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Choline in immunity: a key
regulator of immune cell
activation and function
Catarina Maia †, Chin Wai Fung † and Elsa Sanchez-Lopez*

Department of Orthopedic Surgery, School of Medicine, University of California, San Diego,
San Diego, CA, United States
Nutrient availability is a strong determinant of cell function. Immune cells, which

must rapidly activate transcriptional, proteomic, and metabolic programs to fulfill

their functional roles, depend on nutrient supply to generate the building blocks

needed for the production of immune effectors. While glucose, glutamine, and

amino acids are well-recognized as critical energy sources and carbon donors

during immune activation, the contribution of choline, a vitamin-like metabolite,

has been overlooked. Once taken up by cells, choline plays a vital role in several

biological processes. It is a precursor for phosphatidylcholine, the primary

phospholipid in cellular membranes, and is also essential for synthesizing the

neurotransmitter acetylcholine. Additionally, when directed toward

mitochondria and betaine synthesis, choline serves as a methyl donor for

histone and protein methylation, key processes that regulate gene expression

and cellular activity. In this review, we examine the latest research on how

immune cells utilize and metabolize choline, as well as its broader implications

for immune-related disorders and overall human health. We also discuss recent

and ongoing clinical studies investigating the effects of choline supplementation

and the potential use of choline-derived metabolites as biomarkers for

therapy response.
KEYWORDS

choline, acetylcholine (ACh), choline kinase (ChoK), phosphocholine, phosphatidylcholine
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1 Introduction

Nutrient availability is essential for maintaining cellular homeostasis, supplying the

building blocks necessary for cellular processes and functions. While cells can generate

some nutrients through metabolic and catabolic pathways, these endogenous sources are

insufficient to meet cellular demands, making dietary intake the primary source (1). In

recent decades, the field of immunometabolism has significantly advanced our

understanding of nutrient utilization by immune cells. Notably, studies have

demonstrated the critical roles of glucose, amino acids, fatty acids, and vitamins in

immune cell maturation, differentiation, and function (1, 2). However, while choline has

been extensively studied in cancer due to its essential role in cell proliferation and tumor
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growth, its functions in immunometabolism are only beginning to

be defined. Recent evidence has identified choline as a key

metabolite contributing to immune cell function in various

pathological settings (3, 4). Here, we will discuss the major

findings on how choline availability and mobilization towards

phosphatidylcholine (PC), acetylcholine (ACh), or betaine

synthesis affect immune cell function, emphasizing its impact on

human health and disease.
1.1 Choline uptake and utilization

Choline is a vitamin-like essential quaternary ammonium salt

present in the diet as free choline and phospholipid-bound forms.

Dietary choline is partially absorbed by intestinal cells or

metabolized by gut bacteria (5, 6) (Figure 1). While choline does

not compete with other nutrients for enterocyte transport, gut

microbes can limit its bioavailability (7). In the large intestine, gut

microbiota, including Firmicutes and Proteobacteria, convert

choline into trimethylamine (TMA) (8), which is subsequently

absorbed and oxidized in the liver by flavin monooxygenase 3

(FMO3) into trimethylamine-N-oxidase (TMAO) (9). In

Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter

baumannii, choline uptake is mainly mediated by the BetT

transporter, whose expression and transport activity are
Frontiers in Immunology 02
upregulated by hyperosmotic stress (10). Bacteria use choline

primarily as a precursor to glycine betaine, a potent

osmoprotectant (11), and as a carbon and nitrogen source (12).

In contrast, in eukaryotic cells, choline transport is more complex

and relies on various protein transport systems, including choline

transporter-like proteins (CTLs), high-affinity choline-specific

transporters (CHTs), and organic cation transporters (OCTs) (13)

(Figure 2). The preference for a specific transport system is cell-

dependent and aligns with the anticipated metabolic fate of choline.

Thus, CTLs facilitate choline transport across the plasma and

mitochondrial membranes, aiding in the production of

phosphatidylcholine (PC) and betaine, respectively (14). CHTs

mainly mediate sodium-dependent choline uptake in nervous

tissues and aid the synthesis of the neurotransmitter acetylcholine

(ACh) (15), while OCT2 plays a role in ACh recycling in cholinergic

neurons in the presynaptic terminals (16). Recent evidence has

identified mitochondrial choline import via the orphan solute

carrier SLC25A48, leading to the production of betaine (17–19), a

choline-derived methyl donor, and the synthesis of purine

nucleotides (18–20). Loss or a single nucleotide polymorphism on

the SLC25A48 gene inhibits mitochondrial choline import,

increases reactive oxygen species, disrupts lipid balance, and

impairs cell proliferation (18–20).

Once intracellular, choline is directed into various metabolic

pathways, including 1) its oxidation to form mitochondrial betaine,
FIGURE 1

Choline intake, distribution, and metabolism. Intake of choline-rich foods provides choline bound to lipids or as a free soluble metabolite for
reabsorption by intestinal cells or poured into the circulation. Intestinal bacteria uptake choline to generate the metabolite trimethylamine (TMA) that
through the portal vein reaches the liver to be converted into trimethylamine N-oxide (TMAO). Circulating and tissue-resident immune cells are
exposed to choline-containing lipids, free-choline, TMA, and TMAO, and respond to changes in physiological levels. Created in BioRender. Sanchez
Lopez, E. (2025) https://BioRender.com/cs12pz8.
frontiersin.org
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2) its acetylation to produce ACh, and 3) its initial phosphorylation

followed by mobilization in the Kennedy pathway to generate

cholie-containing phospholipids (Figure 2). Choline undergoes

irreversible oxidation to betaine through a two-step process

mediated by choline dehydrogenase or choline oxidase. Betaine

serves as an osmolyte and methyl group donor, playing a role in the

re-methylation of homocysteine into methionine, a precursor of S-

adenosylmethionine (SAM), essential for numerous methylation

reactions, including DNA epigenetics (21–24). In the human body,

choline is primarily utilized for synthesizing essential lipids such as

sphingomyelin and phosphatidylcholine (PC), which are major

components of cellular membranes (25). In particular, PC

accounts for approximately 95% of the total cellular choline pool

in most cells. It is synthesized from choline via the Kennedy

Pathway, involving cytidine diphosphate-choline and a lipid

anchor such as diacylglycerol (26). De novo PC synthesis begins

with the phosphorylation of choline by the enzyme choline kinase

(ChoK) into phosphocholine (27) (Figure 2). Phosphocholine is

then converted into cytidine diphosphate-choline by

phosphocholine cytidylyltransferase (CTP), which, using either

diacylglycerol or alkyl-acylglycerol as a lipid anchor, is ultimately

converted into PC (26). Additionally, choline contributes to the

production of lipid mediators such as lysophosphatidylcholine

(lysoPC), sphingomyelin, and platelet-activating factor (28).
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Beyond lipid metabolism, choline plays a critical role in non-

metabolic functions. Choline is also the precursor of the

neurotransmitter ACh, whose synthesis is catalyzed by choline

acetyltransferase (ChAT), transferring an acetyl group from

acetyl-coenzyme A to choline, resulting in ACh and coenzyme A

production (Figure 2). After being released and bound to its

receptors, ACh is rapidly hydrolyzed into acetate and choline by

acetylcholinesterase. Then, free choline is transported back by

CHTs for further ACh synthesis (29). Cholinergic signaling in

immune cells appears to regulate cytokine synthesis, influencing

both the initiation and termination of inflammation (e.g., IL-2 in T

cells, TNFa in macrophages, and IL-8 in dendritic cells).

Modulation of immune cell cholinergic activity, by regulating

ChAT activity, ACh breakdown or choline reuptake, regulates

physiological responses such as blood pressure control or anti-

viral immune reaction (17, 30–34).
1.2 Choline demands throughout the
lifespan and choline supplementation

Choline is an essential nutrient throughout life, with

particularly high demands during periods of rapid cell

proliferation, such as pregnancy. Choline is actively transported
FIGURE 2

Choline transporters and utilization. Choline is transported into the cells via high- (CHTS), intermediate- (CTLs), and low-affinity (OCTs) linked to
distinct metabolic fates. Left panel: CTLs mediate the uptake of choline for PC production through the Kennedy pathway. Choline is phosphorylated
by Choline kinase (ChoK) to form phosphocholine, then converted into CDP-choline by the CTP:phosphocholine cytidylyltransferase (CCT). CDP-
choline is converted into PC, the main phospholipid in cellular membranes, by the choline/ethanolamine phosphotransferase (CEPT). CTLs also
localize to the mitochondrial membrane where, along with SLC25A48, they mediate choline import into the mitochondria for the generation of
betaine, a precursor of methionine and dimethylglycine (DMG), s-adenosylmethionine (SAM), s-adenosylhomocysteine (SAH), and homocysteine
(Hcys), all key methylation intermediates for DNA and protein methylation. Middle panel: High-affinity CHTS supports choline uptake for
acetylcholine (ACh) synthesis through the choline acetyltransferase (CHAT), a reaction that can be reversed by acetylcholine esterase (AChE),
releasing choline and acetate. Acetylcholine acts on both nicotinic and muscarinic receptors to mediate cholinergic signaling. Right panel: Low-
affinity organic cation transporters contribute to choline uptake for both ACh and PC synthesis. However, their role in mitochondrial choline
utilization and methionine synthesis remains unknown. PPi, inorganic pyrophosphate; DAG, Diacylglycerol; AC, adenylyl cyclase; IP3, inositol 1,4,5-
triphosphate. Created in BioRender. Sanchez Lopez, E. (2025). https://BioRender.com/ahp7xe9.
frontiersin.org
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across the placenta, leading to fetal plasma choline levels six to

seven times higher than maternal blood levels, and amniotic fluid

concentrations nearly ten times higher (35). This underscores the

critical role of choline in fetal development, particularly in neural

tube formation and hippocampal development (36, 37). To prevent

deficiency-related complications, health organizations, including

the National Institutes of Health (NIH) and the European Food

Safety Authority (EFSA), recommend a daily choline intake of 550

mg/day for men and 425 mg/day for women, increasing to 450 mg/

day during pregnancy and 550 mg/day during lactation (22).

Deficiencies during pregnancy can impair long-term potentiation

and memory, while prenatal and early-life choline supplementation

has been proposed as an intervention to enhance cognitive

outcomes, such as improving cognitive function and mitigating

age-related memory decline, enhancing long-term memory, and

sustained attention (38–46). Choline supplementation (5 g choline

chloride/kg) in rats during pregnancy also protects against

gestational inflammation mediated by LPS challenge, reducing

the frequency of loss of fetuses, normalizing placenta weights, and

attenuating LPS-induced NF-kB activation and TNF-a, IL-1b, IL-6,
and IL-17A levels in the placenta (47). Maternal dietary choline can

be delivered to the offspring through lactation. Pups from

phosphatidylcholine (PC)-fed (egg lecithin) dams have increased

concentrations of PC in the plasma and spleen and a lower

frequency of antigen-presenting cells (48). However, splenocytes

from pups from PC-fed dams produced more IL-2, IL-6, and IFN-g
after stimulation with concanavalin A and LPS (48). Additionally,

postnatal choline supplementation (100 mg/kg/day) for 20

consecutive days has been shown to mitigate the long-term effects

of prenatal ethanol exposure on hippocampal inflammation and

peripheral immune responses in rats (49, 50).

In females, as estrogen levels decline, the choline metabolism

and utilization undergo significant changes. A study examining

choline intake in 664 subjects enrolled in the cross-sectional study

Nonalcoholic Steatohepatitis (NASH) Clinical Research Network

(NCT00063622 and NCT00063635) showed that postmenopausal

women with self-reported choline intake less than 50% of the

adequate intake, had faster progression of NASH as shown by

increased liver fibrosis, while no associations were found in

children, men, and premenopausal women (51). Dietary choline

deprivation led to fatty liver and muscle damage in 77% of men and

80% of postmenopausal women, whereas only 44% of the

premenopausal women exhibited signs of organ dysfunction (52).

These findings highlight that choline deficiency may become more

severe in certain populations, such as postmenopausal women. This

is partly due to the loss of ability to maintain the expression of genes

with estrogen-response elements involved in choline metabolism.

One such gene is phosphatidylethanolamine N-methyltransferase

(PEMT) (53), which encodes the enzyme that catalyzes the

conversion of phosphatidylethanolamine to PC, through a three-

step methylation process using S-adenosylmethionine (SAM) as

methyl donor.

In the same line with prenatal choline intake and its effect on

cognition and memory, in adult individuals, sustained choline

intake between 187.6-399.50 mg/day, is linked to reduced risk of
Frontiers in Immunology 04
cognitive decline, improved learning ability, verbal fluency, working

memory, mental processing speed, and attention span, compared to

individuals consuming less than 187.6 mg/kg of total choline (54).

Other epidemiological studies have revealed that plasma choline

levels are inversely correlated with anxiety (55) and risk of

depressive symptoms (56), supporting a potential positive role of

choline in mental health as well. While insufficient choline intake is

linked to liver dysfunction, neurodegeneration, and muscle damage,

excessive intake primarily results in mild cholinergic side effects

such as sweating, diarrhea, hypotension, and fishy body odor, with a

tolerable upper intake level of 3.5 g/day in adult individuals (57–59).

Despite recommendations, a significant portion of the population

consumes insufficient choline, and both patients with cirrhosis and

those critically ill on parenteral nutrition often experience severe

choline deficiencies negatively affect their outcomes (60–62).

However, even while consumption levels are optimal, choline

depletion may occur locally in specific disease contexts, such as

within the tumor microenvironment or at sites of infection by

choline-consuming pathogens (63) or systemically, such as in

critically ill patients on parenteral nutrition (62). It remains

uncertain whether dysregulated choline distribution affects disease

progression, and significant gaps exist in understanding how cells

adapt to impaired choline availability or metabolism locally.

2 Choline and choline-containing
metabolites contribute to immune cell
activation and function

Metabolic reprogramming and lipidomic remodeling are

hallmarks of immune cell activation and are closely intertwined

with functional responses (64–66). However, how choline

utilization and phospholipid homeostasis are regulated during

these metabolic shifts remains incompletely understood.

Increasing evidence suggests that abnormal choline uptake and

metabolism represent a metabolic hallmark associated with

immune cell activation and inflammation (67–69). Disruptions in

choline metabolism, whether due to impaired uptake or blockade of

de novo PC synthesis by pharmacological inhibition of ChoK or

CTP:phosphocholine cytidylyltransferase alpha (CCTa), alter the

cellular phospholipid pool composition, the integrity of the

mitochondrial membrane, and the overall cellular activity, leading

to immune dysfunction and dysregulated inflammation across

species (67, 69–72). Choline has been shown to regulate cytokine

levels following lipopolysaccharide (LPS) treatment (67, 69, 70) and

modulate inflammatory markers and homocysteine concentration

(21). Dietary supplementation with different forms of choline has

varying effects on immune system maturat ion, with

phosphatidylcholine (PC)-rich diets demonstrating stronger

immunomodulatory effects than free choline (73). For instance,

supplementation of choline as PC is associated with increased T-cell

proliferation, higher IL-2, IL-6, and TNF-a production (73), and

supports both maternal immune function and the development of

the offspring’s immune system (74, 75). However, the effects of

other choline-containing lipids, such as sphingomyelin, on immune
frontiersin.org
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system development remain largely unexplored. Given the role of

choline in immune regulation, in this section of the review, we will

discuss its role across various immune cell types.
2.1 Myeloid cells

Myeloid cells are frontline immune defenders that restore tissue

homeostasis after infection or tissue damage. Dysfunction of these

cells contributes to chronic inflammatory and autoimmune diseases

such as gout, rheumatoid arthritis (RA), osteoarthritis (OA),

cryopyrin-associated periodic syndromes (CAPS), inflammatory

bowel disease, and neurodegeneration. Their functional plasticity,

shifting between inflammatory, repair, or anti-inflammatory states,

depends on metabolic adaptation and lipid remodeling, including

choline uptake and phospholipid reorganization (66, 76). Therefore,

disrupting choline metabolism can significantly alter myeloid cell

function and disease outcomes.

2.1.1 Macrophages and dendritic cells
Macrophage functions, such as cytokine and chemokine secretion,

phagocytosis, and organelle biogenesis, are intricately linked to

membrane phospholipid composition, curvature, and charge (77,

78). In fact, distinct stimuli (e.g., Poly[I: C], LPS, IFN-g, IFNb, or
IL-4) remodel the macrophage lipid composition in a signal-specific

manner, altering glycerophospholipids, sphingolipids, cholesterol, and

fatty acid composition (70, 79) (Figure 3). Choline metabolism plays a

central role in macrophage activation towards both pro-inflammatory

and anti-inflammatory functions (67, 69). In LPS-induced

macrophage polarization, which initiates the inflammatory program,

there is an augmented rate of choline uptake and PC synthesis,

facilitated by the upregulation of the choline transporter CTL1 (69,

70). Pharmacologically- or antibody-mediated inhibition of

choline uptake favors diacylglycerol (DAG) accumulation and

protein kinase C activation, resulting in altered cytokine secretion in

response to LPS (70) (Figure 3). Similarly, when phosphatidylcholine

(PC) synthesis is compromised by myeloid-specific deletion of CTP:

phosphocholine cytidylyltransferase alpha (CCTa), the rate-limiting

enzyme in PC synthesis, macrophages fail to secrete the pro-

inflammatory cytokines TNF-a and IL-6 in response to LPS, most

likely due to secretory defects of the ER and Golgi (78). Through a

distinct mechanism, choline uptake and PC synthesis regulate IL-1b
production mediated by NLRP3 inflammasome activation (69)

(Figure 3). Macrophages exposed to choline deficiency or ChoKa
inhibitors (MN58b or RMS932A) exhibit poor PC and sphingomyelin

mitochondrial membrane composition, leading to defective

mitochondrial ATP synthesis that boosts AMPK activation and

mitophagy (Figure 3). This eventually prevents mitochondrial

damage and the cytosolic release of oxidized mtDNA, a direct

activator of NLRP3, limiting the processing of mature IL-1b69.
Similarly, both in vivo feeding with a choline-rich diet and in vitro

trimethylamine-N-oxidase (TMAO) stimulation increased TMAO-

dependent NLRP3 inflammasome activation and expression of IL-1b,
IL6, TNF-a, CXCL9, and CXCL10, supporting that NLRP3 is a key

proteolytic activator in the macrophage response to a high choline and
Frontiers in Immunology 05
TMAO production (80) (Figure 3). Indeed, in a model of graft-versus-

host disease (GVHD), T-cell-depleted bone marrow transplants fed

with TMAO-rich diet exhibited a significant increase in the frequency

of F4/80+CD11b+CD16/32+ inflammatorymacrophages relative to the

F4/80+CD11b+ whole population, worsening disease severity, and

increasing mortality (80).

Beyond the inflammatory response, choline metabolism is also

implicated in IL-4-induced macrophage polarization, critical for

immunity against intestinal helminth infection, resolution of

inflammation, and tissue repair. IL-4 causes a rapid increase in

choline import, phosphocholine production, and PC biosynthesis

(67). The inhibition of choline transport and metabolism, using

hemicholinium (HC-3), and RSM932A, which target the choline

transporter and ChoKa, respectively, dramatically impacted

macrophage responses to IL-4. Specifically, inhibition of choline

metabolism suppresses mitochondrial gene expression, shifts

metabolism toward glycolysis, and inhibits IL-4-induced expression

of Retnla (67), a resisting-like molecule involved in type 2 immunity

and tissue repair. In a model of intestinal infection with the parasite

Heligmosomoides polygyrus, ChoKa inhibition diminished peritoneal

macrophage and B-1 lymphocyte frequency, causing compromised

immunity against the parasite (67). In the human monocytic cell line

U937, IL-4 receptor engagement leads to ChoK-independent increases

of phosphocholine, resulting from the degradation of membrane PC

into DAG, indicating enhanced PC-specific phospholipase C activity

(81). Choline availability may also regulate and support the expression

of the machinery necessary for its processing and signaling, as dietary

choline supplementation increases the expression of choline receptor

SLC4A7, choline dehydrogenase (CHDH), choline kinase alpha

(CHKA), choline acetyltransferase (CHAT), and genes related to

acetylcholine (ACh)-dependent signaling such as the muscarinic

(CHRM1 and CHRM5) and nicotinic (CHRNA7) ACh receptors

(82) (Figure 3). Indeed, small peritoneal macrophages maintain

peritoneal ACh levels through choline acetyltransferase expression

driven by MyD88 pathway activation. This increased macrophage-

mediated acetylcholine (ACh) release facilitates the clearance of

apoptotic neutrophils and enables the resolution of acute peritonitis

(83). In addition, intestinal macrophages respond to ACh released by

nerve fibers in the intestinal myenteric plexus, ameliorating

inflammation in vivo, in a mechanism that involves the activation of

Jak2/STAT3 and the transactivation of STAT3-responsive DNA

elements (84). The stimulation of the vagus nerve in rats at 10 Hz,

suppresses endotoxin-induced serum TNF-a levels in vivo. Similarly,

in vitro exposure of macrophages to 10 mMof ACh prior to endotoxin

challenge reduces TNF-a production by increasing adenylyl cyclase 6

activity, leading to cAMP formation, CREB phosphorylation, and the

expression of c-Fos, a known inhibitor of TNF transcription (85). This

inhibitory effect on monocytes’ TNF and IL-1b production was

confirmed in human whole blood and human monocyte/

macrophages using a selective inhibitor of a7 nicotinic acetylcholine

receptor (a7nAChR) (86). Together, all these findings emphasize the

essential role of choline availability inmacrophage preparedness for an

efficient immune response to diverse triggers and reveal that the

impact of impaired choline metabolism and utilization on

inflammatory molecular pathways is cell- and stimulus-specific.
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It is worth noting that the different choline dietary forms differ in

their effect. The offspring from dams fed with mixed choline sources

with lower free choline (12.5-25%) but high glycerophosphocholine

(25-75%), exhibited a decrease in macrophage and dendritic cell

frequencies in the spleen and produced less IL-1b, IL-6 and IFN-g
in response to mitogenic immune challenge with either concanavalin

A or LPS, compared to those from dams with higher free choline

(100%) intake (87). In the context of obesity-related inflammation,

adipose tissue macrophages isolated from obese mice and humans

often exhibit increased de novo PC biosynthesis (71). Interestingly,

macrophage-specific deletion of CCTa alleviated obesity-induced

white adipose tissue (WAT) inflammation and insulin resistance.
Frontiers in Immunology 06
However, despite reduced CCTa activity, PC levels remain

unchanged due to a compensatory reduction in PC degradation,

resulting in slower PC turnover that allows for greater remodeling

of PC species enriched in polyunsaturated fatty acid (PUFA), which

likely protects against endoplasmic reticulum stress and inflammation

(71). These establish a causal relationship between obesity-associated

increases in the de novo PC synthesis, accelerated PC turnover, and

proinflammatory adipose tissue macrophage activation (71).

In dendritic cells, ACh modulates immune function by

upregulating HLA-DR and CD86 expression and stimulating TNF-

a and IL-8 production (34). However, when combined with LPS

stimulation, ACh partially suppresses HLA-DR and TNF-a/IL-12
FIGURE 3

Central mechanisms of choline utilization and metabolism in the different immune cell types. Macrophage/Monocytes: Activation of macrophages
(e.g., LPS, IFNy, Poly(I:C), IL-4) increases choline uptake via choline transporter-like protein 1 (CTL1) and PC synthesis. Impaired choline uptake or
PCho production disrupts mitochondrial PC and SM, increasing mitophagy, restraining NLRP3 inflammasome activation and IL-1b and IL-18
production; and favors DAG accumulation and PKC activation; and suppresses IL-4-induced mitochondrial genes and Retina expression. Choline
supplementation increased SLC4A7, CHDH, CHKA, and CHAT. Neutrophils: PMA and fMLP increase PC from the condensation reaction of choline
and DAG formed from PC- derived phosphatidic acid. fMLP also increases PC dependent and independent of Choka activity. High choline
diminishes neutrophils' phagocytic and killing capacities, reduces oxidative burst capacity, and decreases ROS production. NK cells: Human decidual
NK (dNK) cells display a unique high saturated phospholipid profile compared to blood NK cells (decreased PC, LPC, PE, LPE, PG, LPI, and PS;
increased PA, PG (16:0/0:0), PC(16:0/3:1 (2E)) and PI(16:0/16:0)), which difficult forming immune synapses. CD56dim PC- phospholipase C (PLC)
bright NK cells are associated with cytotoxic function, whereas CD56brightPC-PLClow- cells exhibit immunoregulatory properties. B cells: Increased
synthesis of PC supports rough endoplasmic reticulum (ER) expansion and upregulation of ER chaperones such as BIP and GRP94, immunoglobulin
synthesis, and assembly. CCTa-deficient B cells show impaired class switching, reducing antigen-specific IgG1 production while increasing IgM
secretion upon antigen challenge. T cells: Viral infection increases ChAT expression in CD4+ and CD8+ T cells in an IL21-dependent manner and via
PI3K signaling cascade activation and the Th2-associated master regulator GATA3. T-cell-derived ACh boosts endothelial nitric oxide synthase
(eNOS) activity and vasorelaxation and reduces inflammation. Created in BioRender. Sanchez Lopez, E. (2025). https://BioRender.com/6mvmfzs.
frontiersin.org
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production, suggesting that its effect depends on dendritic cell

maturation status (34). Despite these findings, the influence of

choline metabolism on dendritic cell adaptation, particularly in

high-choline-demand environments such as tumors, remains

unexplored. The gut microbiota also contributes to choline-

mediated immune modulation. Enterobacter ludwiggi, an abundant

commensal bacterial species in mice, enhances dendritic cell immune

tolerance and promotes Treg differentiation via choline metabolism

(88). Choline produced by E. ludwiggi protects against DSS-induced

colitis by enhancing the choline/a7nAChR-mediated dendritic cell

immune tolerance, leading to increased Foxp3+ Treg differentiation

(88). CD103+ dendritic cells from Enterobacter ludwiggi-treated mice

exhibited higher expression of tolerogenic markers Tgfb1, Tgfb2,

Aldh1a2, and Pdl1, and co-culture with naïve CD4+ T cells

enhances Treg conversion (88). Moreover, mice receiving dendritic

cells exposed to Enterobacter ludwiggi exhibited reduced colitis

severity and expanded Treg populations in the mesenteric lymph

nodes and spleen, highlighting choline’s role in shaping gut-

immune interactions.

Together, these findings highlight the complex role of choline

metabolism in shaping antigen-presenting cell function and

inflammatory responses across diverse physiological and

pathological contexts. A deeper understanding of how choline-

derived metabolites influence innate immune signaling may

uncover new therapeutic targets and biomarkers for inflammatory

disease management and precision immunomodulation.

2.1.2 Neutrophils and eosinophils
Granulocytes play a pivotal role in the initial immune response to

pathogen infection or tissue damage, contributing to both

inflammation and tissue homeostasis. Among them, neutrophils

are the most abundant and are essential for detecting pathogens

and initiating immune cascades through processes such as swarming,

cytokine production, degranulation, phagocytosis, and the formation

of neutrophil extracellular traps (NET) (89, 90). Two decades ago,

Tronchère et al. described that neutrophil activation by Phorbol 12-

myristate 13-acetate (PMA) and formyl-methionyl-leucyl-

phenylalanine (fMLP) results in increased choline incorporation

into phosphatidylcholine (PC), dependent solely on diacylglycerol

formed from PC-derived phosphatidic acid (91) (Figure 3). This

provides evidence for an activated PC cycle in human neutrophils

linking phospholipase D and cytidyltransferase activation. However,

these findings were later challenged by Pédruzzi et al. (92), who

showed that while fMLP and PMA stimulation altered choline and

PC levels in neutrophils, phosphorylcholine content remained

unchanged for at least 10 minutes, indicating that phospholipase

C-mediated PC breakdown was not the primary mechanism.

Notably, prolonged fMLP exposure (20 minutes) increased

phosphocholine while decreasing choline levels, implicating ChoKa
activity rather than phospholipase C-mediated PC degradation (92)

(Figure 3). Interestingly, PMA stimulation showed a distinct

response, showing a decline in phosphocholine between 10 and 15

minutes, indicating a stimulus-dependent, distinct regulatory

mechanism of phosphocholine metabolism (92). Despite early

evidence linking choline and PC metabolism to neutrophil
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activation, the broader impact of choline and its metabolites on

neutrophil function remains poorly understood. Studies on bovine

neutrophils suggest that increasing choline concentrations linearly

diminish their phagocytic and killing capacities (82). In neutrophils

from early lactation cows, dietary choline supplementation increased

the expression of SLC5A7, CHDH, CHKA, CHAT, CHRM5, and

CHRNA7. Choline significantly reduced neutrophil oxidative burst

capacity in a dose-dependent manner, and the higher choline

concentration (13.2 mM) led to a quadratic decrease in E. coli

phagocytosis and a linear reduction in reactive oxygen species

(ROS) production per neutrophil (82). Inflammatory gene

expression, including TLR4, NFKB1, TNFA, neutrophil elastase

(ELANE), H2A, CASP3, and CASP7, was largely unaffected by

choline, though a greater reduction in TLR4 expression was

observed at higher doses. TNFa levels also tended to decrease

following choline supplementation (Figure 3).

Eosinophils contribute to various inflammatory conditions,

including asthma, rhinitis, eosinophilic gastroenteritis, and

inflammatory bowel disease. While choline exhibits anti-

inflammatory activity, its role in eosinophilic inflammation remains

unclear. Dietary choline supplementation effectively suppressed

airway inflammation in an allergen-induced mouse model of

airway hyperreactivity by reducing eosinophil accumulation and

eosinophilic peroxidase activity in bronchoalveolar lavage fluid,

likely through nicotinic acetylcholine receptor activation via the

cholinergic anti-inflammatory pathway (93). Later studies by the

same group confirmed these findings, showing that co-

administration of choline and a-lipoic acid further reduced

eosinophilic infiltration, peroxidase activity, and oxidative stress,

suggesting a role for redox status modulation (93). Similarly,

asthma patients receiving conventional therapy alongside six

months of oral choline supplementation exhibited significant

reductions in circulating eosinophils and factors involved in

bronchial hyperreactivity, such as IL-5 and cysteinyl leukotrienes

(Cys-LT) (94). Choline, as a precursor of PC, a major component of

lung surfactants, may help compensate for eosinophilic

phospholipases-pulmonary surfactant dysfunction in asthma,

thereby reducing airway inflammation and disease severity (95).

However, further mechanistic studies are needed to determine the

direct effects of choline availability on eosinophil activation and

function and to assess the therapeutic potential of dietary choline

supplements (95) in managing hyperreactive eosinophilic conditions,

such as eosinophilic myositis or gastrointestinal disorders.

2.1.3 Microglia

Microglia constitute specialized immune sentinels of the central

nervous system that exhibit similar plasticity to macrophages,

transitioning between inflammatory and anti-inflammatory

phenotypes. Under stress conditions, activated microglia release

inflammatory factors that drive neuroinflammation, whereas in a

tissue repair state, they promote neuroprotection (96). The

stimulation of the a7nAChR has been shown to exert anti-

inflammatory effects by inhibiting cytokine production and release,

such as TNF-a, which is neurotoxic, bymicroglia (97, 98). However, the

role of choline uptake and the generation of choline-derived metabolites
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in microglia-mediated neuroinflammation remains incomplete. Besides

acetylcholine (ACh) receptors, microglia also expressed choline

transporter CTL1, primarily located in the plasma membrane,

facilitating extracellular choline transport, and CTL2 mainly in the

mitochondria, suggesting a role in betaine production (99). Microglia

activation with either LPS or IL-4 enhances choline uptake and

phosphatidylcholine (PC) synthesis. Notably, CTL1 inhibition or

choline deprivation suppresses LPS-induced IL-1b and IL-6 but

boosts the expression of arginase-1 upon IL-4 stimulation (99). This

indicates that, as in macrophages, choline metabolism also modulates

microglial inflammatory responses, and manipulating choline

metabolism may promote a neuroprotective phenotype. Furthering

this concept, research on licochalcone E (Lico E), a b-amyloid

aggregation inhibitor, has revealed that CTL1-mediated choline

uptake is involved in its neuroprotective effects (100). While

stimulation of the microglia cell line SIM-A9 with Ab1–42
significantly increased TNF-a mRNA expression, this effect was

suppressed by choline deficiency and Lico E treatment. Furthermore,

Lico E also restored arginase 1 expression, supporting its

neuroprotective role. Additionally, IL-4-induced Arg1 expression was

further upregulated by choline deprivation and Lico E treatment,

reinforcing the hypothesis that CTL1 inhibition fosters a

neuroprotective anti-inflammatory phenotype promoting Ab
degradation (100).

The role of choline metabolism in inflammation extends

beyond microglia. In acid sphingomyelinase knock-out mice,

which mimic a neurovisceral acid sphingomyelinase deficiency

(ASMD) characterized by cellular accumulation of sphingomyelin,

the effects of a choline-free diet decreased the activation of liver

macrophages and microglia, but it did not significantly alter

sphingomyelin levels due to compensatory mechanisms involving

methionine metabolism (101). While in this model, choline

deprivation altered lipid composition in the liver, decreasing

sphingomyelin and specific glycerophospholipids with 34:1 fatty

acids, leading to reduced inflammation, its impact on brain lipid

metabolism was less pronounced (101). This suggests that

additional dietary modifications, such as methionine restriction,

may be needed to modulate neuroinflammation more effectively.

Although growing evidence highlights the impact of choline

metabolism on macrophages and microglia, there is a knowledge

gap regarding its effects on other tissue-resident immune sentinels,

such as Kupffer and Langerhans cells. Further research is necessary

to elucidate the broader implications of choline metabolism in

immune regulation and inflammatory diseases.
2.2 Lymphocytes

The phospholipid remodeling and cholinergic anti-

inflammatory system play a well-established role in immune

homeostasis and the regulation of inflammatory and autoimmune

diseases. Most immune cells, including CD4+ T cells, B cells, and

NK cells, upregulate genes related to the cholinergic system

synthesis in response to inflammatory cues, which is pivotal for

the maintenance of immunological homeostasis (31–33, 86, 102).
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Below, we summarize studies that remark the importance of the

cholinergic immune signaling and circulating choline-containing

lipids on lymphocyte differentiation, activation, and function.

2.2.1 B cells
B cell maturation and differentiation into plasma cells require

robust phospholipid synthesis and remodeling to sustain multiple

rounds of proliferation, clonal expansion, and antibody production

(103). A hallmark of this differentiation process is the increased

synthesis of phospholipids, particularly phosphatidylcholine (PC)

(104), which supports the expansion of the intracellular membrane

network, including the rough endoplasmic reticulum, where

immunoglobulins are synthesized and assembled (105, 106)

(Figure 3). Plasma cell differentiation is accompanied by

endoplasmic reticulum enlargement, increased membrane-bound

ribosomes, upregulation of endoplasmic reticulum chaperones such

as BIP and GRP94, and transcription factors like XBP-1 (106). The

inhibition of choline mobilization through the Kennedy pathway

has been examined using B cell-specific CTP: phosphocholine

cytidyltransferase (CCTa, Pcyt1a gene) deficient mice. Despite

that low penetrance, partial deficiency of CCTa in B cells resulted

in decreased peritoneal and splenic B cell numbers, inducing a

compromised proliferation, especially in the periphery, decreasing

serum IgG concentration, and increasing the incidence of IgM-

secreting cells (107). CCTa-deficient B cells stimulated with LPS

triggered early activation of the unfolded protein response (UPR)-

mediated splicing of Xbp-1, and impaired class switching, reducing

antigen-specific IgG1 production while increasing IgM secretion

upon antigen challenge (104) (Figure 3). This highlights the

requirement of PC synthesis for germinal center B cell expansion

and antibody production (76, 104).

Various immune cells, such as T and B lymphocytes, and

Natural Killer (NK) cells possess all the necessary components to

constitute an independent cholinergic system, including ChAT and

acetylcholinesterase, and both muscarinic and nicotinic ACh

receptors (31, 34, 83, 108–113). In particular, the production of

acetylcholine (ACh) by choline-acetyltransferase (ChAT)-

expressing B cells, which seems to be essential for efficient liver

regeneration in a mouse model of partial hepatectomy (112). B-cell

specific ablation of ChAT increases the mortality of mice subjected

to partial hepatectomy compared to their wildtype counterpart, due

to dysregulation of a7nAChR expressing Kupffer cells and CD8+ T

cells, limiting their regenerative capacity and producing harmful

IFN-g, respectively (112). Similarly, ACh-producing B cells

contribute to the regulation of TNF-a production by a7nAChR-
expressing interstitial lung macrophages in mice subjected to

influenza infection (113). Altogether, these findings support

antibody-independent immune regulatory functions of B cells and

expand the immunomodulatory mechanisms associated with

ACh production.

Aberrant B cell expansion and survival contribute to B cell

malignancies, such as multiple myeloma, diffuse large B cell

lymphoma, and chronic lymphocytic leukemia, which are

frequently associated with TRAF3 gene deletions or inactivating

mutations (114–116). Recent studies identified TRAF3 as a
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regulator of key metabolites, lipids, and enzymes involved in

choline metabolism (117). In particular, TRAF3 ablation boosts

phosphocholine and PC biosynthesis, promoting B cell survival

(117). Pharmacological inhibition of ChoKa by MN58B and

RSM932A effectively reduced the survival of TRAF3-deficient B

cells both in vivo and in vitro (117). Metabolomic, lipidomic, and

transcriptomic studies indicate that TRAF3 exerts broad regulatory

effects on B cell metabolism, including interconnecting choline and

ethanolamine pathways. Reconstitution of TRAF3 in human

multiple myeloma cell lines inhibited ChoKa expression,

suppressed the Kennedy pathway, and induced apoptosis,

underscoring the role of elevated choline metabolism in

sustaining the phenotype of TRAF3-deficient malignant B cells.

2.2.2 T cells
Tfollicularhelper (TFH) cells displaydistinct lipidmetabolicprofiles,

characterized by the localization of phosphatidylethanolamine

predominantly on the outer plasma membrane. Similar to B cells,

phosphatidylethanolamine colocalizes with the chemokine receptor

CXCR5 (118). De novo phosphatidylethanolamine synthesis via the

cytidine diphosphate-ethanolamine pathway is critical for maintaining

CXCR5 surface expression by preventing its internalization and

degradation. T cell-specific genetic ablation of Pcyt2, which encodes

CTP: phosphoethanolamine cytidylyltransferase, but not of Pcyt1a,

which mediates the cytidine diphosphate-choline pathway, impairs

TFH cell differentiation, leading to diminished humoral immune

responses (118). Indeed, splenocyte incubation with lysoPC, a

circulating bioavailable form of PC, enhances proliferation and IL-2

secretion (48), suggesting that PC positively modulates T-cell function

and may counteract immune dysfunction.

T cell-derived acetylcholine (ACh) has long been studied as a

crucial immune regulator. T and B cell lymphocytes express choline

acetyltransferase (ChAT), high-affinity choline transporters (ChRM

and ChRN), acetylcholine transferase, and can produce and release

ACh (102, 119, 120). In vitro studies show that ACh and other

ChRM and ChRN agonists enhance T cell cytotoxicity, B and T cell

intracellular Ca2+, c-fos expression, nitric oxide, and IL-2

production, cyclic guanosine monophosphate (cGMP), and

inositol-1,4,5-triphosphate (IP3) levels, and modulate DNA

synthesis and cell proliferation (102, 119, 121–123). As

mentioned above, ChAT-expressing T cells affect blood pressure

(30) and regulate the release of inflammatory cytokines (33). During

lymphocytic choriomeningitis virus (LCMV) infection, ChAT

expression is strongly induced in both CD4+ and CD8+ T cells in

an IL-21-dependent manner (31) (Figure 3). Using ChAT-GFP

reporter mice allowed for tracking a massive expansion of CD4+

and CD8+ T cells at day 8 post-infection, followed by a rapid decline

of Chat-GFP+ splenic virus-specific T cells after LCMV clearance

(31). In this context, IL-21, a key cytokine in chronic infection,

drives ChAT expression in T cells, facilitating their migration into

infected tissues. In human T cells, ChAT mRNA expression is

induced via the activation of the PI3K signaling cascade (124). In

particular, ChAT expression is induced by the Th2-associated

master regulator GATA3 and the suppression of RE-1 silencing

transcription factor (REST)-mediated methylation of the ChAT
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promoter (124) (Figure 3). T cell-derived ACh potentiates

endothelial nitric oxide synthase (eNOS) activity, facilitating

vasorelaxation, improving endothelial barrier integrity, and

reducing inflammation-associated endothelial activation (124).

Furthermore, in a cohort of patients with severe circulatory

failure, improved survival positively correlated with their relative

frequency of circulating ChAT+CD4+ T cells (124).

Supplementat ion with die tary cho l ine f rom egg-

phosphatidylcholine (PC) mitigates T-cell dysfunction associated

with diet-induced obesity (125, 126). The egg-PC diet lowered the

frequency of CD3+ T cells with no significant differences in helper

(CD3+CD4+) and cytotoxic (CD3+CD8+) T cells as well as activated

T cells (CD3+CD25+), reducing as well the production of IL-2 and

TNF-a 125) (Figure 3). In a follow-up study (125), high-fat diet

supplementation with free choline exhibits a reduction in

splenocyte T-cell proliferation following stimulation with anti-

CD3/anti-CD28, and decreased production of IL-1b, IL-2, IL-10,
and TNF-a in splenocytes and mesenteric lymph nodes (126)

(Figure 3). Diet supplementation with mixed choline sources,

with low free choline but high glycerophosphocholine, increases

the frequency of cytotoxic CD8+ T cells expressing CD27, CD71,

and CD127, as well as total B cells (CD45RA+) and dendritic cells

(OX6+OX62+) (87). Additionally, pups of choline-supplemented

dams exhibited lymphocytes that produced lower IL-6 and IFN-g
following concanavalin A stimulation, compared to those from the

100% free choline group (87).

2.2.3 NK cells
Natural killer (NK) cells are innate lymphocytes that contribute

to the immune response against malignancies and viral infections.

Unlike the T and B cells, NK cells do not undergo receptor gene

rearrangement, making them a key component of the first line of

immune response.

NK cells exhibit strong metabolic flexibility upon short-term

cytokine stimulation, but prolonged activation leads to increased

mitochondrial metabolism and glycolysis involving mammalian

target of rapamycin complex 1 (mTORC1) (127, 128). Activated

NK cells rely on enhanced glycolysis and the citrate-malate shuttle,

which facilitates glucose-driven mitochondrial citrate export to the

cytosol. There, citrate is converted to malate before re-entering the

mitochondria to fuel the electron transport chain (129).

Additionally, citrate serves as a precursor for acetyl-CoA, which is

essential for lipid synthesis and protein acetylation. While choline

uptake and utilization in NK cells remain unexplored, choline-

containing lipids play a crucial role in NK cell cytotoxicity

and function.

Metabolomic and lipidomic studies have identified distinct

alterations in glycerophospholipids among different NK cell

subsets (130). Notably, human decidual NK (dNK) cells, which

are located at the maternal-fetal interface, display a unique PL

profile compared to blood NK cells (130). In dNK cells, total

phosphatidylcholine (PC), lysoPC, phosphatidylethanolamine,

lysophosphat idy le thanolamine , phosphat idy lg lycero l ,

lysophosphatidylinositol, and phosphatidylserine are significantly

downregulated (Figure 3). In contrast, metabolites such as
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phosphatidic acid, phosphatidylglycerol (16:0/0:0), PC (16:0/3:1

(2E)), and phosphatidylinositol (16:0/16:0) are significantly

upregulated, suggesting a high saturation of glycerophospholipids.

This metabolic shift may indicate difficulty in forming immune

synapses, which are critical for NK cell function (130). Intratumoral

NK cells exhibit reduced sphingomyelin content, and inhibition of

sphingomyelin synthase 1, the enzyme responsible for converting

ceramide and PC into sphingomyelin, disrupts NK cell function

(131). Since sphingomyelin is necessary for immune synapse

formation, its inhibition impairs NK cell recognition and killing

of tumor cells by altering membrane topology and cytotoxicity

(131). A reduction in choline availability to the intratumoral NK

cells may have effects similar to sphingomyelin biosynthesis

inhibition, though this possibility remains unexplored. Moreover,

it remains unknown whether increased PC synthesis in NK cells is

mediated by choline mobilization to the Kennedy pathway or

through increased PC-PLC activity. Both NK-cell-mediated

cytotoxicity and lytic granule exocytosis require an increase in

PC-PLC (132). Among the NK cells subset, CD56dim PC-

phospholipase Cbright cells are associated with cytotoxic function,

whereas CD56bright PC-phospholipase Clow/- cells exhibit

immunoregulatory properties (133) (Figure 3). Indeed, PC-

phospholipase C expression on the NK cell membrane correlates

closely with CD16 receptor expression, suggesting a potential

relationship between enzyme externalization, NK cell maturation,

and CD16-mediated cytolytic process (134). The mechanistic

underpinnings of choline-mediated regulation of lymphocytes,

including B, T, and NK cells, remain insufficiently defined. There

are significant gaps in our understanding of how choline

metabolism integrates with lymphocyte function in acute and

chronic inflammatory conditions.
3 The influence of choline on health
and disease outcomes

Although the human body can synthesize choline in the liver,

this endogenous production is insufficient to meet physiological

demands, making dietary supplementation necessary. Choline is

primarily obtained from animal-derived foods (e.g., meat, dairy,

eggs), as well as plant-based sources (e.g., beans, nuts, seeds).

Imbalances in choline intake, whether insufficient or excessive,

can lead to various health issues, including cardiovascular disease,

neurological disorders, and organ dysfunction (3, 22, 23, 135, 136).

Moreover, elevated circulating or local choline metabolism has been

observed in inflammatory diseases, such as arthritis, cancer, and

cardiovascular diseases (68, 137–141). The knowledge gained from

in vitro, preclinical, and animal studies has encouraged a variety of

clinical trials investigating the role of dietary choline

supplementation in disease progression (Table 1), as well as the

association between circulating choline-containing metabolites and

disease prognosis or clinical symptoms (Table 2). However, there

are few studies investigating the impact of choline intake on

immune responses in healthy individuals. A cross-sectional

survey that enrolled healthy men (n=1514) and women (1528)
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who reported intakes of choline and betaine calculated from food-

frequency questionnaire and food-composition tables found that

participants who consumed more than 310 mg/d had lower plasma

C-reactive protein (CRP), IL-6 and TNF-a than participants

reporting choline intake below 250 mg/d (142). In subjects

(n=33) with adequate choline intake (500 mg choline/70 kg body

weight), a shift to a low-choline diet (<50 mg/d) for 42 days led to

substantial transcriptomic changes in peripheral lymphocytes (152

down- and 107 up-regulated genes), providing a unique signature

(including CHEK1, GBE1, and KIF20A), that could be used for

segregating the participants according to the absence or presence of

signs of organ dysfunction caused by the low choline intake,

including fatty liver or elevated plasma CPK (143). Importantly,

these diet-induced changes in gene expression profiles were

influenced by SNPs within the genes involved in choline

metabolism, such as MTHFD1, CHDH, and PEMT (143). This is

important, as the prevalence of SNPs in genes that increase

susceptibility to choline-related organ dysfunction in the general

population is not known. A parallel study revealed that all

participants fed with a low choline diet had significant

lymphocyte DNA damage compared to the phase in which they

were fed with adequate choline amounts. The increase in

lymphocyte apoptosis was more pronounced in participants fed

with low diet who developed organ dysfunction (144). The impact

of choline intake on transcriptional regulation has also been

observed in a 12-week controlled feeding study, in 26 healthy

third-trimester singleton pregnant women and 21 non-pregnant

control women fed with either 480 or 930 mg total choline/day

(NCT01127022) (145). In particular, the epigenetic mark histone 3

lysine 4 di-methylation (H3K4me2), which has been associated with

increased transcription, was lower among pregnant women

consuming higher levels of choline (145). However, further

studies are needed to identify the specific genes regulated by

H3K4me2 that are sensitive to choline availability.

In addition to facilitating nutrient availability in the circulation,

diet is a modifiable factor that shapes the composition of the gut

microbiome. Different choline sources can exert distinct actions on

healthy individuals. In healthy adults (ages 21 to 50), fasted for 10

hours before consuming a standardized meal containing choline

bitartrate (free choline), phosphatidylcholine (PC), or a no-choline

diet control (NCT04255368) (146), only free choline intake resulted

in a three-fold increase in plasma trimethylamine-N-oxidase

(TMAO) and a 2.5-fold increase in urinary TMAO compared to

control and PC groups. Notably, high-TMAO producers in urine

had distinct gut microbiota beta-diversity compared to the low-

TMAO producers, characterized by increased lineages of

Clostridium species belonging to the Ruminococcaceae and

Lachnospiraceae families within the phylum Firmicutes (146).

One important unanswered question is how choline-mediated

changes in gut microbiome affect intestinal resident immune cells

and their capacity to maintain homeostasis and prevent excessive

immune responses to commensal bacteria. The organ dysfunction

associated with choline deficiency has limited the scope of human

studies. As a result, most human research on disease progression

has focused on dietary supplementation with different choline
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TABLE 1 Human studies evaluating the effect of dietary choline.

Study Participants Intervention/
Assesment

Outcome Follow-
up

(months)

Clinical trial # Ref.

Cross-
sectional survey.

n=1514 men and
n=1528 women;
healthy adults.

Food-frequency questionnaire
and food-composition tables.
Self-reported choline intake.

>310 mg/d had lower plasma CRP,
IL-6 and TNF-a than choline intake
below 250 mg/d.

– – (135)

Low-choline diet. n=33;
healthy adults.

Subjects with adequate choline
intake (500 mg/70 kg body
weight) shift to a low choline diet
(<50 mg/day) for 42 days.

Low choline diet led to
transcriptional changes in
peripheral lymphocytes.
Gene signature associated with the
presence or absence of organ
dysfunction (fatty liver and elevated
plasma CRP).
SNPs in MTHFD1, CHDH and
PEMT influence the diet-induced
changes in gene expression profile.

– – (143)

Controlled
feeding study.

n=26 healthy
third-trimester
singleton
pregnant
women;
n=21 healthy
non-
pregnant
women.

Groups: 1) 480 mg total choline/
day; 2) 930 mg total choline/day;
for 12 weeks.

Choline intake over the
recommended adequate intake does
not alter blood leukocyte count, but
reduced H3K4me2.

– NCT01127022 (145)

Dietary
Supplementation.
Double-blind,
placebo-
controlled.

n=30; asthmatic;
>65 y.o.

Groups: 1) 310 mg choline
bitartrate; 2) placebo; b.i.d. over
6 weeks.

No change in eosinophil count or
total IgE serum levels.

– NCT02371993 (199)

Dietary
Supplementation.
Double-blind ,
pplacebo-
controlled.

n=96;
diabetic; adults.

Groups: 1) choline; 2)
magnesium; 3) choline +
magnesium; for 2 months.

The Choline + Magnesium group
exhibits decreased levels of plasma
IL-6 and VCAM1.

– IRCT20110123005670N25 (148)

Controlled
feeding
trial, randomized.

n=11 men; n=17
women;
65+ y.o.

Groups: 1) 3 oz, or 2) 6 oz, of
lean fresh beef within the
standardized Dietary Approaches
to Stop Hypertension (DASH)
diet, for 12 weeks.
Fasted blood serum samples for
metabolomic analysis.

Beef intake decreases plasma
choline, dimethylglycine, PC,
sphingomyelin 24:0, ceramides 22:0
and 24:0, and triglycerides; and
increases LysoPC 16:0, PC, TMAO,
total ceramides, and SM 16:0, 18:0,
and 18:1, and ceramide 24:1.
These metabolite changes correlated
with cardiometabolic outcomes.

– NCT04127240 (155)

Cross-
sectional survey

n=1981 men;
angina pectoris;

169-item food-frequency
questionnaire and food-
composition tables.
Self-reported choline intake.

Increased intake of energy-adjusted
choline, PC, and sphingomyelin is
associated with a higher risk of
incident acute
myocardial infarction.

85.2 – (135)

Dietary
supplementation.
Double-blind,
randomized.
placebo-
controlled

n=97; healthy;
>60 y.o.

Groups: 1) 120mg/day Ginkgo
Synergy + 700mg/day Choline
(n=33; 3 tablets b.i.d.); 2) 100
mg/day OPC Synergy + Catalyn
(n=31; 3 tablets b.i.d.); 3) Placebo
(n=33; cellulose pills).
Cognitive and immune
functioning assessment (for
6 months).

No change in IL-2, IL-6, IL-8, IL-
10, IL-1a, IFN-g, TNF-a, VEGF, or
MCP-1.
57% decrease in EGF in Group 1
vs placebo.

– NCT01672359 (173)

Dietary
supplementation.
Double-blind,
randomized,

n=37; healthy
men; n=4 non-
pregnant

Standardized meal containing 600
mg choline as 1) choline
bitartrate, 2) PC, 3) no choline.
Measure TMAO and choline

Choline bitartrate yielded 3 times
greater plasma TMAO AUC and 2.5
times greater urinary TMAO
change from baseline compared to

7 NCT04255368 (146)

(Continued)
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TABLE 1 Continued

Study Participants Intervention/
Assesment

Outcome Follow-
up

(months)

Clinical trial # Ref.

controlled cross-
over study.

women;
21-50 y.o.

concentrations in blood and urine
at 30 min, and 1, 2, 4, and 6 h;
and the gut
microbiota composition.

control and phosphatidylcholine
groups.
Gut microbiota composition differed
between high-TMAO producers and
low-TMAO producers.
High-TMAO producers had more
abundant lineages of Clostridium
from Ruminococcaceae and
Lachnospiraceae compared to low-
TMAO producers.

Dietary
supplementation.
Randomized
study.

n=76; asthma;
15-45 y.o.

Groups: 1) choline
supplementation (1500 mg/b.i.d.)
+ standard pharmacotherapy
(inhaled steroids and long-acting
b-agonist); 2) standard
pharmacotherapy; 6 months.

Choline supplementation decreased
symptom/drug score, IL-4, IL-5,
TNF-a, cysteinyl leukotriene and
leukotriene B4, and 8-isoprostanes;
and reduces bronchial
hyperresponsiveness, compared to
the standard
pharmacotherapy group.

– – (100)

Dietary
supplementation.
Cross-
sectional study.

n=664; NAFLD.
Children
(n=114); 9-13
y.o.;
Men (n=240);
>14y.o.;
Premenopausal
women (n=116);
>19y.o.;
Postmenopausal
women (n=194).

Demographic categories and
intake of choline were recorded
during 6 months with baseline
and endpoint liver biopsy.
Deficient intake is defined as
<50% of adequate intake
for choline.

Postmenopausal women with
deficient choline intake had worse
fibrosis (p=0.002).
Choline intake was not identified as
a contributor to disease severity in
children, men, and
premenopausal women.

– NCT00063622
and NCT00063635

(58)

Dietary
supplementation.
Randomized,
double-blind,
placebo-
controlled trial.

n=84; children,
FASDs ;
2.5-5.9 y.o.

Groups: 1) 500 mg choline
bitartrate; 2) placebo; 3) 19 mg
choline bitartrate /kg. Daily for
9 months.

The choline group has a 12-14%
increase in elicited imitation
memory paradigm, and 25%
increase in memory development.
Better response in younger (<4.2 y)
than in older (>4.2 y) participants.
The 500 mg/day group showed
sustained cognitive benefit 4 and 7
years after the intervention.

48-84 NCT01149538
and NCT02735473

(168,
169)

Dietary
intervention.
Double-blind,
randomized,
placebo-
controlled.

n=36; Type 2
diabetes and
mild cognitive
impairment;
71.8±5.3 y.o.

Groups: 1) 1200 mg choline
alfoscerate/day; 2) placebo; 6 and
12 months.

The choline alfoscerate group
increased the mean difference of the
Mini-mental State Examination
score by +1.7 points, and improved
physical health compared
to placebo.

– – (174)

Dietary
intervention.
Randomized,
Double-blind,
placebo-
controlled,
crossover study.

n=20; resistance-
trained young
males;
31.3±11 y.o.

Groups: 1) 630 mg alpha-
glycerophosphocholine; 2) 315
mg alpha-glycerophosphocholine;
3) placebo.

Both groups taking alpha-
glycerophosphocholine improved
cognitive performance by the Stroop
total score and time of completion.

– NCT06690619

(175)

Dietary
supplementation.
Randomized,
double-blind,
placebo-
controlled.

n=53; school-
aged children.
Prenatal alcohol
exposure;
5-10 y.o.

Groups: 1) 625 mg choline/day
(n=29); 2) equivalent dose of an
inactive placebo (26); 6 weeks.

The Choline group did not improve
in cognitive performance in any
domain compared to placebo.

6 NCT01911299

(167)

(Continued)
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sources. Next, we will highlight studies that report associations

between choline and inflammatory or immune responses, related

molecules, or disease outcomes.
3.1 Cardiometabolic diseases

Cardiometabolic diseases include conditions such as diabetes,

fatty liver disease, and cardiovascular diseases. Epidemiological

studies on circulating choline metabolites and the incidence of

diabetes in 3,133 individuals aged 33–45 years found that TMAO

levels positively and betaine inversely correlated with the 15-year risk

of incident diabetes (147). In a randomized, doubled blind placebo

placebo-controlled parallel trial in 96 diabetic patients subjected to

dietary supplement intervention that included choline, magnesium or

both for 2 months (IRCT20110123005670N25), circulating levels of

the inflammation and endothelial factors IL-6 and VCAM-1

decreased significantly in the choline and magnesium group

compared to the other groups even after adjusting for potential

cofounders (148).

The impact of choline and trimethylamine-N-oxidase (TMAO) on

cardiovascular diseases has been investigated in both experimental and

human studies. TMAO enhances cholesterol accumulation in

macrophages, has been associated with increased cardiovascular

disease risk (6, 149), and has a negative impact on disease outcome

(150–153). Patients diagnosed with pulmonary hypertension (n=272)

with high circulating choline levels (based on the 50th quartile of

circulating choline levels, defined as 12.6 µM), exhibit worse key

indicators of severe disease progression, including WHO functional

class, higher N-terminal pro-B-type natriuretic peptide levels, and

reduced cardiac output index, and predicts their prognosis (140).

Plasma choline as a diagnostic biomarker for hypertension and

artery stenosis was evaluated in 193 individuals, revealing that

plasma choline levels were high in patients with hypertension

without artery stenosis, and even higher in patients with
Frontiers in Immunology 13
hypertension with artery stenosis compared to healthy controls

(154). The study of the impact of the Dietary Approaches to Stop

Hypertension (DASH) diet on plasma choline, cholinemetabolites, and

ceramides in obese older adults revealed a connection between choline

metabolites and cardiometabolic outcomes (NCT04127240) (155). The

participants in this study consumed either 3 or 6 oz of beef, with rich

choline content, within a standardized DASH diet for 12 weeks (155).

In response to the DASH diet, with beef intake groups combined,

significant changes were observed in plasma biomarkers, including the

decreased of plasma choline (by 9.6%); dimethylglycine (10%);

phosphatidylcholine (PC) (51%); and triglycerides (18%); and the

increase of total lysoPC (by 281%); TMAO (26.5%); total ceramide

(22.1%). Around 20 LysoPC species were significantly increased, with

lysoPC 16:0 being the most pronounced response. In addition,

sphingomyelin 16:0, 18:0, and 18:1 increased by 10.4%, 22.5%, and

24%, respectively, and ceramide 24:1 by 36.8%; whereas sphingomyelin

24:0 significantly decreased by 10%, and ceramides 22:0 and 24:0

declined by 27.6% and 10.9%, respectively (155). These changes in

choline and choline metabolites correlated with cardiometabolic

outcomes, underscoring the importance of choline in older humans

and the role of diet in modulating circulating lysoPC, sphingomyelin,

and ceramide species (155). Recently, the study of the effects of L-alpha

glycerophosphocholine, a nutritional supplement that has been

demonstrated to improve neurological functions, on cardiovascular

events in mice has revealed that glycerophosphocholine increases the

risk of stroke by shifting the gut microbiota towards abundant

Parabacteroides, Ruminococcus, and Bacteroides, while reducing the

abundance of Akkermansia, Lactobacillus, and Roseburia (156). These

changes reflected an increased relative abundance of choline TMA

lyase (cutC). Moreover, glycerophosphocholine supplement also

increased the proinflammatory effectors CXC13 and TIMP-1, and

activated NF-kB and MAPK signaling pathways in human coronary

artery endothelial cells (156). In mice, oral glycerophosphocholine

supplementation promotes increased plasma TMAO, phenylalanine,

betaine, leucine, and valine (156).
TABLE 1 Continued

Study Participants Intervention/
Assesment

Outcome Follow-
up

(months)

Clinical trial # Ref.

Dietary
supplementation.
Randomized
controlled.

n=40; children
and adolescent;
NASH; 4-16 y.o.

Groups: 1) Lifestyle modification
plus a mix containing
docosahexaenoic acid-choline-
vitamin E (DHA-CHO-VE,
250mg of DHA, 39 UI of VE,
201mg of CHO); 2) Lifestyle
modification plus placebo; daily
six months.

DHA-CHO-VE supplementation
improved severe hepatic steatosis
(ranging 5-50%, p=0.001); ALT and
fasting glucose levels.
DHA-CHO-VE supplementation
did not influence bile acid levels,
while increased intestinal FGF19
compared to placebo.

12 NCT01934777

(160)

Dietary
supplementation.
Randomized
cross-
over intervention.

n=23; men and
women;
metabolic
syndrome;
35-70 y.o.

Groups: 1) 3 eggs/day; 2) 400 mg
choline bitartrate/day; 4 weeks.
After a 3-week washout period,
allocated to alternate treatment.

During egg phase compared to
baseline: increased
monounsaturated fatty acids,
vitamin D, selenium, and decreased
CRP, IL-6 and insulin.
During choline bitartrate compared
to baseline: decreased IL-6 and not
significant trend to
decreased insulin.

– NCT03877003

(162)
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TABLE 2 Human studies evaluating choline and choline-related metabodies.

Study Participants Intervention Outcome Follow-
up

(months)

Clinical
trial #

Ref.

Circulating choline
metabolites and the
incidence of diabetes

n=3133; free of
diabetes at
baseline;
33-45 y.o.

Participants from year 15 of follow-
up in the Coronary Artery Risk
Development in Young Adults
(CARDIA) Study.
Plasma choline metabolites
(choline, betaine, TMAO).

Plasma betaine levels are inversely
associated with the 15-year risk of
incident diabetes.
Plasma TMAO levels are positively
associated with the 15-year risk of
incident diabetes.
Choline was not significantly associated.

– – (147)

Circulating choline
levels in
pulmonary
hypertension.

n=272;
pulmonary
hypertension;

Patients with pulmonary arterial
pressure >125 mmHg by right heart
catheterization.
Fasting plasma samples were
assessed for choline levels and
clinical variables.

High circulating choline levels (above 12.6
mM) are associated with poor WHO
functional class and prognosis, high NT-
proBNP, and decreased cardiac
output index.

12 – (140)

Plasma circulating
choline as a
diagnostic
biomarker for
hypertension and
artery stenosis

n=193; artery
stenosis and
hypertension;
adults.

Plasma choline levels. High plasma choline in individuals with
hypertension and without artery stenosis,
and even higher in participants with both
hypertension and artery stenosis,
compared to healthy controls.

– – (154)

Intestinal microbial
metabolism of
Phosphatidylcholine
and
Cardiovascular Risk.

n=4007;
elective coronary
angiography;
~63 y.o.
n=40;
healthy adults
with no
chronic illness

Elective diagnostic cardiac
catheterization.
Measure plasma and urinary levels
of TMAO, choline, and betaine
after the phosphatidylcholine
challenge in healthy participants
before and after intestinal
microbiota suppression.

Intestinal microbes contribute to increased
circulating and urinary TMAO.
Major adverse cardiovascular events
associated with higher baseline levels of
TMAO.
High TMAO is a predictor of risk of
major adverse cardiovascular events.

36 NCT04255368 (146)

Plasma TMAO
association to
choline,
phospholipids, and
methyl metabolism

n=283;
healthy and type
II diabetes;
66.7±9 y.o.

TMAO and choline plasma
concentrations allocated the
patients into 4 groups.
Group 1: Low TMAO and choline.
Group 2: Low TMAO and high
choline.
Group 3: High TMAO and low free
choline.
Group 4: High TMAO and choline.

High TMAO and choline (Group 4) are
associated with lower mean plasma HDL-
cholesterol levels (Group 4=1.33 mmol/L
vs Group 1=1.73 mmol/L).

– NCT02586181
and

NCT02588898

(158)

Metabolomics of
serum from
Systemic lupus
erythematosus
(SLE).

n=5 men and
n=15 women
with SLE; n=9
healthy controls.
18-40 y.o.
Independent
cohort of 38
SLE patients.

Metabolic profiling of
human serum.

Serum from SLE patients showed
dampened glycolysis, Krebs cycle, fatty
acid oxidation, and amino acid
metabolism, methyl donors including
choline, phosphocholines, methionine, and
cysteine.
Best discriminators of SLE included
elevated lipid peroxidation, gamma-
glutamyl peptides, leukotriene B4 and
5-HETE.

– – (192)

Lipidomic and
metabolomic
analysis of serum
from SLE.

n=17 SLE and
n=17
healthy controls.

Untargeted lipidomics and
metabolomics of human serum.

Differential expression of over 50
metabolites, including the elevation of
ceramide, TMAO and xanthine in SLE
serum, while acylcarnitine, caffeine,
hydrocortisone, itaconic acid, and
serotonin were downregulated.

– – (193)

Serum choline levels
in patients with
advanced cancers.

INSPIRE cohort:
n=106.
Advanced solid
tumors.
LIBERATE
cohort: n=51.
Solid tumors.

INSPIRE cohort: 200mg
pembrolizumab, i.v. every 3 weeks
(1 cycle). Serum choline levels are
measured at baseline and every
subsequent cycle.
LIBERATE cohort: Anti-PD-1
antibody alone or together with

INSPIRE cohort: No significant changes in
absolute neutrophil and lymphocyte
count, and neutrophil to lymphocyte ratio
(DNLR) despite changes in choline levels.
No significant differences in T cell
numbers (CD8 and CD3) between groups
with increased and decreased serum

INSPIRE:
12.6.

LIBERATE:
11.7.

NCT03702309
and

NCT02644369

(235)

(Continued)
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The incidence of acute myocardial infarction was examined in

1981 male patients with stable angina pectoris follow-up during 7.5

years, and subjected to a 169-item food frequency questionnaire to

monitor the dietary choline intake, showed that increased intakes of

energy-adjusted choline, PC, and sphingomyelin were associated with

a higher risk of incident acute myocardial infarction (135). Similarly,

a study of 4007 participants (average age of 63) undergoing elective

diagnostic cardiac catheterization (NCT04255368) revealed higher

baseline TMAO levels in individuals experiencing major adverse

cardiovascular events (5.0 mM) compared to those individuals

without events (3.5 mM) (157). Participants in the highest TMAO

quartile (>6.18 mM) had a 2.54-fold increased hazard ratio compared

to controls (157). The prognostic value of elevated plasma TMAO for

cardiovascular risk remained significant in various subgroups

associated with a reduced overall risk of major cardiovascular

events. Notably, a three-year follow-up confirmed elevated plasma

TMAO as a significant predictor of major adverse cardiovascular

events (157). Another study on cardiometabolic risk factors in a

diabetes case-control study (NCT02588898) and a vitamin-

supplementation trial (NCT02586181) found high plasma

concentrations of metabolites, including TMAO and choline,

correlated with lower cholesterol and plasma phospholipid levels,

suggesting TMAO may aid in cholesterol solubilization and

macrophage cholesterol (158).

Several studies have reported an inverse association between

dietary choline supplementation and both the incidence and severity

of non-alcoholic fatty liver disease (NAFLD) or steatohepatitis
Frontiers in Immunology 15
(NASH) (159, 160). Steatosis, or fat accumulation in the liver, which

is a direct effect of choline deficiency, can lead to inflammation and

cause more severe conditions like fibrosis, cirrhosis and liver cancer

(161). Findings from the Framingham Heart Study, a large

community-based cohort including offspring and third-generation

participants, revealed that choline intake, calculated as the sum of

dietary choline-containing compounds including phosphocholine,

sphingomyelin, free choline, glycerophosphocholine, and PC, was

inversely associated with NAFLD risk (159). A randomized

controlled clinical trial (NCT01934777) involving children with

non-alcoholic steatohepatitis (NASH) evaluated the effects of

combined supplementation with docasahexaenoic acid, choline, and

vitamin E (DHA-CHO-VE) (160). Participants underwent a lifestyle

counseling along with either a daily supplement containing DHA-

CHO-VE (250 mg of DHA, 39 UI of VE, 201 mg of choline) or

placebo for six months. The DHA-CHO-VE group showed a marked

reduction in severe hepatic steatosis (ranging from 5-50%), alongside

improved serum ALT and fasting glucose levels (159). While DHA-

CHO-VE supplementation did not affect bile acid concentrations, it

did increase intestinal fibroblast growth factor 19 (FGF19), a key

regulator of bile acid synthesis and metabolism (160). The role of

dietary choline supplementation in adult patients with metabolic

syndrome was examined in a randomized crossover intervention in

23 individuals supplemented with either 3 eggs/day or 400 mg choline

per day for 3 weeks, followed by a 4-week washout, and then the

alternate interventions (NCT03877003) (162). During the egg-derived

choline feeding phase, there was a stronger effect on metabolic and
TABLE 2 Continued

Study Participants Intervention Outcome Follow-
up

(months)

Clinical
trial #

Ref.

Independent
validation cohort

other treatments. Circulating
choline levels measured prior
treatment and on week 3 and 4.

choline levels.
Increased choline serum levels, higher
levels of CD8- T cells and B cells in the
stroma compared to the tumor.
CD3+CD8+ T cells to CD3+CD8-FOXP3+

T cells ratio is significantly higher in the
baseline tumors of patients with higher
serum choline levels.
LIBERATE cohort: DANC, Dlymphocytes,
and DNLR were not significant despite
changes in choline levels.

Choline serum levels
association with
cancer risk.
Community-based
nested case-
control study.

n=199; cancer
patients.
n=199 healthy
matched
controls.
62.12±6.74 y.o.

Groups according choline quartiles:
1) Q1, lowest quartile (<5.35 µm/
mL); 2) Q2: 5.35-14.70 µm/mL; 3)
Q3: 14.71–25.18 µm/mL; 4) Q4:
highest quartile (≥ 25.19 µm/mL).

Highest choline quartile (Q4) had 3.69-
fold increased risk of cancer in the
adjusted models (OR = 3.69, 95% CI 1.17-
11.63) compared to patients in the lowest
quartile.
Positive dose-response association between
serum choline levels and the risk of
overall and digestive system cancer.

3.9 NCT00794885 (204)

Choline-related
metabolites in male
cancer patients and
benign hyperplasia.
Case-control study.

n=80; prostate
cancer (Pca);
71 y.o.
n=51; benign
prostate
hyperplasia
(BPH);
74 y.o.

Measure plasma/serum betaine, free
choline, dimethylglycine (DMG),
folate, total homocysteine (tHcy),
cystathionine, methylmalonic acid,
S-adenosyl homocysteine (SAH), S-
adenosyl methionine (SAM), and
phospholipids before
prostate surgery.

No significant differences in choline,
betaine, DMG, folate, tHcy, cystathionine,
SAH or SAM between the groups.
Sphingomyelin species were significantly
lower in patients with PCa as compared to
the BPH (differences ranged between 6
and 16%).

8 – (236)
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inflammatory plasma biomarkers, including an increase in

monounsaturated fatty acids, vitamin D, selenium, and a decrease in

CRP, IL-6, and insulin (162), while during choline bitartrate feeding,

only a decrease in IL-6 was observed (162). This distinct effect may be

caused by differences in the lower intestinal absorption of choline

bitartrate compared to the choline from eggs (including egg-PC), or by

the effect of additional nutrients in the eggs. Collectively, these findings

support the idea that different sources of choline have distinct effects,

suggesting that a more personalized selection of choline forms, based

on individual’s underlying conditions and characteristics, may lead to

greater health benefits.
3.2 Cognitive decline and Alzheimer’s
disease

Recent human and animal research has emphasized the

importance of choline intake in preventing neurodegenerative

diseases such as Alzheimer’s disease (163). High choline intake in

early life has been shown to improve outcomes in a mouse model of

Alzheimer’s disease, regulating hyperexcitability, preserving hilar

neurons, and enhancing spatial memory (164). Further evidence

comes from studies using the 3xTg-Alzheimer’s disease mouse

model, which replicates key features of human Alzheimer’s

disease progression. In this model, choline-deficient diet from 3

to 12 months of age disrupted liver and heart normal function, and

altered neural networks associated with microtubule stability and

postsynaptic membrane regulation in the hippocampus, elevated

soluble and insoluble Amyloid-b levels, increased Thioflavin S

structures, and tau hyperphosphorylation at various pathological

epitopes in the hippocampus and cortex (163). This system-wide

dysfunction in mice fed with choline-deficient choline was observed

in the circulation, as it modulates plasma proteins associated with

inflammation, immune response, and metabolic processes,

including insulin metabolism, mitochondrial function,

inflammation, and fructose metabolic processing (163). Lifelong

choline supplementation in another Alzheimer’s disease mouse

model (APP/PS1 transgenic mice), significantly diminished

amyloid-b plaque load and decreased activated microglia, thereby

mitigating the detrimental effects of brain inflammation associated

with Alzheimer’s disease (44). The use of the cholinergic

neurotransmission-enhancing agent choline alphoscerate has also

shown protection from antibody-mediated neurotoxicity, directly

activating the a7nAChR receptor in microglia, leading to phenotype

switching towards a less inflammatory state (165). Human studies

further support the neuroprotective role of choline. A study with

3,224 participants found that low choline intake was associated with

an increased risk of incident dementia and Alzheimer’s disease

(136). Similarly, a study with 125,594 participants showed that

moderate dietary choline intake, ranging from 332.89 mg/d to

353.93 mg/d, is associated with lower odds of dementia and better

cognitive performance (166).

In the context of fetal alcohol spectrum disorders (FASDs), 625

mg of choline was administered to school-aged children (5–10 years

old, n=29 choline and n=26 placebo) for six months (NCT01911299),
Frontiers in Immunology 16
showing no effect on cognitive performance (167). However, in

another study in younger children with weight-adjusted dosing, the

dietary choline intake increased the memory scores by 12-14%

(NCT01149538 and NCT02735473) (168, 169). Indeed, an inverse

relation between choline dose (mg/kg) and memory improvement

suggested weight-adjusted doses as preferable to fixed doses (168).

Follow-up studies for 4 and 7 years after the intervention with 500

mg/day for 9 months showed that sustained cognitive benefit was

associated with potential improvements in associated white matter

microstructure in the choline group (170, 171), which suggests that

choline supplementation has the potential to alter brain architecture.

The participant in the group supplemented with choline showed an

12-25% increase of the elicited imitation memory paradigm, 8%

higher verbal IQ, 29% higher visual-spatial reasoning, 36% higher

crossmodal learning, 27% higher non-verbal working memory 4

years after the treatment at a mean of 8.6 year of age. Moreover, an

improvement in lower-order executive function skills (eg,

information processing speed) was found in a subset of participants

who returned 7 years after completing a choline trial, at a mean age of

11 years (170, 171). While these findings are promising, other studies

in pediatric patients (aged 7–12 years) diagnosed with ADHD did not

show statistically significant differences between the use of citicoline

(cytidine diphosphate-choline supplement) and placebo. If the

absence of effect is due to the choline form used, or the age of the

individual is not known (172).

In the adult population, a double-blind randomized clinical trial

examined choline dietary supplementation on cognitive and

immune function in 97 healthy older adults over six months

(NCT01672359) (173). The participants were divided into three

groups: group 1 (n=33) received 120 mg/day of Ginkgo Synergy

plus 700 mg/day of choline; group 2 (n=31) received 100 mg/day

OPC Synergy plus Catalyn; group 3 (n=33) received a placebo (173).

While no significant changes were observed in cytokine levels (IL-2,

IL-6, IL-8, IL-10, IL-1a, IFN-g, TNF-a, VEGF, and MCP1), the

Ginkgo Synergy plus choline group exhibited a significant reduction

(57%) in epidermal growth factor (EGF), a protein that is often

overexpressed in individuals with mild cognitive impairment or

Alzheimer’s disease (173). However, the absence of follow-up

studies limited the ability to conclude the effect on the

disease progression.

The effect on cognitive function has also been examined in 36

individuals with Type 2 diabetes mellitus and mild cognitive

impairment assessed by the Mini-Mental State Examination

(MMSE) score. The group provided 1200 mg/day of choline

alfoscerate for 12 months, significantly showed better physical

health and an increase mean difference in the MMSE score (+1.7

between the two groups), which would support its use as an adjunct

therapy for managing early cognitive decline (174). The effect on

physical performance has also been observed in a recent

randomized, double blind, placebo-controlled crossover approach

in 20 resistance-trained young males (31.3 ± 11 years) who

consumed either a placebo, 630 mg alpha-glycerophosphocholine,

or 315 mg of alpha-glycerophosphocholine (NCT06690619). Both

groups taking alpha-glycerophosphocholine increased the cognitive

performance (Stroop total score and time of completion) (175).
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3.3 Inflammatory and autoimmune
diseases

In inflammatory disorders, the increased metabolic demands

for immune activation and cellular proliferation necessitate an

elevated supply of phospholipids, such as phosphatidylcholine

(PC). High plasma and tissue choline concentrations are common

in diseases characterized by chronic low-grade inflammation,

supporting the role of choline in modulating immune cell

activation and tissue damage (176–182).

3.3.1 Autoimmune and degenerative diseases
For instance, in rheumatoid diseases, lipidomic studies in

synovial fluid have reported altered phospholipid profiles with

enrichment of choline-containing lipids, such as PC (183–186),

which correlate with enhanced ChoKa expression and activity.

This has positioned ChoKa as a major enzyme involved in the

anomalous cellular lipid metabolic profile of inflammatory disorders,

such as RA (25). In rheumatoid arthritis (RA), levels of PC increase in

response to inflammatory mediators such as TNF-a, PDGF, and IL-

1b (68). In RA, Fibroblast-like synoviocytes (FLS) contribute to

synovial inflammation by producing inflammatory mediators and

recruiting and activating immune cells, and ChoKa is highly

expressed in both osteoarthritis and RA synovial tissue and

cultured FLS (187). Exposure to inflammatory mediators such as

TNF-a and PDGF, increased ChoKa expression and activity in FLS,

suggesting activation of this pathway in the RA synovial

environment. The inhibition of ChoKa suppressed the pathogenic

behavior of RA-FLS, limiting cell migration and resistance to

apoptosis, which may contribute to cartilage destruction in RA. In

vivo evidence for the role of choline metabolism in RA comes from

studies using the K/BxN serum-transfer mouse model of

inflammatory arthritis, where treatment with the choline kinase

alpha (ChoKa) inhibitor MN58b (3 mg/kg) prevented disease

onset (68). Notably, when administered after disease establishment,

MN58b also drastically reduced joint swelling, supporting the idea

that ChoKa inhibition could serve as an effective adjuvant to current

RA therapies by targeting the pathogenic activity of FLS (68).

Other recent studies have investigated the lipidomic profile of

arthritis patients in different phases of the disease to understand the

correlation between lipid alteration and the severity of local

inflammation (188–190). Untargeted lipidomics analysis of

synovial fluid and serum from RA patients across various clinical

stages, ranging from preclinical to active and sustained phases,

showed that despite normal erythrocyte sedimentation rate and

CRP at pre-clinical stages, the lipidomic profile of preclinical RA

joint fluid closely resembled that of active RA (191). Specifically,

alterations in a set of lysoPC, PC, phosphatidylethanolamine, and

sphingomyelin subclasses correlated with RA activity (189). Indeed,

a strong association was found between lipidome profile in the

arthritic joint fluids of RA patients and the severity of synovitis. The

sensitivity of lipid profiles in reflecting RA activity and response to
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disease-modifying anti/rheumatic drugs (DMARDs) (191).

Therefore, the lipidome profiles may be considered as a potential

biomarker tool to predict the progression of preclinical to

established RA disease and facilitate monitoring of disease activity

and treatment outcomes (191).

In systemic lupus erythematosus (SLE), which is characterized

by chronic activation of self-reactive lymphocytes and myeloid cells,

untargeted lipidomics using LC/MS and GC/MS has revealed

altered serum concentrations of choline, ACh, phosphocholine,

and specific species of PC, lysoPC, and sphingomyelin (192–194).

The ACh derived from fibroblastic reticular cells in the lymph

nodes is an essential regulator of autoreactive B cell responses. In

particular, ACh enhanced B cell differentiation into IgG-producing

plasma cells by increasing lipid influx via CD36 and boosting

mitochondrial respiration and fatty acid oxidation, leading to an

autoreactive phenotype (195). Indeed, the hypomethylation of

CD40L in T cells has also been associated with increased disease

activity in SLE patients (196, 197). In female patients with SLE, the

increase of 168 mg choline per day was associated with a 10% higher

methylation of CD40L promoter (198), Besides these findings, it has

not been evaluated whether different forms of dietary choline can

modify disease progression or the frequency of flares in SLE

patients, neither if the selective inhibition of ACh signaling in B

cells can prevent autoreactivity and the severity of organ-

specific manifestations.

3.3.2 Asthma and pulmonary disease
Studies focused on clinical outcomes in asthma patients who

received dietary choline supplementation have been reported in

small cohorts with opposing results. In a double-blind, placebo-

controlled, crossover trial (NCT02371993) (199) on asthma in

elderly individuals (n=30 participants aged >65 years), intake of

310 mg choline bitartrate twice daily for six weeks, did not show

significant effects on peripheral blood eosinophil count or total

serum IgE levels compared to placebo (199). However, in another

study asthma patients (ages 15-45) receiving oral choline

supplementation (1500 mg b.i.d.) with inhaled steroids

(Budesonide; 400 mg twice daily) and long-acting b-agonist
(LABA; formoterol fumarate; 6 mg twice daily) for six months

(94), required less additional therapy and had improved bronchial

hyperreactivity with a reduction in eosinophil count and total IgE,

IL-4, IL-5, TNF-a, and airway inflammatory lipid mediators such as

Cys-LT, LTb4 and 8-isoprostanes with no significant changes in IL-

10 and IFN-g , compared to the group with standard

pharmacotherpay alone (94). Similarly, other studies in this same

line have found a positive impact of high choline supplementation

in decreasing symptom scores, the number of asymptomatic days

(200). Although these findings suggest that choline can be used at

higher doses as a prophylactic intervention or adjuvant to standard

therapy in the management of asthma, the exact mechanism by

which choline attenuates airway inflammation has not been

completely explained.
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3.4 Cancer progression and anti-tumor
immunity

The role of choline metabolism in cancer progression and growth

has been extensively studied and revised elsewhere (201, 202).

Enhanced choline uptake and metabolism, and increased serum

choline are hallmarks of many cancers and correlate with a higher

risk of overall cancer with a poor prognosis (203, 204). Notably,

elevated choline kinase alpha (ChoKa) expression and activity are

often associated with malignant transformation, invasion, and

metastasis in some human cancers, making ChoKa a promising

therapeutic target in oncology and choline radiotracers a reasonable

tool for monitoring cancer growth and therapy response (205–213).

Moreover, ChoKa has been recognized as a prognostic marker in

various cancers (208, 214–216). High ChoKa expression correlates

with early-stage non-small-cell lung cancer (NSCLC) patients at risk

of recurrence, whereas lower expression identifies patients with

favorable outcomes, potentially allowing for less aggressive

treatment approaches (215). Over recent decades, numerous

ChoKa inhibitors have been developed and tested for cancer

therapy (217–219). However, the efficacy and predictive value of

choline metabolism-related signatures for patients’ prognosis,

immune microenvironment, and chemotherapy response remain

incompletely understood. Recent evidence using several public

datasets from The Cancer Genome Atlas (TCGA), Kyoyo

Encyclopedia of Genes and Genomes (KEGG), AmiGO (2) and

Reactome Pathways databases has identified two choline

metabolism-related genes (choline kinase b, CHKB, and

phosphatidylethanolamine N-methyltransferase, PEMT) as key

genes involved in the pathogenesis of human colorectal cancer (220,

221). Patients were stratified into high- and low-risk groups based on

the optimal cutoff value of the choline metabolism-related risk score

to assess the prognostic accuracy of the choline metabolism-related

signature (222). The overall survival of patients in the high-risk group

was significantly worse than that of patients in the low-risk group. The

examination of sc-RNAseq revealed that CHKB expression was

mainly in endothelial cells, while PEMT was highly expressed in

CD4+ and CD8+ T cells (220). Indeed, there were notable differences

in immune microenvironment composition, immune checkpoint

gene expression, and chemotherapy response between the two risk

groups (220).

Oncogenic MYC drives aberrant choline metabolism by

t ransc r ip t iona l l y upregu l a t ing CTP:phosphocho l ine

cytidylyltransferase-a (PCYT1A) (223), a key enzyme in

phosphatidylcholine (PC) de novo biosynthesis. In patients with

diffuse large B-cell lymphoma (DLBCL), elevated PCYT1A

expression, accompanied by increased MYC levels and decreased

serum PC, correlates with a higher international prognostic index

risk classification, suggesting that co-expression ofMYC and PCYT1A

may serve as a biomarker for disease progression (223). The use of

histone deacetylase inhibitors (HDACI) modulates lipid metabolism

and survival pathways in DLBCL, particularly by gaining dependency

on the choline pathway and PI3K signaling activation (224), which

results in a decline in the antineoplastic effects of the HDACI (224). In

part, the aberrant cholinemetabolism in cancer is driven by molecular
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alterations in enzymes such as phospholipases C andD, ethanolamine

kinase-a, glycerophosphocholine phosphodiesterases, and choline

transporters (211). Tumors exhibit elevated phospholipid levels,

characterized by an increase in phosphocholine and total choline-

containing metabolites, along with an altered glycerophosphocholine/

phosphocholine ratio (208, 210, 225, 226). As the major phospholipid

in eukaryotic membranes, PC is essential for cancer cell proliferation,

tumor progression, and invasion (209). Increased total choline signal

detected by 1H nuclear magnetic resonance spectroscopy (1H-NMR)

is currently being considered as a diagnostic marker in multiple

cancers (137, 210, 227, 228). Choline plays a critical role in cancer

diagnosis and monitoring. The use of (11) C-choline positron

emission tomography/computed tomography (PET/TC) has

provided insights into choline metabolism in tumors, including

lung, liver, ovarian, and prostate cancers (216, 229–234). Both (1)

H-NMR and choline PET imaging are being explored to evaluate

treatment responses. The increased expression and activity of choline

transporters and enzymes, such as CTL1 and ChoKa, respectively,
have led to the development of radiolabeled choline analogs as PET

imaging tracers (211).

In the INSPIRE cohort of 106 patients with advanced solid tumors

treated with pembrolizumab (anti-PD-1 antibody) (NCT03702309)

(235), higher serum choline levels were associated with augmented

CD8- T cells and B cells in the tumor stroma, as well as an elevated

CD3+CD8+ cytotoxic T cells to CD3+CD8-FOXP3+ T regulatory cells

ratio in the tumors (235). A validation study on 51 patients receiving

anti-PD-1 therapy alone or in combination (NCT02644369) (235),

found no association between choline levels and changes in absolute

neutrophil count (DANC), lymphocytes, and neutrophil-to-

lymphocyte ratio (DNLR) (235). Notably, higher serum choline

levels correlated with improved progression-free survival and a

trend toward better overall survival (235). A case-control study

(NCT00794885), suggested that high serum choline levels were

linked to overall cancer risk, particularly among older male smokers

(204). A case-control study investigating the differences in circulating

concentrations of choline metabolites between elderly men with

prostate cancer or benign prostatic hyperplasia (236). While no

significant differences were found in choline, betaine,

dimethylglycine, folate, total homocysteine, cystathionine,

methylmalonic acid, S-adenosylhomocysteine (SAH), S-

adenosylmethionine (SAM), the presence of 11 sphingomyelin

species was significantly reduced in patients with prostate cancer as

compared to benign hyperplasia (236).

In triple-negative breast cancer, a very aggressive disease with a

poor prognosis, the commensal microbiota Clostridiales and its

metabolite trimethylamine-N-oxide (TMAO) colonize the mammary

gland, being more abundant in tumors exhibiting an activated immune

microenvironment (237). TMAO was identified as a driver of

antitumor immunity, providing a foundation for potential TMAO-

based therapeutic strategies. Patients with higher plasma TMAO levels

achieved better responses to immunotherapy due to TMAO-induced

pyroptosis in tumor cells and enhanced CD8+ T cell-mediated

antitumor immunity (237). An unbiased metabolic screening using

liquid chromatography-tandem mass spectrometry identified TMAO,

as a key gut microbiome-derived metabolite that enhances antitumor
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immunity in pancreatic ductal adenocarcinoma (PDAC) (238).

Administration of TMAO, either intraperitoneally or via dietary

choline supplement, in PDAC-bearing mice significantly reduced

tumor growth. This antitumor effect was associated with a shift

toward an immunostimulatory tumor-associated macrophage (TAM)

phenotype and an enhanced effector T cell response within the tumor

microenvironment, mediated by activation of the type I Interferon

pathway (238). Consistently, delivering intravenously TMAO-primed

macrophages yields similar tumor-suppressive effects (238). Indeed,

combining TMAOwith immune checkpoint blockade therapy, such as

anti-PD1 and anti-TIM3 antibodies, further reduced tumor burden

and improved survival compared to monotherapies alone.

Additionally, higher levels of gut bacteria expressing CutC, the

enzyme responsible for generating trimethylamine, correlated with

longer survival in PDAC patients and enhanced responses to anti-

PD1 immunotherapy in melanoma patients (238). Collectively, these

findings highlight TMAO as a promoter of antitumor immunity across

multiple cancer types. By enhancing immune cell function, reshaping

the tumor microenvironment, and boosting responses to

immunotherapy, TMAO holds promise as a potential adjuvant to

improve the efficacy of cancer immunotherapy.
3.5 Sepsis

Sepsis is a life-threatening clinical condition arising from an

excessive immune response to infection, leading to high morbidity

and mortality rates (239). A major challenge in intensive care

medicine is managing severe infections with multiple organ

dysfunction, commonly referred to as sepsis shock (240). The

Systemic Inflammatory Response Syndrome (SIRS) is triggered by

endotoxin, which stimulates the release of inflammatory cytokines,

such as TNF-a; IL-1a/b, and IL-17 into the circulation. These

cytokines, in turn, prompt hepatic cells to release acute-phase

proteins such as CRP for immunological regulation (241). Matrix

metalloproteinases (MMPs) are up-regulated by pro-inflammatory

cytokines, as well as by acute phase proteins like serum amyloid A

(SAA), with counter-regulatory inhibition by IL-4 and IL-13, and

released into the circulation from damaged vascular endothelium. An

increased MMPs/tissue inhibitor MMPs (TIMPs) ratio is more

strongly associated with tissue response to LPS-linked injury than

with the acute-phase reaction (242, 243). Choline-deficient diet has

been linked to increased hepatic injury and mortality in endotoxemic

shock (239). In a canine model of sepsis induced by intravenous

injection of 0.2 mg/kg LPS from E. coli, choline intravenous

administration suppressed the elevation of circulating MMPs and

TIMPs, preserved serum IgG and IgM levels, and was associated with

reduced acute-phase reaction and multi-organ failure (244).

In a study using the gold-standard experimental model of

polymicrobial sepsis, the cecal ligation and puncture (245),

metabolic analysis of plasma and urine identified 14 plasma and

11 urine metabolites related to central carbon and choline

metabolism (including choline, betaine, methylamine, and

creatinine). These metabolites significantly differed between septic

mice with and without signs of acute kidney injury (AKI), as defined
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by Kidney Disease Improving Global Outcomes (KDIGO), as

creatinine levels tripled the average of sham mice. These were

further validated in 7 pediatric patients with severe sepsis and

AKI, and 13 with sepsis with stage 1 or no AKI. Plasma analysis

revealed 10 differentially expressed metabolites more abundant in

sepsis-associated AKI patients, including succinate, pyruvate,

lactate, betaine, dimethylglycine, and choline, resembling the

findings in mouse plasma (245). These metabolic changes were

supported by alterations in the gene expression of choline

metabolism-related enzymes, such as choline dehydrogenase

(Chdh), betaine-homocysteine methyltransferase (Bhmt), and

DMG dehydrogenase (Dmgdh), and glycerophosphocholine

phosphodiesterase 1 (Gpcpd1). Notably, flavin-containing

monooxygenase 3 (Fmo3), the enzyme responsible for TMAO

production in the liver, was reduced in sepsis-associated AKI.

Mice that received choline intraperitoneally before and during

sepsis exhibit lower levels of plasma blood urea nitrogen (BUN)

and creatinine, as well as urine neutrophil gelatinase-associated

lipocalin (NGAL) levels compared to septic mice treated with

vehicle. While these findings support that choline may protect the

kidneys during sepsis, the survival rate was not affected by choline

supplementation (245). A metabolic study using NMR spectroscopy

found distinct metabolic profiles between sepsis survivors and non-

survivors, those who succumbed at day 0 of hospitalization. Non-

survivors exhibited significantly higher levels of creatine,

phosphocreatine, choline, betaine, tyrosine, histidine, and

phenylalanine compared to survivors (246). However, another

study reported that individuals with sepsis had lower

concentrations of phosphatidylcholine (PC), phosphatidylserine,

lysophosphatidylethanolamine, and lysoPC but higher creatinine

and C17-sphinganine, compared to healthy controls (247).

An ima l mode l s have demons t ra t ed tha t cho l ine

supplementation improves survival and reduces TNF-a
production (248). In endotoxin-infused mice, free serum choline

levels dropped by 49% at low endotoxin administration but

increased by 98% within 48 hours after high endotoxin exposure

(1 mg/kg). Despite these fluctuations, phospholipid-bound choline

levels increased regardless of the endotoxin dose, accompanied by

an increase in biochemical markers of tissue injury and organ

dysfunction (249). However, another study using the CLP mouse

model found that administering choline before and after sepsis

initiation reduced serum inflammatory mediators such as TNF-a
and HMGB1, and improved survival via the a7nAChR-dependent
mechanism (250, 251). The anti-inflammatory effect of choline was

confirmed ex vivo, where endotoxin-activated human whole blood

and macrophages exposed to supraphysiological choline

concentrations (between 1–50 mM) exhibited reduced TNF-a
production (250). Additionally, elevated plasma choline

acetyltransferase (ChAT) concentrations were observed in

patients with sepsis, with the highest levels detected in those who

succumbed to infection (252). The increase in circulating ChAT

coincides with the decline in TNF-a (252), showing its potential

anti-inflammatory. However, ChAT activity did not correlate with

circulating choline or acetylcholine (ACh) concentration, which

suggests additional regulatory mechanisms.
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Sepsis is characterized by profound metabolic alterations, with

choline metabolism playing a key role in inflammatory regulation

and organ function. While experimental and clinical data suggest

that choline supplementation may protect against sepsis-associated

AKI and modulate inflammation, its effect on overall sepsis survival

remains inconclusive. Further research is needed to determine the

therapeutic potential of choline in sepsis management, particularly

in modulating immune responses and metabolic homeostasis.

4 Conclusion

Choline metabolism plays a critical role in shaping both the

innate and adaptive immune responses, with its effect varying by cell

type, metabolite state, and immune environment. While choline

shows therapeutic potential, such as reducing inflammation and

supporting cognitive and liver health, it can also contribute to

disease, including increased risk of cardiovascular events or cancer

progression. Despite the growing interest in examining the specific

impact of choline on the activation and function of immune cells, the

precise downstream molecular signaling and pathways regulated by

choline availability remain elusive. Collectively, animal and human

studies investigating dietary choline supplementation emphasize the

idea of divergent effects based on the choline source, the subject’s

genetic and physiological characteristics, and the tissue or cell type

studied, suggesting that a more context-specific selection of choline

forms may lead to greater health benefits.

Future clinical studies should account for baseline choline status,

microbiome profiles, genetic polymorphism in choline metabolic

pathways, and organ-specific outcomes to define optimal strategies

for leveraging the use of modulating choline availability and

metabolism in personalized therapeutic interventions.
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