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Background: Glioblastoma (GBM) is a highly malignant brain tumor with a poor 
prognosis. The WHO Classification of Tumors of the Central Nervous System 
(WHO CNS5) reclassified GBM in 2021. Pyroptosis, as an inflammatory form of 
programmed cell death, could regulate tumor cell proliferation, invasion, and 
metastasis. However, the role of pyroptosis in the newly defined GBM and its 
correlation with immunity have not yet been elucidated. 

Method: According to the 2021 WHO CNS5, a total of 209 newly defined GBM 
samples from The Cancer Genome Atlas (TCGA) cohort were included for 
analysis. The Chinese Glioma Genome Atlas (CGGA) cohort was used as the 
validation set. The prognosis model was built by Least Absolute Shrinkage and 
Selection Operator (LASSO) Cox analysis. The nomogram was conducted to 
confirm the prognostic value of risk score. ESTIMATE, CIBERSORTx, and 
ImmuCellAI were used to investigate immune infiltration. Quantitative real-
time polymerase chain reaction (RT-qPCR) and immunohistochemistry were 
performed to validate PLCG1 and NOD2 genes in the prognostic model. 

Results: The risk score model including the two genes was built. The 
experimental results verified that elevated NOD2 expression and reduced 
PLCG1 expression in GBM represent poor prognosis with a higher risk. This risk 
score model could predict the survival rates of patients with GBM with medium to 
high accuracy. The benefit of chemotherapy or radiotherapy was greater in the 
high-risk group than in the low-risk group. Moreover, the high-risk group had 
stronger immune activity and poorer immunotherapy response. 
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Conclusions: In summary, our study provided strong evidence for the prognosis 
and clinical management of the newly defined GBM from bioinformatics and 
experimental analysis. Furthermore, our findings provided a foundation for future 
research targeting pyroptosis and its immune microenvironment to improve 
GBM prognosis. 
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Introduction 

Glioblastoma (GBM) is one of the most aggressive and deadliest 
central nervous system tumors. GBM has a dismal prognosis, 
indicated by its particularly low survival rate of 7.2% in 5 years 
(1). The current main treatments for GBM are surgical resection 
followed by adjuvant chemoradiotherapy. Despite the tremendous 
effort that has been devoted to develop novel therapies, the 5-year 
survival rate has been slow to improve. Given the limitations of 
GBM treatments, new therapeutic targets are needed to improve the 
survival rate of GBM. Therefore, reliable novel prognostic models 
are urgently required to make targeted therapies more feasible. 

Although many biomarkers or gene signatures have been found 
to have the potential to predict the prognosis of GBM, they are still 
in the molecular research phase and have not yet been applied in 
clinical practice. Moreover, in 2021, the fifth edition of the WHO 
Classification of Tumors of the Central Nervous System (WHO 
CNS5) reclassified GBM—removing the isocitrate dehydrogenase 
(IDH) mutation type from GBM and adding the IDH-wild-type 
diffuse astrocytoma in adults with TERT promoter mutation or 
EGFR gene amplification or +7/−10 chromosome copy number 
changes (2). This significant change will affect the survival time 
range of GBM. Thus, revealing prognostic gene signatures for the 
prognosis of the newly defined GBM would be of great significance. 

It is known that there are several types of cell death in cancer 
treatment, including necrosis, apoptosis, necroptosis, autophagy, 
and pyroptosis. Pyroptosis is considered to be a novel inflammatory 
form of programmed cell death triggered by certain inflammasomes 
(3). Pyroptosis relies on the cleavage of gasdermins via classical and 
non-classical pathways and can lead to the continuous expansion of 
cells until the cell membrane ruptures and causes the cell content to 
flow out, thus triggering a strong inflammatory response (4, 5). 
According to previous studies, pyroptosis primarily exists to defend 
against intracellular infection and trigger an inflammatory anti­
microbial response through the release of damage-associated 
molecular patterns (6). An increasing number of studies suggest 
that pyroptosis plays an important role in the prognosis of cancer 
(7, 8). It has been reported that inflammatory vesicles, gasdermin 
proteins, and proinflammatory cytokines, which are key 
components of pyroptosis, are associated with tumor cell 
proliferation, invasion, and metastasis (9). Given that pyroptosis 
02 
plays a key role in the development of tumors and antitumor 
processes, some recent studies identified a novel pyroptosis­
related gene signature for the prognosis of ovarian cancer, lung 
adenocarcinoma, and gastric cancer (10–12). The prognostic value 
of pyroptosis-related genes in the newly defined GBM has not yet 
been elucidated. 

Because of the limited prognostic markers of GBM in clinical 
practice and the limitations of GBM treatment, there is an urgent 
need for the development of an effective gene signature to indicate 
prognosis and guide clinical treatment. Thus, we performed a 
systematic study to determine the expression levels of pyroptosis­
related genes in the newly defined GBM, investigate the prognostic 
value of these genes, explore whether prognostic model based on 
these genes can guide the clinical therapeutics of GBM, and study 
the correlations between the prognostic model of pyroptosis-related 
genes and the tumor immune microenvironment. 
Materials and methods 

Sources of glioblastoma datasets and 
preprocessing 

The RNA sequencing (RNA-seq) data and the corresponding 
clinical information of all patients with glioma (including low-grade 
glioma and GBM) and somatic datasets were obtained from The 
Cancer Genome Atlas (TCGA) database on 18 August 2021. The 
copy number variation (CNV) data and the single-nucleotide 
polymorphism (SNP) data of all glioma were downloaded from 
the University of California, Santa Cruz (UCSC) Xena website. 
Then, according to the new classification of GBM based on the 2021 
WHO CNS5, we included adult GBM that were IDH-wildtype and 
adult diffuse astrocytic tumors that were IDH-wildtype with TERT 
promoter mutation or EGFR gene amplification or +7/−10 
chromosome copy number alterations (2). EGFR was said to be 
amplified if the respective probes exhibited an intensity higher than 
0.6 on a log2 scale (13). The records of duplicate patients were 
removed. Finally, the datasets of 209 patients with the newly defined 
GBM were included for further analysis. The validation sets were 
downloaded from the Chinese Glioma Genome Atlas (CGGA) 
database. The IDH-mutation GBM and lower-grade glioma 
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(LGG) were removed from the CGGA325 set. We excluded 
pediatric patients from both the TCGA and CGGA sets. Before 
model fitting, the gene expression data from the TCGA cohort and 
CGGA cohort were processed by log2 transformation [log2(FPKM 
+1)]. Fragment per kilobase million (FPKM) data were used for 
single-sample gene set enrichment analysis (ssGSEA) and 
transcripts per kilobase million (TPM) data were used for 
CIBERSORTx and ImmuCellAI analysis. 
Defining pyroptosis-related genes 

We extracted 33 pyroptosis-related genes from prior reviews 
(10, 14–17), and they are presented in Supplementary Excel File 1. 
Mutation analysis of pyroptosis-related 
genes 

The mutation frequency and oncoplot waterfall plot of 33 
pyroptosis-related genes in patients with GBM were generated 
based on the SNP data. The location of CNV alteration of 33 
pyroptosis-related genes on 23 chromosomes and the CNV 
variation frequency of these genes were drawn based on the 
CNV data. 
Construction and validation of the 
prognostic model of pyroptosis-related 
genes 

To develop a robust prognostic signature based on pyroptosis­
related genes, we employed a multi-step feature selection strategy: 
First, using Kaplan–Meier (KM) survival analysis with Log-rank 
testing, we evaluated the individual prognostic significance of all 33 
pyroptosis-related genes. Genes significantly associated with overall 
survival (OS) (Log-rank p < 0.05) were retained for further model 
building. This step yielded eight candidate genes: AIM2, CASP4, 
IL1B, NLRC4, NOD2, PLCG1, PYCARD, and SCAF11. To reduce 
dimensionality, mitigate potential overfitting, and address 
multicollinearity among the eight candidate genes, we applied the 
Least Absolute Shrinkage and Selection Operator (LASSO) Cox 
regression analysis. This was performed using the R package 
glmnet. Crucially, to enhance the stability and reliability of the 
feature selection, we implemented 1,000 iterations of 10-fold cross-
validation during the LASSO regression process. This rigorous 
approach resulted in the retention of six genes: AIM2, CASP4, 
IL1B, NOD2, PLCG1, and SCAF11. Finally, to refine the model and 
identify the most parsimonious set of genes with optimal prognostic 
power, we performed bidirectional stepwise Cox proportional 
hazards regression based on the Akaike Information Criterion 
(AIC) using the R package MASS. This stepwise selection process, 
guided by AIC minimization, identified the two most prognostically 
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informative core genes: NOD2 and PLCG1. These two genes 
formed the basis of our final prognostic risk score model. The 
risk score formula was as follows: risk score = 2.74415*e(0.4763*NOD2­
0.3042*PLCG1). The cutoff point was determined using the 
“survminer” package. The patients with GBM were divided into 
low- and high-risk subgroups according to the best cutoff value of 
risk score. We used KM survival curves to compare the OS between 
the two subgroups and time-dependent receiver operating 
characteristic (ROC) curves to determine the efficiency of the 
model. For the validation studies, the GBM cohort from the 
CGGA database was employed. The risk score was calculated by 
the same formula used for the TCGA cohort. By applying the best 
cutoff value risk score from the TCGA cohort, the patients in the 
CGGA cohort were also divided into low- or high-risk subgroups, 
and these groups were then compared to validate the gene model. 
Independent prognostic analysis of the risk 
model 

We extracted the clinical information (gender, radiotherapy, 
chemotherapy, MGMT promoter, subtype, and age) of patients in 
the GBM datasets. These variables were analyzed in combination 
with the risk score in our regression model. Univariate and 
multivariate Cox regression models were employed for the 
analysis. A forest was used to show the p-value, HR, and 95% CI 
of each variable through the “forestplot” R package. 
Development of the nomogram 

A nomogram to predict the 6-, 12-, and 24-month survival 
probability was developed according to the results of multivariate 
Cox stepwise regression analysis. The bootstrap sampling method 
and the construction of a calibration curve were used to evaluate the 
effect of the nomogram. The bootstrap-C-index and bootstrap-Brier 
Score were used to assess the consistency between the model 
prediction results and the actual observation results. 
Drug sensitivity and treatment subgroup 
analysis based on the risk score model 

In treatment subgroup analysis, according to the risk score 
model, we used KM survival curves to compare the progression-
free survival (PFS) and OS in different treatment subgroups. Based on 
drug response data from the Cancer Therapeutics Response Portal 
(CTRP) and Cancer Cell Line Encyclopedia (CCLE), we screened 
drugs whose response was correlated with pyroptosis-related genes in 
GBM using Spearman’s correlation analysis. The drugs and genes 
with an absolute value of correlation coefficient >0.3 (18) and  p < 0.05  
were considered statistically correlated. Positive correlation indicated 
that the higher the gene expression level, the higher the area under the 
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concentration–response curve (AUC) value of sensitivity scores and 
the lower the sensitivity to drugs, and vice versa. 
 

Immune infiltration, tumor mutation 
burden, and microsatellite instability 
analysis 

In the GBM microenvironment, immune and stromal cells are 
two key types of nontumor components and have been indicated to 
be significant for the diagnosis and prognosis of tumors. Yoshihara 
et al. (19) designed the ESTIMATE algorithm to compute immune 
and stromal cell scores to predict the infiltration of these nontumor 
cells. We used ESTIMATE to evaluate immune scores, ESTIMATE 
scores, stromal scores, and tumor purity scores in each tumor 
sample and to determine the immune infiltration level in 
combination with the risk score. 

ssGSEA, which assisted in quantifying the enrichment level of 
an immune cell/signature, pathway, or biological process in a tumor 
sample, was used to assess the gene score of every gene set for every 
sample  (20).  The  infi l tration  of  immune  cells  in  the  
microenvironment was determined by 29 immune pathways, and 
GBM samples were hierarchically clustered into “immune-high 
(immune-H)” and “immune-low (immune-L)”. 

We used CIBERSORTx and ImmuCellAI (21) to  quantify the

proportions of immune cells. CIBERSORTx is an analytical tool used 
to impute gene expression profiles and provide an estimation of the 
abundances of member cell types in a mixed cell population, using 
gene expression data. ImmuCellAI is a web-based analytical and 
discovery platform for analyzing the abundance of 24 immune cells 
from the gene expression dataset. Moreover, ImmuCellAI can be 
applied to estimate the difference of immune cell infiltration in 
diverse groups as well as predict patient response to immune 
checkpoint blockade therapy. We selected immune cells associated 
with risk score (Spearman correlation coefficient |cor| > 0.3). 

In tumor mutation burden (TMB) and microsatellite instability 
(MSI) analysis, Spearman’s correlation analysis was performed to 
calculate the correlation between gene expression and TMB and 
MSI score. Spearman correlation coefficient |R| > 0.3 and a p-value 
of < 0.05 were considered statistically significant. 
Quantitative real-time polymerase chain 
reaction 

To validate the PLCG1 and NOD2 of the prognostic model, 
tumor tissue was collected from 12 patients with glioma from 
Beijing Tiantan Hospital, Capital Medical University. Among 
them, six cases of gliomas (including one WHO grade 2 
astrocytoma, one WHO grade 3 astrocytoma, and four GBMs) 
were used for quantitative real-time polymerase chain reaction (RT­
qPCR), and six cases of GBM were used for immunohistochemistry. 

mRNA expressions were detected using RT-qPCR assay. Briefly, 
total RNA was extracted from the glioma samples using the Tissue 
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RNA Purification Kit Plus (ESscience Biotech) and reversely 
transcribed to cDNA via the PrimerScript RT reagent Kit with 
gDNA Eraser (Takara). Quantitative PCR was performed using 
PowerUp™ SYBR™ Green Master Mix (Thermo Fisher). The 
primers used in this study were obtained from Sangon Biotech 
(Shanghai, China), including PLCG1 (Forward 5′-GGATCAA 
GGGCTTAACTTGGC-3′ , Reverse 5′-GACCCGGTAGTT 
GACCTGG-3′), NOD2 (Forward 5′-CACCGTCTGGAATAAG 
GGTACT-3′, Reverse 5′-TTCATACTGGCTGACGAAACC-3′), 
and b-actin (Forward: 5′-CATTCCAAATATGAGATGCGTTGT­
3′, Reverse: 5′-TGTGGACTTGGGAGAGGACT-3′). The relative 
mRNA levels were calculated by the 2−ddCt method. 
Immunohistochemistry 

PLCG1 and NOD2 staining was performed with formalin-fixed, 
paraffin-embedded GBM tissues. For PLCG1 and NOD2 staining, 
specimens from patients with rapidly progressing GBM and those 
with long-term stable GBM were used and samples from three 
individuals were collected in each group. The PFS of the six patients 
was as follows: P1: 26 months, P2: 13 months, P3: 16 months, P4: 4 
months, P5: 6 months, and P6: 8 months. We defined patients with 
a PFS ≤ 12 months as those with rapidly progressing GBM and 
patients with a PFS >12 months as those with long-term stable 
GBM. All these patients with GBM met the diagnostic criteria for 
GBM according to the 2021 WHO CNS5. The slides were incubated 
with primary antibody (PLCG1: 1:100 dilution, Cell Signaling 
Technology; NOD2: 1:50, Affinity Biosciences) overnight at 4°C 
and then with horseradish peroxidase (HRP)-conjugated secondary 
antibody (ZSGB-Bio, Beijing, China) at room temperature for 1 h. 
DAB was used for staining. The intensity and density of the staining 
were examined by two investigators independently. 
Statistical analysis 

The workflow chart (Figure 1) describes which samples were 
utilized at each stage of statistical analysis. All data analyses were 
performed with the R (version 4.1.1) and R Bioconductor packages. 
Detailed usage of the R packages is shown in the Supplementary 
Text  File. A  p-value  of  <  0.05  was  considered  to  be  
statistically significant. 
Results 

Landscape of genetic variation of 
pyroptosis-related genes in the newly 
defined GBM 

We summarized the incidence of CNV and somatic mutations 
of 33 pyroptosis-related genes in the newly defined GBM. As shown 
in Figure 2A, 27 of 207 (13.04%) GBM samples showed pyroptosis-
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related regulator mutations. Missense mutation was the most 
common variant classification (Figure 2B). SNPs were the most 
common variant type in missense mutation, and C > T ranked as 
the top single nucleotide variant (SNV) class. There were 20 
mutations in the 33 pyroptosis-related genes, among which 
NLRP7 and NLRP3 showed the highest frequency of mutations 
(Figure 2B). We also explored CNV alteration frequency, which 
revealed that these genes showed prevalent CNV alterations. 
Among 33 pyroptosis-related genes, 2 genes did not have any 
gain or loss in any of the GBM samples. More than half of the 31 
pyroptosis-related genes had copy number amplification, while the 
CNV deletion frequencies of GSDMA, GSDMB, PYCARD, NLRP1, 
TIRAP, CASP3, NLRP6, IL18, NOD2, CASP6, TNF, CASP4, 
CASP5, and CASP1 were widespread (Figure 2C). Figure 2D 
presents the location of CNV alterations of these 33 pyroptosis­
related genes on chromosomes. Meanwhile, we analyzed the 
mutation correlation between the 20 pyroptosis-related genes 
(Figure 2E). The results demonstrated that 23 pairs of genes had 
significant mutational associations [−log10(p-value)>3 and p 
< 0.05]. 
Frontiers in Immunology 05 
Construction of the pyroptosis-related 
prognostic gene model and validation 
using the CGGA database and experiments 

The baseline characteristics of the newly defined GBM in the 
TCGA cohort and CGGA cohort are shown in Supplementary 
Table 1. A total of 209 newly defined GBM samples from the TCGA 
cohort were matched with the corresponding patients who had 
complete survival information. A total of 203 (patients with PFS > 5 
days) and 192 (patients with OS > 30 days) patients with GBM were 
included in PFS and OS analysis, respectively. 

To develop a prognostic gene model, a KM analysis was 
performed on OS and  PFS to screen those  pyroptosis-related
genes with a prognostic value. As a result, 8 and 10 genes with 
prognostic value were identified based on OS and PFS KM survival 
curves, respectively. The results suggested a poor OS in patients 
with GBM with low AIM2, CASP4, IL1B, NLRC4, NOD2, and 
PYCARD expression and high PLCG1 and SCAF11 expression 
(Supplementary Figure 1A), as well as a poor PFS with low AIM2, 
CASP4, GPX4, GSDMC, IL1B, NLRC4, NLRP3, NOD2, and 
FIGURE 1 

Workflow diagram. The specific workflow graph of data analysis. 
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PYCARD expression and high PLCG1 expression (Supplementary 
Figure 1B). LASSO Cox regression analysis was performed to 
construct a prognostic gene model based on these eight 
pyroptosis-related genes of OS (Figure 3A). Finally, two genes 
(PLCG1 and NOD2) were included in the risk score model by 
stepwise regression algorithm. The risk score = 2.74415*e(0.4763* 
NOD2−0.3042*PLCG1). This risk score model had good universality 
(the related information is provided in Supplementary Excel File 2). 
Frontiers in Immunology 06
Based on the risk score, patients with GBM were divided into a 
high- and a low-risk group with the best cutoff value of 0.89 
(Figure 3B). As the risk score increased, the number of patients 
dying increased and survival decreased (Figure 3B). The KM curve 
demonstrated that the high-risk group had a shorter survival time 
than the low-risk group (Figure 3C). Time-dependent ROC analysis 
was applied to evaluate the sensitivity and specificity of the 
prognostic model, and we found the area under the ROC curve 
FIGURE 2 

Landscape of genetic variation of pyroptosis-related genes in the newly defined GBM. (A) The mutation profiles in the 207 newly defined GBM. (B) The 
mutation frequency and classification of 20 pyroptosis-related genes in the GBM. (C) The CNV variation frequency of 31 pyroptosis-related genes in the 
GBM. The number represented the alteration counts. (D) The location of CNV alteration of 33 pyroptosis-related genes on 23 chromosomes in the 
GBM. (E) The mutation correlation between the 20 pyroptosis-related genes in the GBM. GBM, glioblastoma; CNV, copy number variation; SNP, single-
nucleotide polymorphism; INS, insertion; DEL, deletion. *mean: *P<0.05, the pair of genes had significant mutational associations. 
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(AUC) to be 0.648, 0.638, and 0.646 for the 6-, 12-, and 24-month 
curves, respectively (Figure 3D). Figure 3E demonstrates the high 
expression of NOD2 and the low expression of PLCG1 in the high-
risk group. Meanwhile, good prediction results can also be obtained 
by applying the same risk score formula to PFS analysis 
(Supplementary Figure 2). 

A total of 90 patients with GBM from the CGGA cohort 
(CGGA325) were utilized as the validation set. Based on the 
same risk score formula and best cutoff value of risk score in the 
Frontiers in Immunology 07 
TCGA cohort, patients with GBM in the CGGA cohort were 
classified into a low-risk and a high-risk group (Figure 3F). 
There were fewer deaths of and longer survival times for the 
patients in the low-risk subgroup than those in the high-risk 
subgroup (Figure 3F). Furthermore, KM analysis also indicated 
a significant difference in the survival rate between the low- and 
high-risk groups (p < 0.001,  Figure 3G). ROC curve analysis of 
the CGGA cohort showed that our model had good predictive 
efficacy (AUC = 0.568 for 6-month survival, 0.561 for 12-month 
FIGURE 3 

Construction and validation of a prognostic pyroptosis-related gene model in the TCGA cohort and CGGA cohort, respectively. (A) LASSO 
coefficient profiles of the eight pyroptosis-related genes and cross-validation for tuning the parameter selection in the LASSO regression. 
(B, F) Distribution of risk score and survival status of patients with GBM in the TCGA cohort and CGGA cohort, respectively. (C, G) Kaplan–Meier 
curves for the OS in the GBM high- and low-risk groups of the TCGA cohort and CGGA cohort, respectively. (D, H) Time-dependent ROC curves for 
GBM in the TCGA cohort and CGGA cohort, respectively. (E, I) The expression of PLCG1 and NOD2 of patients with GBM in the TCGA cohort and 
CGGA cohort, respectively. GBM, glioblastoma. 
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survival, and 0.739 for 24-month survival) (Figure 3H). The 
expression of PLCG1 and NOD2 in the high-risk group of GBM 
was consistent with the TCGA cohort (Figure 3I). 

TCGA glioma cohort analysis and RT-qPCR results showed 
that PLCG1 transcription was significantly decreased, while NOD2 
Frontiers in Immunology 08
transcription was elevated in patients with GBM compared with 
patients with LGG (Figures 4A, B). Immunohistochemical results 
showed decreased PLCG1 and increased NOD2 in patients with 
rapidly progressing GBM relative to patients with long-term stable 
GBM (Figures 4C, D). Our experimental results are consistent with 
FIGURE 4
 

NOD2 and PLCG1 were verified at the mRNA and protein level by experiments. (A) The mRNA expressions of NOD2 and PLCG1 in the TCGA glioma
 
cohort. (B) The mRNA expressions of NOD2 and PLCG1 in lower-grade glioma (WHO grade 2 and WHO grade 3) and GBM were detected using RT­
qPCR. (C) Immunohistochemical staining of NOD2 in long-term stable GBM samples (Good, n = 3) and rapidly progressing GBM samples (Poor, n =
 
3). (D) Immunohistochemical staining of PLCG1 in long-term stable GBM samples (Good, n = 3) and rapidly progressing GBM samples (Poor, n = 3).
 
Scale bar = 200 mm. P1–P3, long-term stable GBM patients 1–3; P4–P6, rapidly progressing GBM patients 4–6.
 
 frontiersin.org 

https://doi.org/10.3389/fimmu.2025.1617036
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zheng et al. 10.3389/fimmu.2025.1617036 
those from the public databases above, suggesting that elevated 
NOD2 expression and reduced PLCG1 expression in GBM 
represent poor prognosis with a higher risk. 
Independent prognostic value of the risk 
score 

The univariate and multivariate Cox regression analyses were 
performed to evaluate whether the risk score was an independent 
prognostic factor of the GBM. The univariate analysis showed that 
age (HR = 1.413, 95% CI: 1.021–1.955, p = 0.037, Figure 5A) and 
risk score (HR = 2.471, 95% CI: 1.731–3.528, p < 0.001, Figure 5A) 
were significantly associated with OS. The multivariate Cox 
regression analysis revealed that, after adjusting for other 
confounding factors, risk score and age were the independent 
factors predicting poor survival in the TCGA cohorts (HR = 
3.218, 95% CI: 2.067–5.009, p < 0.001 and HR = 1.685, 95% CI: 
1.2–2.366, p = 0.003, Figure 5A). To prove that the risk score could 
serve as an independent prognostic factor, the univariate and 
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multivariate Cox regression analyses were also used in the CGGA 
cohort and obtained the same result (univariate analysis: HR = 2.34, 
95% CI: 1.472–3.718, p < 0.001; multivariate analysis: HR = 2.272, 
95% CI: 1.369–3.77, p = 0.001, Figure 5B). 
Building and validating the predictive 
nomogram 

Owing to the importance of the risk score in predicting the 
prognosis of patients with GBM, we next attempted to explore its 
value for clinical application. We extracted seven variables, 
including six clinical features that are generally believed to have a 
certain impact on the prognosis of GBM (gender, radiotherapy, 
chemotherapy, MGMT promoter, subtype, and age) and risk score. 
Then, a nomograph featuring five variables (risk score, age, MGMT 
promoter, chemotherapy, and radiotherapy) that were selected by 
stepwise Cox regression was built to predict the survival rates of 
patients with GBM at 6, 12, and 24 months (Figure 6A). Using the 
median total points of predictive nomogram, patients with GBM 
FIGURE 5 

Univariate and multivariate Cox regression analyses in GBM. (A, B) Univariate and multivariate analyses of clinical parameters and risk score in the 
TCGA cohort and CGGA cohort, respectively. Unadj, univariate Cox regression; adj, multivariate Cox regression. 
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were separated into a high- and a low-risk group. We found that the 
low-risk group had a clear survival advantage over the high-risk 
group (Figure 6B) and further proved that the nomogram model 
revealed good predictive efficacy for the 6-, 12-, and 24-month 
Frontiers in Immunology 10 
survival of patients with GBM (AUC of 0.797, 0.757, and 0.764 in 
the 6-, 12-, and 24-month ROC curves, respectively, Figure 6C). 

We further used bootstrap sampling method and external 
verification method to evaluate the prediction ability of the 
FIGURE 6 

Construction and validation of a predictive nomogram. (A) Nomogram for predicting 6-, 12-, and 24-month overall survival for patients with GBM in 
the TCGA cohort. (B, E) Kaplan–Meier curves of patients with GBM in the high-risk and low-risk group based on the nomogram model in the TCGA 
and CGGA cohort, respectively. (C, F) The ROC curve of measuring the predictive value based on the nomogram model in the TCGA and CGGA 
cohort, respectively. (D, G) Calibration curves of nomograms in terms of the agreement between predicted and observed 6-, 12-, and 24-month 
outcomes in the TCGA cohort and CGGA cohort, respectively. A dashed diagonal line represents the ideal nomogram. ***p < 0.001, **p < 0.01, *p < 
0.05. GBM, glioblastoma. 
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nomogram. The C-index and Brier score based on the bootstrap 
sampling method indicated that the nomogram had a good 
predictive value (Supplementary Excel Files 3 and 4). According 
to the bootstrap sampling method, calibration curves of 
nomograms suggested that the 6‐, 12-, and 24‐month OS rates 
could be predicted relatively well compared with an ideal model in 
the entire cohort (Figure 6D). The CGGA cohort was utilized as the 
external validation set. In the validation set of CGGA325, the results 
of KM analysis, ROC curve analysis, and calibration curves based 
on the TCGA cohort nomogram model were consistent with those 
of the TCGA cohort (Figures 6E–G). 
 

Treatment subgroup analysis, drug 
sensitivity analysis, and TMB and MIS 
analysis based on the risk score model in 
GBM 

Based on the results of the above analysis, we found that risk 
score could play an important role in clinical prediction. Next, we 
investigated whether the risk score model would have a guiding 
value for GBM clinical treatment. Patients were divided based on 
whether they received chemotherapy or radiotherapy. The KM plots 
indicated that the low-risk group had significantly better OS and 
PFS than the high-risk group in patients who received 
chemotherapy (median OS 18.2 vs. 13.3 months, p = 0.001; 
median PFS 11.4 vs. 6.5 months, p = 0.02, Figure 7A). For 
patients who did not receive chemotherapy, there was no 
statistical difference in OS and PFS between the low-risk and 
high-risk groups (median OS 10.9 vs. 7.9 months, p = 0.081;

median PFS 8.6 vs. 3.9 months, p = 0.077, Figure 7B). The KM 
curve showed that the low-risk group had a better OS than the high-
risk group in radiotherapy patients (median OS 18.6 vs. 14.9 
months, p = 0.049, Figure 7C). There was no difference in PFS 
between the low-risk group and the high-risk group in patients who 
received radiotherapy (median PFS 9.5 vs. 8.1 months, p = 0.34, 
Figure 7C). Among non-radiotherapy patients, KM analysis showed 
that the OS and PFS of patients with GBM in the low-risk group 
were better than those in the high-risk group (median OS 13.9 vs. 
10.4 months, p = 0.001; median PFS 11.4 vs. 4.3 months, p = 0.001, 
Figure 7D). According to median OS and PFS, we found that the 
benefit of chemotherapy or radiotherapy was greater in the high-
risk group than in the low-risk group. Consistent results were 
obtained in the validation set (Supplementary Figures 3A–D). 
The treatment subgroup analysis was validated in the CGGA 
dataset with OS as the endpoint. 

To develop a therapy target, it is important to analyze the 
correlation between gene expression and existing drugs. In our 
study, drug sensitivity analysis revealed that the expression of 
PLCG1 and NOD2 was correlated with most drugs in the CTRP 
and CCLE database (Figure 7E). The higher the PLCG1 expression 
level, the lower the sensitivity of GBM to oligomycin A, 
chlorambucil, PF-750, avrainvillamide, and 968 and the higher 
the sensitivity to NVP-BSK805, ETP-46464, NVP-BEZ235, JW­

74, and JW-55. The higher the expression level of NOD2, the lower 
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the sensitivity of GBM to navitoclax, BRD-K79669418, navitoclax: 
sorafenib, BRD-K99006945, and BEC and the higher the sensitivity 
to AT-406, JW-55, and so on. To clarify whether these genes could 
also serve as biomarkers for immunotherapy, we then analyzed the 
correlation between two pyroptosis-related genes and TMB as well 
as MSI in GBM. The results demonstrated that there was no 
significant correlation between TMB and NOD2 and PLCG1 
(Supplementary Figures 4A, B). In MSI analysis, MSI was 
negatively correlated with NOD2 expression (Figure 7F, p = 
0.0061) and was positively correlated with the expression of 
PLCG1 (Figure 7G, p = 0.017). 

Many studies have revealed that patients with higher TMB (22, 
23) and MSI (24), when treated with immune checkpoint blockade 
therapy, were associated with enhanced responses, long-term 
survival, and lasting clinical benefits. In our study, we found that 
there was no significant difference between the low-risk group and 
the high-risk group in TMB analysis (Supplementary Figure 4C), 
but MSI was higher in the low-risk group, which suggested a better 
immunotherapy response (Figure 7H). 
Comparison of the immune activity 
between subgroups, and infiltrating 
immune cell fractions and correlation 
analysis 

GBM samples with distinct extension of inflammatory cell 
infiltration were classified into “immune-L” and “immune-H” 
phenotypes with ssGSEA incorporating 29 types of immune 
pathways. Four immune scores, two immune phenotypes, two 
risk subgroups, and risk score were employed in the complex 
heatmap (Figure 8A). The risk score was higher in the immune-H 
group than in the  immune-L  group (Figure 8B). From the 
ESTIMATE algorithm, the high-risk group was revealed to have a 
higher immune score, stromal score, and a lower tumor purity score 
than the low-risk group (Figure 8C). These data indicated that the 
high-risk group had a stronger immune activity than the low-risk 
group. Although the high-risk group possessed a large number of 
activated immune pathways, infiltrating immune cells may play a 
negative role. 

Thus, we used CIBERSORTx and ImmuCellAI algorithms to 
further quantify the proportion of immune cells. According to the 
CIBERSORTx algorithm, the low-risk group was revealed to have 
higher proportions of natural killer (NK) cells activated and mast 
cells resting and have lower proportions of monocytes and 
neutrophils (Figure 8D). Correlations between immune cell and 
risk score illustrated that the most negative correlations were found 
among mast cells resting (Supplementary Figure 5). The positive 
correlation was found between risk score and macrophages M2 
(immunosuppressive cells) (Figure 8E). 

Through the ImmuCellAI algorithm, the high-risk group had a 
higher proportion of CD4 naïve cells, CD8 naïve cells, cytotoxic 
cells, exhausted cells, type 1 regulatory T cells (Tr1), natural 
regulatory T cells (nTreg), inducible regulatory T cells (iTreg), T 
helper cell 17 (Th17), follicular helper T cells (Tfh), natural killer T 
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(NKT) cells, mucosal-associated invariant T (MAIT) cells, dendritic 
cells (DCs), monocytes, macrophages, NK cells, and CD8+ T cells 
and had a lower proportion of B cells and effector memory cells 
(Figure 8F). The cytotoxic cells, NK cells, macrophages, DCs, 
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monocytes, nTreg, NKT cells, Th17, and Tr1 showed significant 
positive correlations with risk score (Supplementary Figure 5). 
Furthermore, ImmuCellAI can be applied to predict the response 
of patients with GBM to immune checkpoint blockade therapy. The 
FIGURE 7 

Treatment subgroup analysis, drug sensitivity analysis, and MIS analysis of GBM in the TCGA cohort. (A) OS and PFS curves in the high-/low-risk 
group of patients with GBM who received chemotherapy. (B) OS and PFS curves in the high-/low-risk group of patients with GBM who did not 
receive chemotherapy. (C) OS and PFS curves between the low-risk group and the high-risk group in radiotherapy patients. (D) OS and PFS curves 
between the low-risk group and high-risk group in non-radiotherapy patients. (E) The correlation between drug sensitivity and the expression of 
NOD2 and PLCG1 in GBM (positive correlation: Spearman coefficient > 0.3; negative correlation: Spearman coefficient < −0.3). (F, G) The correlation 
between MSI score and NOD2, PLCG1. (H) Violin plots comparing the MSI among risk subgroups in the TCGA cohort. OS, overall survival; PFS, 
progression-free survival; GBM, glioblastoma; MSI, microsatellite instability, ***p < 0.001. 
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above result of MIS analysis has shown that the high-risk group had 
a better immunotherapy response (Figure 7H). The analysis of 
response rates to immune checkpoint blockade therapy also verified 
this conclusion (Figure 8G). 

Meanwhile, similar conclusions were drawn in all the above 
analyses in the CGGA cohort (Supplementary Figures 6, 7). 
Frontiers in Immunology 13 
Discussion 

GBMs are the most common malignant tumors in the central 
nervous system, and the survival rate is still not satisfactory. 
Molecular signatures related with distinct clinical outcomes have 
been delineated in various solid tumors to improve clinical 
FIGURE 8 

The landscape of immune infiltration levels in the GBM microenvironment and correlation analysis. (A) Heatmap showing two immune phenotypes, 
two risk subgroups, risk score, tumor purity, ESTIMATE, and immune and stromal scores in the GBM microenvironment of samples from the TCGA 
cohort. (B) Violin plot comparing the risk score among immune phenotype in the TCGA cohort. (C) Violin plots comparing the immune and stromal 
scores and tumor purity among risk subgroups in the TCGA cohort. (D, F) Immune cell infiltration level of GBM microenvironment among risk 
subgroups in the TCGA cohort based on the CIBERSORTx algorithm and ImmuCellAI algorithm, respectively. (E) The correlation between 
macrophage M2 and risk score analyzed by CIBERSORTx in the TCGA cohort. (G) Bar plot demonstrating the response rate to immune checkpoint 
blockade therapy in the high-risk and low-risk group. *p < 0.05; **p < 0.01; ***p < 0.001. ns, no statistical significance. 
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management through the development of personalized medicine 
(25–27). Given that GBMs were reclassified based on the WHO 
CNS5 in 2021, there is currently no prognostic model for the new 
definition of GBM. Thus, it is urgent to explore the gene signature 
model of the newly defined GBM to indicate prognosis and facilitate 
clinical treatment. 

Pyroptosis is an inflammatory form of programmed cell death, 
which has been found to play dual roles in tumor development and 
treatment recently. Pyroptosis elicits an inflammatory response by 
releasing  inflammatory  factors  that  can  stimulate  the  
transformation of normal cells into tumor cells to some extent 
(14). Nonetheless, pyroptosis can inhibit tumor growth, making 
pyroptosis-related genes the potential prognostic and therapeutic 
target (15). In many solid tumors, such as ovarian cancer, lung 
adenocarcinoma, and gastric cancer, the prognostic model based on 
pyroptosis-related genes has been constructed to predict prognosis 
(10–12). Multiple studies have confirmed that pyroptosis is 
universal and holds significant importance in GBM (28–30). So 
far, the role of pyroptosis-related genes in the newly defined GBM 
has not been described, and our study will be the first to explore the 
correlation between pyroptosis-related genes and the prognosis and 
treatment of the newly defined GBM. 

We firstly screened pyroptosis-related genes with significant 
prognostic value in GBM by univariate Cox regression analysis of 
OS and found a poor OS in patients with GBM with low AIM2, 
CASP4, IL1B, NLRC4, NOD2, and PYCARD expression and high 
PLCG1 and SCAF11 expression. Then, a risk score model was 
generated via LASSO Cox regression analysis based on these eight 
pyroptosis-related genes. According to the best cutoff value (0.89) of 
risk score, the patients with GBM were divided into a low-risk and a 
high-risk group. Subsequent analysis culminated in several 
consensuses: (1) the KM curve of the TCGA cohort demonstrated 
that patients in the high-risk group had more deaths and a shorter 
survival time than those in the low-risk group; (2) the time-

dependent ROC curve analysis of the TCGA cohort showed that 
the risk score model had good predictive efficacy; (3) the univariate 
and multivariate Cox regression analyses revealed that the risk score 
was an independent prognostic factor of the GBM; and (4) the 
predictive nomogram verified the importance and ability of the risk 
score in predicting the prognosis of patients with GBM again and its 
value for clinical application. Meanwhile, the validation sets 
(CGGA325) obtained consistent results in the above analyses 
based on the same risk score formula of the TCGA cohort. 

It is known that, owing to the shorter survival in patients with 
GBM, few prognostic models were good predictors of survival. 
Surprisingly, the prognostic model of pyroptosis-related genes that 
we developed can well predict the prognosis of GBM. In addition, 
we calculated a universal risk score model, which could be applied 
to GBM datasets from different sources. Our risk score model was 
significantly superior to the existing GBM prognostic model. The 
prognostic model formula by Cheng et al. (31) was only applicable 
to one dataset, and different risk score formulas need to be 
developed for different datasets. Nevertheless, the same risk score 
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formula was used for the analysis of the training set and the 
validation set in our study. The universal prognostic model was 
very beneficial for clinical application. For example, when 
prognostic analysis is performed on a clinical patient with GBM, 
our risk score formula can be used as long as the patient with GBM 
has the corresponding data, and there is no need to reconstruct the 
coefficient of this patient prognostic model formula. In conclusion, 
our prognostic model is conducive to clinical expansion of 
predicting individualized survival time and optimizing therapeutic 
approaches for patients with GBM. 

In our study, a risk score model featuring two pyroptosis-related 
genes (PLCG1 and NOD2) was constructed. PLCG1 is involved in 
the receptor tyrosine kinase (RTK)-mediated signal transduction 
pathway, thus affecting cell growth, differentiation, and apoptosis 
(32). Recently, some research (33, 34) demonstrated that PLCG1 
could mediate the activity of GSDMD and pyroptosis. We found 
that low PLCG1 expression was associated with poor survival 
outcomes, which may function as a tumor suppressor gene in 
GBM. NOD2 belongs to the Nod-like receptor (NLR) family of 
innate immune proteins that play fundamental and pleiotropic roles 
in host defense against infection and in the control of inflammation 
(35). Shi et al. (36) revealed that the histone H3 could cause 
pyroptosis through NOD2 pathways. However, the relationships 
between NOD2-mediated pyroptosis and tumor development 
remain unknown. We found that the high expression of NOD2 
predicted poor survival rates, indicating that it functioned as a 
tumor-promoting gene in this study. In addition, the results of RT­
qPCR and immunohistochemistry showed that elevated NOD2 
expression and reduced PLCG1 expression in GBM denote poor 
prognosis with a higher risk. The experimental results are consistent 
with those from the risk score model based on public databases. 

Despite the tremendous effort that has been devoted to 
developing novel cancer therapies, the treatment of GBM has 
remained relatively unchanged for decades and consists of 
surgical resection followed by adjuvant chemoradiotherapy (37). 
There is growing evidence that the identification of prognostic 
factors is important for the optimal treatment of patients with GBM 
(38, 39). Therefore, we further explored whether risk score model 
would have a guiding value for GBM clinical therapeutic 
management. Treatment subgroup analysis concluded that 
patients in the low-risk group were found to have longer survival 
times than those in the high-risk group regardless of whether they 
received chemotherapy or radiotherapy. However, the benefit of
chemotherapy or radiotherapy was greater in the high-risk group 
than in the low-risk group according to median OS and PFS. 
Recently, the remarkable research progress of targeted therapy 
and immunotherapy among diverse cancer types has brought a 
promising prospect for exploring the novel treatment of GBM. To 
develop the GBM therapy target, we analyzed the correlation 
between existing drugs and the two genes included in the risk 
score model. Drug sensitivity analysis revealed that the expression 
of PLCG1 and NOD2 was correlated with most drugs’ sensitivity; 
for example, the higher the expression of PLCG1 and NOD2, the 
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higher the sensitivity of GBM to JW-55 (an effective selective b­
catenin inhibitor). To clarify whether the risk score model could 
guide immunotherapy for patients with GBM, TMB and MSI 
analyses were performed and the results revealed that the low-risk 
group had a better immunotherapy response. All in all, the risk 
score model had significant value for guiding the clinical treatment 
of patients with GBM. 

The GBM microenvironment consists of not only tumor cells 
but also stromal cells, including distinct immune cell subsets (40). 
Tumor-infiltrating immune cells and stromal cells are associated 
with angiogenesis, immune suppression, chemotherapeutic 
resistance, and tumor cell migration (41). In order to explore the 
correlation between the risk score and immune infiltration level of 
GBM, the ESTIMATE algorithm and ssGSEA were used for 
analysis, and the results indicated that the high-risk group had 
stronger immune activity than the low-risk group. However, the 
survival of patients in the high-risk group was shorter. The 
inconsistent results may be related to the negative role of 
infiltrating immune cells. Then, the CIBERSORTx analysis 
described the immune infiltrating cells were mainly macrophages 
M2 (immunosuppressive cells) in the GBM patients regardless of 
low-risk or high-risk group. The ImmuCellAI analysis, as a 
supplement to CIBERSORTx analysis, focused on the infiltration 
of various T cells. Although there were a variety of immune 
activation-related cells that infiltrated in the high-risk group, such 
as NK cells, DCs, and CD8 T cells, the level of these cells was low. 

Based on these findings, the poor survival outcome of high-risk 
GBMs may be caused by decreased levels of antitumor immunity. 
Furthermore, ImmuCellAI analysis also verified that the low-risk 
group had a better immune checkpoint blockade therapy response. 
To sum up, immune infiltration data demonstrated that the 
correlations between the risk score and the tumor immune 
microenvironment are important for immunotherapy. 

Our study aimed to investigate the prognostic value of pyroptosis­
related genes, build a prognostic model, verify its value of guiding 
clinical treatment in the newly defined GBM, and explore the 
relationship between the prognostic model of pyroptosis-related 
genes and the tumor immune microenvironment. Although we had 
performed multi-angle and multi-database verifications, this study still 
had limitations that need to be considered. Firstly, because of the lack of 
sufficient molecular characteristics of LGG in the CGGA database, it is 
impossible to determine whether adult diffuse astrocytic tumors that 
were IDH-wildtype with TERT promoter mutation or EGFR gene 
amplification or +7/−10 chromosome copy number alterations. 
Therefore, this LGG type cannot be reclassified as GBM in the 
validation set. Secondly, although our research methodology 
resembled that of Chao et al. (28), the present study applies this 
approach to the newly defined GBM entity under the WHO CNS5 
(2021) classification. Furthermore, we implemented more stringent 
cohort selection criteria specifically designed for this reclassified 
population, contrasting with studies involving broader glioma cohorts. 

In summary, our study provides strong evidence for the 
prognosis and clinical management of the newly defined GBM. 
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First, the risk score model included two pyroptosis-related genes 
that hold important prognostic value for patients with GBM. In 
particular, our experimental results are consistent with those from 
the risk score model, indicating that elevated NOD2 expression and 
reduced PLCG1 expression in GBM represent poor prognosis with 
a higher risk. Second, the risk score model guides not only 
traditional chemoradiotherapy but also novel therapies, such as 
targeted therapy and immunotherapy. Meanwhile, immune 
infiltration analysis offers a significant basis for future studies of 
the relationships between pyroptosis-related genes and immunity in 
GBM. To the best of our knowledge, this is the first study to conduct 
bioinformatics and experimental analysis on the newly 
defined GBM. 
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