinese Medicine,
Shanghai, China
Alzheimer’s disease (AD) is a common neurodegenerative disease, which is

characterized by b-amyloid (Ab) deposition, Tau hyperphosphorylation,

synaptic dysfunction and chronic neuroinflammation. Despite significant

advances in research in recent years, effective therapeutic options remain

limited. The development of single-cell RNA sequencing (scRNA-seq) has

made it possible to analyze cellular heterogeneity in AD brain tissues at high

resolution, breaking through the limitation of signal averaging in traditional large-

scale tissue analysis. This technology has led to the discovery of novel disease-

associated cell subsets, such as pro-inflammatory microglia and reactive

astrocytes, and the identification of key molecular markers linked to disease

progression. Integrating scRNA-seq with AI-driven analytics and multi-omics

platforms further enhances our ability to decode the intricate immune-

inflammatory networks underlying AD. This strategy is expected to achieve

accurate classification and early diagnosis of AD subtypes, and promote the

development of individualized treatment strategies based on individual

molecular and immune characteristics.
KEYWORDS

single-cell RNA sequencing, Alzheimer’s disease (AD), heterogeneity, neuroinflammation,
prognostic biomarkers
1 Introduction

Alzheimer’s disease (AD) is one of the leading causes of dementia and represents a major

public health challenge in the 21st century (1, 2). As a progressive neurodegenerative disease,

AD usuallymanifests as mild memory impairment in the early stage (2), and gradually leads to

severe impairment of executive function and cognitive ability as the disease progresses. The

pathogenesis of AD involves A variety of complex pathological processes, including b-amyloid

(Ab) deposition, neurofibrillary tangles (NFTs) formation caused by abnormal

phosphorylation of tau protein, synaptic dysfunction, blood-brain barrier (BBB)

destruction, and chronic neuroinflammation. Abnormal aggregation of Ab and tau proteins

is not only A core pathological feature of AD, but also activates the immune response and
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induces the formation of inflammasomes, thereby driving the

continuous development of neuroinflammation. Mounting evidence

implicates immune dysregulation—particularly involving microglia,

astrocytes, and infiltrating immune cells—as a central driver of disease

progression (3). Yet, the inflammatory response in AD is highly

heterogeneous, making it challenging to identify universal therapeutic

targets (4, 5). Recent advances in single-cell RNA sequencing (scRNA-

seq) (6–8) have enabled high-resolution profiling of cellular diversity

and gene expression in AD brains. Unlike bulk RNA-seq, these

technologies can resolve rare cell populations and distinguish

cellular states, offering new insights into immune–inflammatory

interactions (9–11) and lay the groundwork for mechanistic studies

and therapeutic innovation (12–14).
2 Advances in single-cell sequencing
in AD research

In recent years, the development of scRNA-seq (15–17) and

spatial transcriptomics has greatly promoted our understanding of

cellular diversity and immune dynamics in AD brain tissue (18, 19).
Frontiers in Immunology 02
These techniques have revealed specific transcriptional states of

microglia, and region-specific subsets of astrocytes and endothelial

cells associated with inflammatory signaling and neurovascular

dysfunction. Moreover, multi-omics approaches integrating

transcriptomics, epigenomics, proteomics, and metabolomics at

the single-cell level are uncovering patient-specific molecular

signatures that were previously obscured in bulk analyses (20–25).

In addition, it identified cell type-specific markers associated with

AD, providing new strategies for early diagnosis and targeted

therapy (Figure 1).

scRNA-seq reveals key transcriptional changes in various cell

types in Alzheimer’s disease, including neurons, microglia,

astrocytes, oligodendrocytes, vascular endothelial cells and

peripheral immune cells, which may jointly drive the occurrence

and progression of AD (26). For example, neurons from AD

patients show synaptic dysfunction, microglia shift to a

proinflammatory state, an imbalance of A1/A2 subtypes of

astrocytes (27), myelin damage to oligodendrocytes, and increased

BBB permeability. Accompanied by abnormal peripheral immune

cell infiltration, these changes may accelerate the process of

neurodegeneration (28). Future studies should leverage AI-
FIGURE 1

Application of scRNA-seq in AD.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1616899
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lin et al. 10.3389/fimmu.2025.1616899
powered cell lineage tracing (29), spatial multi-omics, and

functional genomics to identify critical regulatory nodes and

develop personalized, stage-specific interventions for AD.
3 Neuroinflammation in AD: cellular
and molecular landscape

3.1 scRNA-seq reveals inflammation-
related cell state transitions

Neuroinflammation plays a crucial role in the progression of AD.

With the progression of AD, the inflammatory response is usually

aggravated, which is not only derived from the activation of immune

cells, but also closely related to neuronal damage, neurodegeneration

and loss of synaptic function. Neuroinflammation is triggered by

interactions between microglia, astrocytes, endothelial cells, and

peripheral immune cells. Neuroinflammation can further exacerbate

cellular damage, thereby contributing to disease progression.

In recent years, studies based on AD mouse models (such as

5xFAD, APP/PS1) and human brain tissues have found that a

variety of cell types associated with neuroinflammation have

characteristic transcriptional patterns (30). Among them, disease-

associated microglia (DAM) were first identified by Keren-Shaul

et al. in the 5xFAD model, showing Trem2 dependence and up-

regulating Apoe, Lpl, Cst7, Itgax and other genes (31). Building on

this understanding of microglial function, studies PD-1 deficiency

results in increased Ab deposition, decreased microglia uptake, in

APP/PS1 mice, suggesting that dysregulation of the PD-1/PD-L1

axis can exacerbate neuroinflammation and Ab plaque formation

(32). In addition, SLC11A1 was identified as an inflammatory gene

associated with AD, and iron overload can induce its expression,

suggesting that it may play an important role in iron metabolic-

related inflammation (33). T cell infiltration is another key factor in

AD neuroinflammation. scRNA-seq studies showed that CD8+ T

cells activated microglia after entering AD brain tissue, triggering

interferon-g pathway and neuronal damage. CXCL10/CXCR3 axis

plays an important regulatory role in this process (34). In

conclusion, scRNA-seq can help to clarify the localization of

inflammatory cells in brain tissue and its relationship with

pathological changes.
3.2 Inflammatory signaling pathways and
cytokine networks

Neuroinflammation is one of the central features in the

pathogenesis of AD, which together with Ab deposition and

abnormal Tau protein drive neuronal dysfunction and

neurodegeneration. Neuroinflammation, especially mediated by

activated glia, neutrophils, and macrophages, also plays an

important role in the pathogenesis of AD.

The occurrence of neuroinflammation is regulated by multiple

signaling pathways. TREM2 signaling is critical for microglial

metabolic reprogramming, plaque encapsulation, and inflammation
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regulation. In the CNS, TREM2 is expressed by microglia, and its

expression is linked to the immunomodulatory function of APOE

(35). NLRP3 inflammasome played a crucial role in AD-related

pathology. NLRP3 induced interleukin-18 (IL-18) or interleukin-18

(1L-1B) to further enhance the progression of AD (36). NF-xB was a

recognized inflammatory transcription factor that promotes

neurodegeneration, was activated in a variety of cell types, and

induced transcription of TNF-a, IL-6 and other inflammatory

factors (37). The JAK/STAT signaling pathway was one of the key

factors promoting neuroinflammation in AD and was affected by the

excessive activation of microglia and astrocytes; it suppresses

neuroinflammatory responses (38, 39). These inflammatory

pathways together constructed a complex network of cytokines,

which affect the function of neurons and vascular system.To better

understand the role of neuroinflammation in AD, we next focus on

cell-type-specific transcriptional changes revealed by scRNA-seq.
4 Cell-type-specific investigation of
novel biomarkers in AD

4.1 Neuronal cells

In terms of cognitive recovery and memory improvement,

scRNA-seq has identified key neuronal subtypes in AD and

revealed some pathways that may contribute to memory recovery.

Hansruedi Mathys et al. showed that cognitive recovery in AD

patients was strongly associated with specific subtypes of inhibitory

and excitatory neurons. In particular, the expression levels of genes

such as CACNG3, PAK1, NPTX2, RPH3A, SVOP, and BDNF in

excitatory neurons were positively correlated with overall cognitive

function (1). In addition, the BDNF-regulated synapse-associated

gene VGF, as well as FGF1 and FGF22 from the fibroblast growth

factor (FGF) signaling pathway, were also associated with cognitive

function in excitatory neurons (40).

For the regulation of synaptic function, scRNA-seq was used to

investigate the role of synaptic and calcium homeostasis related genes

in tau-induced neurotoxicity, which was a key factor leading to

neuronal loss in AD. Analysis found that a variety of regulators

were involved in synaptic function (such as Mctp, Prosap, DIP-t),

neuronal excitability (such as Dpp10, GluRIA, Eaat2), and intracellular

calcium regulation (such as Trpm, Calx, Cam, RyR) (1, 41).

Regarding the regulation of neuroinflammation, Antara Rao

et al. identified two subtypes of proinflammatory microglia with

high MHC-II gene expression and highlighted the synergistic role of

neuronal APOE, especially APOE4, in AD pathogenesis through

interactions with microglia (42). Transcriptome analysis in 5xFAD

and trem2^R47H^ mutant models revealed transcriptional changes

in microglia and astrocytes that shape microglial and astrocyte

inflammatory responses, as well as neuronal activity and BDNF

signaling pathway (43). In addition, the up-regulation of NF-kB
signaling in inhibitory neurons and the expression of the

transcription factor NFIL3 suggest that inflammatory and

immune regulatory mechanisms may play a role in AD

progression by modulating neuronal function (44). Multi-omics
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integration is gradually revealing the multi-dimensional regulatory

mechanisms of different cell types in AD, and single-cell proteomics

and metabolomics can provide functional evidence (45–48).
4.2 Microglial cells

In terms of Ab clearance and phagocytosis, SPP1 was found to be

an important factor in regulating microglia-mediated synaptic

phagocytosis. In a mouse model of AD, knockout of SPP1

effectively prevented synaptic loss, highlighting its critical role in

neurodegeneration (49). Similarly, impaired TREM2 function

impaired the ability of microglia to clear Ab plaques. In contrast,

overexpression of TREM2 was able to alleviate pathological changes,

showing its potential in AD treatment (50). TREM2 was not only

involved in Ab clearance, but also inhibits excessive neuroinflammation

by regulating the phenotype switching of microglia. In addition,

disruption of CX3CR1 signaling also reduced Ab deposition, further

underscoring the importance of the microglial receptor pathway in

regulating amyloid pathology (31).

Neuroinflammation plays a key role in regulating disease

progression. Single-cell analysis revealed several inflammatory

response regulators, such as BINI and RELB, which were highly

expressed in a variety of microglial states and were involved in the

immune activation process (51). In addition, genes such as APOE,

BINI and PICALM are considered as risk genes for AD, suggesting

their broader regulatory roles in AD pathogenesis. The use of

therapeutic antibody AL002c can effectively reduce neurofilament

damage and amyloid load, while alleviating inflammatory response,

providing a promising intervention (26).

During the progression of AD, the dynamic changes of

microglia phenotype reflected their adaptability to pathological

signals (52). scRNA-seq analysis has shown that microglia

gradually change from a homeostatic state to a DAM, which was

dependent on TREM2 signaling pathway, and TREM2 mutations

increase the risk of AD (31). One of the DAM subgroups with

neuroprotective potential was characterized by up-regulation of

Trem2, Tyrobp, Lpl, and Cst7 genes, and down-regulation of

P2ry12 and Cx3cr1. In addition, transcription factors such as

ZEB1 and MAFB have been found to regulate AD-specific

microglial and neuronal transcription patterns, suggesting that

cross-type regulatory networks may exist between cells (53).
4.3 Oligodendrocytes

In the myelin damage study, Joel W. Blanchard et al. found that

promoting cholesterol transport enhanced ApoE4-mediated

myelination and improved cognitive function. Studies have shown

that APOE4 disrupts cholesterol homeostasis in oligodendrocytes,

thereby impairing the ability to generate myelin (54). In addition,

activation of Erk1/2 signaling promotes oligodendrocyte (DAO)

repair of damaged axonal myelin, ameliorated Ab-related pathology
and cognitive decline in A male APP^NL-G-F^ mouse model (55).

Junjie Sun et al. further emphasized that specific marker genes in
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myelinogenic oligodendrocytes (MOL), such as Mbp, Mobp, Olig2,

Mag and Mog, played key roles in myelination, axonal support and

signaling (56). Notably, scRNA-seq analysis also identified novel

oligodendrocyte markers PLP1 and ST18 (57).

In terms of dysfunction, BACE1 deficiency was found to upregulate

the expression of ADAM10, Ano4, ApoE, Il33, and Sort1, which were

closely related to Ab production and clearance. Therefore, targeted

inhibition of BACE1 in oligodendrocytes was proposed as a potential

strategy to alleviate AD-related Ab pathology (58). Shiyun Yang et al.

demonstrated that overexpression of AK5 in oligodendrocytes

could activate AMPK signaling pathway, thereby inhibiting

neuroinflammation and apoptosis and promoting oxidative

phosphorylation and overall energy metabolism (59). In contrast,

elevated PIP4K2A levels may contribute to cellular dysfunction in AD

(60). In addition, oligodendrocyte regulatory modules related to APOE

and CLU were also identified, providing a new perspective for further

understanding the role of these cells in the pathogenesis of AD (61).
4.4 Astrocytes

In the regulation of neuroinflammation, astrocytes, especially

GfAP-positive subsets (such as AST1 and AST6), play an important

role in neuroinflammation, normal aging and a variety of

neurological diseases such as AD. These cells act as reactive

astrocytes and respond to neuronal injury (62). For example,

inhibition of STAT3 signaling in astrocytes can reduce amyloid

plaque deposition, improve memory function, and inhibit the

activation of proinflammatory factors, thereby slowing the

progression of AD (63). Similarly, C5aR1 antagonists were able to

suppress glial inflammatory responses, modulate cellular signaling,

and prevent cognitive decline (64). In addition, b-amyloid induced

the NF-kB pathway by activating RAGE, thereby promoting the

inflammatory state, which provides another target for therapy. In AD,

reactive astrocytes can release inflammatory factors such as IL-6 and

TNF-a and participate in neuronal injury response. Targeting the

STAT3 pathway has been shown to slow down neuroinflammation in

AD and improve cognitive function (65). In addition, astrocytes also

maintained glutamate homeostasis through interactions with

neurons, which was essential for reducing neuroinflammation.

Astrocytes also play a key role in maintaining the integrity of

the BBB. Studies have found that AQP4 in astrocytes promotes BBB

permeability by regulating water transport and assists in the

removal of brain waste, thus providing a potential target for AD

treatment (66). In addition, studies have revealed that insulin

signaling is closely related to BBB function in AD. The

interaction between RAGE and the PI3K/AKT pathway is

upregulated with age in wild-type mice and may lead to insulin

resistance, thereby increasing the risk of AD (67).

Regarding glutamate homeostasis, Yan Sun and his team found

that short-chain fatty acids (SCFAs) promote glutamine transport

between astrocytes and neurons and alleviate AD symptoms. SCFAs

could enhance the communication between astrocytes and neurons,

improve glutamate-glutamine circulation, mainly acted on astrocytes

to combat nerve oxidative damage, reduce Ab deposition and Tau
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protein hyperphosphorylation, and reduced cognitive impairment by

remodeling intestinal flora homeostasis (68).

Astrocyte heterogeneity is a key factor in neurodegeneration,

where reactive astrocytes can exhibit either a neurotoxic (type A1) or

a neuroprotective (type A2) phenotype. Type A1 has neurotoxic

characteristics and is induced by activated microglia through TNF-a,
IL-1a and C1q. It is manifested as up-regulation of C3, Serping1 and

other genes, which can promote neuronal death. However, type A2

upregulates neurotrophins such as S100A10 and PTX3, which are

involved in the repair process (69). Specific markers such as GFAP,

vimentin, and nestin have emerged as novel therapeutic targets to

promote astrocyte-mediated neuroprotection (63). In addition, the

pathological down-regulation of ERBB4 and transcription factor

NFIA in reactive astrocytes has been found to affect cell-cell

interactions, neuronal development and synaptic regulation,

thereby aggravating the condition of AD (70). Other studies have

shown that NGFR can promote the differentiation of astrocytes into

neurogenesis, stimulate cell proliferation and nerve regeneration (71).

The continuous expression of NGFR could reduce Ab plaque and

Tau protein phosphorylation, and alleviate the pathological changes

of AD. It has also been found that its downstream co-regulators such

as PFKP can enhance cell proliferation and neurogenesis (71).
4.5 Endothelial cells

In terms of BBB regulation, integrated multi-omics analysis

revealed the core regulatory role of TCF/LEF, SOX and ETS

transcription factor families in the maintenance of BBB function,

providing potential therapeutic targets for nervous system diseases

such as AD (72). TCF/LEF, SOX (such as SOX17), and ETS (such as

ERG, FLI1) transcription factors maintained the stability of BBB by

regulating tight junctions, endothelial differentiation, and anti-

inflammatory pathways. In addition, single-cell transcriptomic and

immunohistochemical studies showed that IQGAP2, a key molecule

that maintains the immune immunity of BBB, was significantly

down-regulated in AD. IQGAP2 null mice exhibited a pronounced

inflammatory phenotype of brain endothelial cells, as shown- by

upregulation of adhesion receptors and antigen presentation related

molecules, suggesting impaired BBB function and increased immune

cell penetration (73). After the BBB was impaired, cerebrovascular

endothelial cells mediated the infiltration and activation of peripheral

immune cells through adhesion molecules and chemokines, and

acted as antigen-presenting cells to exacerbate neuroinflammation.

In terms of the regulation of vascular function, Shun-Fat Lau et al.

observed that endothelial cells in the prefrontal cortex of AD patients

showed angiogenic and immune response characteristics. The up-

regulation of angiogenic factors and their receptors (such as EGR,

FLT1, VWE) and genes related to antigen presentation (such as B2M,

HLA-E) suggests that they play an important role in regulating

angiogenesis and immune responses in AD pathology (74). In

addition, single-cell RNA sequencing results showed that

overexpression of PGRMC1 significantly enhanced the proliferation,

migration and angiogenesis of endothelial cells, indicating its

potential role in regulating the function of cerebrovascular

endothelial cells in AD (75).
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Studies also found that EIF1 and HSPA1B were key genes

closely related to the progression of AD, which were involved in

the regulation of peripheral immune and inflammatory responses

(76). EIF1 was found to be closely related to cognitive function. Guo

et al. integrated single-cell data from ischemic stroke, hemorrhagic

stroke, and AD models, and identified Lef1, Elk3, and Fosl1 as

potential upstream transcription factors involved in metabolic

regulation, suggesting their potential value for therapeutic

intervention (77). In addition, the expression of CR1, which was

necessary for the clearance of immune complexes, is significantly

down-regulated in cerebrovascular endothelial cells of AD

patients, suggesting that dysfunction of immune surveillance

exacerbated the imbalance of immune homeostasis in the

neurovascular unit (78).
4.6 Peripheral immune cells

In AD, B cells exhibit significant transcriptomic alterations. The

analysis of differentially expressed genes showed that the expression

of KIR3DL2, OPCT and PPP2R2B was up-regulated, while FRAT2,

WWC3 and SPG20 were down-regulated, and these genes were

closely related to the neurodegenerative process (19). scRNA-seq

further identified a novel B-cell phenotype with high expression of

CD45, enhanced phagocytosis and chemotaxis, and the release of

multiple chemokines to recruit peripheral immune cells through the

CCL signaling pathway. This phenotypic change may be driven by

up-regulation of myeloid-associated transcription factors such as

the CEBP family and down-regulation of lymphoid transcription

factors such as Pax5 (79).

On the T cell side, the CXCL10-CXCR3 axis played a key role in

mediating T cell infiltration and neuronal injury. In particular, the

infiltration of CD8+ T cells promoted the activation of microglia and

further aggravates neuroinflammation and neurodegeneration (34).

In addition, cis-regulatory elements co-accessible with the CXCR3

promoter in peripheral CD8+ T cells identified, suggesting an

epigenetic mechanism associated with AD susceptibility (80). The

infiltration of T cells, especially CD8+ T cells, activated microglia and

further worsens neuroinflammation and neurodegeneration.

Natural killer (NK) cells also play an important role in the

pathogenesis of AD. One study identified 17 marker genes associated

with AD (such as EEF1B2, GPR56, H3-3B, ZEB2), which may affect

immune cell infiltration (81). Through cell communication analysis,

researcher identified NK cell subset modules related to AD, and the

characteristic genes included RPLP2, RPSA and RPL18A. One specific

subgroup was characterized by upregulation of CX3CR1, TBX21,

MYOM2, DUSP1, and ZFP36L2, and was negatively correlated with

cognitive function in AD patients (82). Moreover, NK cells interacted

with other immune cells, such as dendritic cells and macrop-hages, to

shape the immune landscape. Activated NK cells induced dendritic cell

maturation or apoptosis, thereby indirectly regulating T cell priming

(83). In addition, peripheral NK cells infiltrated the brain tissue and

regulate the transcription of immune response genes by activating

STAT3 signaling pathway, further amplifying the neuroinflammatory

response (84).
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5 Conclusion

Using scRNA-seq, researchers have uncovered transcriptional

changes in neurons, glial, and immune cells in AD, elucidating

mechanisms of neuroinflammation, synaptic damage, and

neurodegeneration. These insights lay a foundation for precision

diagnosis and targeted therapy. Integrating AI with single-cell

multi-omics and spatial transcriptomics may enable early

biomarker discovery and AD subtype identification, facilitating

personalized treatment.
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