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centric vaccine against
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using pangenomic insights and
immunoinformatics approach
Santhosh Mudipalli Elavarasu1 and Sasikumar K2*

1Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of
Technology (VIT), Vellore, Tamil Nadu, India, 2Department of Sensor and Biomedical Technology,
School of Electronics Engineering, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
Introduction: As a highly adaptable opportunistic pathogen, Pseudomonas

aeruginosa presents a significant threat to people with weakened immune

systems. This is because it naturally resists antibiotics and can form biofilms.

These factors complicate treatment and underscore the urgent need for

innovative therapeutic strategies, such as vaccines, to combat this pathogen.

Methods: A pangenome analysis of P. aeruginosa genomes was performed to

identify conserved core genes critical for bacterial survival and virulence. LptF, an

outermembrane protein, was prioritized as a target for vaccine development. B-cell

and T-cell epitopes were predicted from LptF using immunoinformatics tools, and a

multi-epitope peptide vaccine was designed. The interaction between the vaccine

candidate and Toll-like receptors (TLRs) was investigated through molecular

docking and molecular dynamics simulations. Codon optimization and in-silico

cloning were carried out to validate the vaccine’s expression potential in E. coli.

Immune response simulations evaluated the vaccine’s immunogenicity.

Results:Our pangenome analysis identified highly conserved core genes, including

LptF, which proved crucial for bacterial virulence. A multi-epitope peptide vaccine

was designed using themost immunogenic B-cell and T-cell epitopes derived from

LptF. Studies using molecular docking and dynamic simulation have shown stable

interactions between the vaccine and TLRs, with the POA_V_RS09 construct

exhibiting the highest stability. Codon optimization indicated high expression

efficiency in E. coli. Immune simulations revealed robust adaptive immune

responses, including sustained IgG production, the formation of memory B cells,

and the activation of T-cell responses.
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Discussion: The POA_V_RS09 vaccine candidate exhibited excellent stability,

immunogenic potential, and expression efficiency, making it a promising

candidate for combating P. aeruginosa infections. This study provides a strong

foundation for developing effective therapeutic strategies to address the growing

issue of antimicrobial resistance in P. aeruginosa. More experimental validation is

needed to verify its effectiveness in preclinical and clinical environments.
KEYWORDS

Pseudomonas aeruginosa, pangenome analysis, immunoinformatics, epitope-based
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GRAPHICAL ABSTRACT
1 Introduction

Pseudomonas aeruginosa (P. aeruginosa), a highly adaptable

opportunistic pathogen, is a significant cause of multidrug-resistant

(MDR) infections, including diabetic foot infections, ventilator-

associated pneumonia, wound infections, septicemia, and catheter-

associated urinary tract infections (1). It poses a significant threat,

particularly to immunocompromised individuals, due to its

intrinsic resistance to antibiotics and its ability to thrive in diverse

environments. Furthermore, P. aeruginosa can spread through

medical equipment, increasing the risk of cross-contamination
AMR, Antimicrobial

BI, National Center for

tabase; MD, Molecular

F, Root Mean Square

Free Energy Landscape;

02
between patients and complicating infection control in healthcare

settings (2). According to the World Health Organization (WHO),

antimicrobial resistance (AMR) is expected to cause 10 million

deaths annually by 2050, highlighting its severe impact as a global

health threat (3). Hospital-acquired infections caused by ESKAPE

pathogens, Enterobacter species, P. aeruginosa, Staphylococcus

aureus, Acinetobacter baumannii, Klebsiella pneumoniae, and

Enterococcus faecium are particularly concerning as they employ

diverse mechanisms to resist antibiotics, making treatment

increasingly challenging (4). Addressing P. aeruginosa’s virulence

and its role as a key contributor to AMR highlights the urgent need

for new therapeutic strategies, such as vaccines, to mitigate its

impact (5, 6).

According to the WHO’s 2024 list of critical diseases, P.

aeruginosa is a high-burden resistant bacterium resistant to last-

resort antibiotics (7). Factors contributing to its pathogenicity

include secretion systems, biofilm formation, and toxin production.

Biofilms protect bacteria from host immune responses and
frontiersin.org
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medications, promoting the formation of multidrug-resistant persister

cells that cause recurrent infections, particularly in patients with cystic

fibrosis (8). P. aeruginosa employs its Type III secretion system to

inject effector proteins into the host cells, interfering with cellular

processes and facilitating immune evasion (9). The bacterium exhibits

three primary resistance mechanisms: intrinsic resistance (efflux

pumps, antibiotic-inactivating enzymes, limited outer membrane

permeability), acquired resistance (mutations or horizontal gene

transfer leading to resistance to aminoglycosides, quinolones, and b-
lactams), and adaptive resistance (driven by persister cells and biofilm

formation) (10). Clinical outcomes of P. aeruginosa infections are

generally worse than those caused by other bacteria (11–13). During

the COVID-19 pandemic, despite a decrease in the overall number of

isolates, the percentage of MDR P. aeruginosa isolates increased

significantly, from 23.8% in 2019 to 38.8% in 2020 (14). This trend

was influenced by longer hospital stays, increased ICU admissions,

and a greater reliance on empirical antibiotics, primarily due to the

severity of cases and the extensive use of mechanical ventilation. This

highlights how AMR is exacerbated in healthcare settings during

pandemics (15). With the overuse of antibiotics, slow development of

new drugs, and increasing complexity of healthcare, AMR is expected

to worsen, leading to higher mortality rates and a greater burden on

healthcare systems globally. Traditional antibiotics are becoming

ineffective against MDR and extensively drug-resistant (XDR)

strains, which no longer respond to standard treatments (16). The

limited efficacy of last-resort drugs, such as colistin, coupled with their

toxicity risks, makes managing resistant infections even more

challenging (17). The lack of specific, targeted therapies for resistant

infections leaves healthcare providers with limited options,

underscoring the need for novel treatments and more effective

alternatives to combat AMR (18). Among vaccine development

studies for P. aeruginosa, outer membrane proteins such as Porin F

(OprF) and Lipoprotein I (OprI) have been extensively explored as

potential antigen targets (19).

Vaccines are crucial for preventing infections and reducing

antibiotic use in low- and middle-income countries, significantly

contributing to the fight against AMR. By lowering the incidence of

infectious diseases, vaccines help minimize antibiotic misuse and

overuse, particularly in populations with limited access to

healthcare (20). Vaccines hold significant promise in addressing

AMR by preventing infections, reducing antibiotic dependency, and

curbing the spread of resistant strains (21). However, designing a

vaccine for P. aeruginosa has been challenging due to its complex

genetic diversity, biofilm formation, and immune evasion

capabilities (22). Recent advancements in genomics and

immunoinformatics offer new opportunities to overcome these

obstacles. Computational tools for identifying novel vaccine

candidates pave the way for developing targeted vaccines that can

address the diversity of P. aeruginosa strains and enhance immune

protection (23). In this study, we employed a high-resolution pan-

genomic analysis of complete P. aeruginosa genomes from the

NCBI RefSeq database to identify core, virulence-associated

proteins. Among the prioritized candidates, LptF, a component of

the LPS transport system, has been classified as a lipotoxin (LPT)

due to its ability to trigger strong pro-inflammatory responses via
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TLR2 activation, particularly in cystic fibrosis. LptF is a pro-

inflammatory lipotoxin involved in the excessive induction of IL-

8 in cystic fibrosis and remains underexplored as a vaccine target

(24). Our pan-genome analysis has identified LptF as a key

membrane-associated protein that interacts with virulence factors,

such as OprI and LptE, which supports its potential as a new

therapeutic candidate (25). Our pipeline integrates reverse

vaccinology, structural modeling, and molecular dynamics

simulations to design a multi-epitope subunit vaccine construct.

Unlike previous studies that relied on reference strains, metabolic

enzymes, or limited proteome screening, our approach emphasizes

strain-wide conservation, immune accessibility, and functional

relevance. This integrative, pathogen-focused design offers a

rational and potentially effective strategy for developing a broad-

coverage vaccine against MDR P. aeruginosa. Using linkers, these

epitopes can be linked to effective adjuvants to develop vaccines.
2 Materials and methods

2.1 Genome data retrieval

A comprehensive dataset of P. aeruginosa genomes, all at the

“complete” assembly level, was obtained from the National Center

for Biotechnology Information (NCBI) database (https://

www.ncbi.nlm.nih.gov/) using the NCBI Genome Download

Toolkit (26). To ensure comprehensive genomic representation,

this dataset included a variety of strains, encompassing both clinical

isolates and reference strains.
2.2 Pangenome construction and analysis

P. aeruginosa strains underwent pangenome analysis using the

Roary tool (Version 3.13.0) (27). A diverse set of strains was initially

selected to capture extensive genetic variability by collecting whole

genomes from the NCBI RefSeq database. These genomes were

annotated using Prokka (Version 1.14.6), which converted raw

sequences into functional gene and protein data (28). Prokka is used

to annotate essential genetic elements such as transfer RNA (tRNA),

ribosomal RNA (rRNA), and coding sequences (CDS) for each

genome, ensuring consistent annotation across all strains. Roary

identifies the core and the accessory genes, revealing the conserved

and variable genomic regions among P. aeruginosa strains. Core genes

from all genomes were extracted from the Roary output for further

detailed analysis, providing insights into essential genomic elements

and potential targets for vaccine or therapeutic development. This

pangenome analysis elucidated the genetic composition of the species

and identified potential targets for further therapeutic advancements.
2.3 Prediction of subcellular localization

Following the identification of core genes, we employed the

PSORTb tool (version 3.0.3) to predict their subcellular localization
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(29). PSORTb, a robust tool for prokaryotic genome analysis,

categorized the core genes based on their predicted cellular

locations, including cytoplasmic, periplasmic, and outer

membrane regions. This study primarily focused on outer

membrane proteins due to their accessibility on the bacterial

surface, making them ideal targets for vaccine development. To

confirm that the selected outer membrane-associated genes did not

show homology with the human proteins, we conducted a

comparison against the human proteome using BLASTP analysis

(E-value 0.0001) (30). This step was essential to avoid potential

cross-reactivity and enhance the specificity of vaccine

candidate selection.
2.4 Analysis using the virulence factor
database

The identified outer membrane proteins were analyzed by

comparing them to the Virulence Factor Database (VFDB) using

BLASTP [E-value = 0.0001, protein sequences from the VFDB full

dataset (set B)] (31). This comparative analysis aimed to determine

whether the selected protein candidates possess virulence potential,

thereby assessing their suitability as targets for therapeutic or vaccine

development. By aligning these outer membrane proteins with known

virulence factors, we identified candidates with established roles in

pathogenicity, enhancing the selection of proteins with significant

implications in host-pathogen interactions. The selected target

underwent an additional BLASTP search against the P. aeruginosa

database for further validation (32). This analysis provided insights

into the protein’s potential role, supporting its relevance for

subsequent stages of the study.
2.5 Immunogenic potential and structural
characterization of vaccine candidate

We evaluated the selected sequence’s antigenic potential using the

VaxiJen v2.0 (https://www.ddg-pharmfac.net/vaxijen/VaxiJen/

VaxiJen.html) server (33) to determine its suitability as an

antigenic candidate. The sequence was analyzed with Allertop

v2.0 (34) to assess allergenic risk, ensuring it lacked properties

that could trigger allergic reactions. We used the ProtParam tool

(https ://web.expasy.org/protparam/) to determine the

physicochemical properties, including molecular weight,

instability index, grand average of hydropathicity (GRAVY), and

hydrophobicity (35). These analyses provided essential insights into

the protein’s suitability for vaccine development by assessing its

immunogenicity, safety, and stability.
2.6 Signal peptide prediction analysis

SignalP 6.0 (https://services.healthtech.dtu.dk/services/SignalP-

6.0/) is a sophisticated bioinformatics tool designed to detect signal

peptides in protein sequences and pinpoint their cleavage sites (36).
Frontiers in Immunology 04
Utilizing protein language models (LMs), it analyzes the N-terminal

region of proteins. Based on the predicted pathway and cleavage

mechanism, SignalP classifies signal peptides into various types,

such as Sec/SPI and Tat/SPI. The tool provides crucial scores,

including the S-score for signal peptide probability and the C-

score for predicting cleavage sites. This is essential for developing

vaccines, as it helps identify secreted or surface-exposed proteins

that could serve as potential immunogenic targets.
2.7 Prediction of linear B-cell epitopes

For the prediction of linear B-cell epitopes, we utilized BepiPred

2.0, which relies on the Immune Epitope Database (IEDB) Analysis

resource (https://www.iedb.org/) (37, 38). This tool analyses amino

acid propensity scores and identifies patterns typical of B-cell

epitopes, using propensity scales to identify regions likely to

consist of these epitopes. Improved accuracy of predictions is

achieved by training on known antigen-antibody complexes, with

the Random Forest method refining the results. The antigenic

potential of the predicted epitopes was further assessed using

VaxiJen v2.0 to determine their ability to stimulate an immune

response. In this study, it served as an additional screening tool to

prioritize epitopes (B and T Cell epitopes) with higher intrinsic

antigenic potential before subjecting them to downstream

immunoinformatics and structural analyses. Allertop v2.0

assessed allergenicity, ensuring the epitopes would not trigger

allergic reactions. Additionally, the toxicity profiles of the selected

epitopes were evaluated using the ToxinPred server (39), making

sure they had a low risk of allergic reactions was a key step in

designing the vaccine.
2.8 Prediction of T-cell epitopes (MHC
Class I and II)

Epitope prediction for helper (HTL) and cytotoxic (CTL) T

lymphocytes was performed using the NetMHCpan 4.1 algorithm

provided by the Immune Epitope Database (IEDB) Analysis

Resource (40). The focus was on non-structural (NS) proteins,

which are conserved across various strains of P. aeruginosa and

serve as key targets for immune responses. A human-specific

approach was employed for CTL epitopes, identifying 10-mer

peptides (ten amino acids long) that included 27 common HLA

alleles as a reference panel. These epitopes were chosen for their

ability to bind to MHC class I molecules and activate cytotoxic T

cells, which is essential for targeting and eliminating infected cells.

We selected T-cell epitopes based on recommendations from the

IEDB for binding predictions. Specifically, we selected epitopes with

a percentile rank of ≤ 1% for MHC class I, and a median percentile

rank of ≤20% for MHC class II. These thresholds represent high and

moderate affinity binders, and we mapped them to our scoring scale

(≥ 0.60 for class I and ≥ 0.75 for class II) to include biologically

relevant epitopes (41). For HTL epitopes, 15-mer peptides likely to

stimulate helper T cells were identified using the IEDB-
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recommended method. These epitopes were designed to bind to

MHC class II molecules, thereby activating B cells and initiating the

humoral immune response. The input included antigenic, non-

allergenic, and NS proteins from P. aeruginosa to ensure the

predicted epitope’s efficacy and safety for vaccine development.
2.9 Prediction of interferon-g inducing
MHC-II epitopes

In this study, the IFNepitope server was used to predict MHC-II

epitopes capable of inducing Interferon-gamma (IFN-g) responses.

This web-based tool leverages a comprehensive dataset from the

IEDB, comprising 6,728 non-inducing epitopes and 3,705 confirmed

IFN-g-inducing epitopes (42). Utilizing the Support Vector Machine

(SVM) technique, the server combines sequence analysis with

predictive algorithms to identify epitopes with a high potential to

stimulate IFN-g production. We also analyzed the IL-4 prediction web

server (43), the IL-6 prediction web server (44), the IL-10 prediction

web server (45), and the IL-13 prediction web server (46). Epitopes

were selected for vaccine development based on their prior assessment

for antigenicity and non-allergenicity. This tool also prioritizes safe

and immunologically relevant epitopes, which boosts the chances of a

successful immune response.
2.10 Analysis of population coverage

The finalized T-cell epitopes and their associated HLA binding

data were evaluated using the IEDB’s Population Coverage module

to determine their global distribution across diverse populations

(47). This analysis provided valuable insights into the epitope’s

coverage across different demographics and regions, enhancing our

understanding of their potential immunological effectiveness. By

examining the global distribution of these epitopes, the study

highlighted their relevance to diverse demographic groups. This

crucial step demonstrated the epitope’s ability to address global

healthcare needs, ensuring the vaccine candidate’s potential to

protect a wide range of populations, thereby increasing its

worldwide applicability and efficacy.
2.11 Vaccine design and construction

This study enhanced the vaccine design by incorporating carefully

selected adjuvants, linkers, and epitopes to amplify the immune

response. Two adjuvants were selected for their immune-boosting

properties: RS-09 (APPHALS), a short peptide mimicking bacterial

lipopolysaccharide, and Beta-defensin, a potent antimicrobial peptide

known for its strong immunological activation (48, 49). Four linkers

were used to achieve the best positioning and presentation of the

epitopes. The EAAAK linker connected the adjuvants to the epitopes.

This rigid helical linker promotes spatial separation between the

adjuvant and the epitope region, thereby minimizing potential

structural interference and enhancing adjuvant-mediated immune
Frontiers in Immunology 05
activation. The Alanine-Alanine-Tyrosine (AAY) linker was employed

between MHC-I epitopes to enhance processing and presentation by

MHC class I molecules. The MHC-II epitopes were separated using the

Glycine-Proline-Glycine-Proline-Glycine (GPGPG) linker, which is a

flexible and hydrophilic linker that aids in preserving epitope integrity

and enhances recognition by helper T cells. Finally, the KK (Lysine-

Lysine) linker was used to connect B-cell epitopes, ensuring adequate

exposure for B-cell activation while maintaining their conformational

flexibility and immunogenicity (50). These strategic additions of

adjuvants and linkers were designed to optimize the vaccine’s ability

to elicit strong and targeted immune responses, effectively combating

the intended disease.
2.12 Analysis of the physicochemical
properties of the formulated vaccines

The ProtParam server was utilized to conduct a physicochemical

analysis of the developed vaccine candidates, assessing their stability

and suitability for development (51). We analyzed the amino acid

sequences to identify key structural and functional features. We

calculated the molecular weight to estimate the proteins’ size,

solubility, and potential antigenicity. To assess their biochemical

behavior under physiological conditions, we determined the

theoretical isoelectric point (pI), which indicated their net charge

and acid–base characteristics. We also computed the instability index

to predict the likelihood of protein degradation. However, the aliphatic

index was evaluated to determine temperature stability based on the

contribution of aliphatic amino acids. The GRAVY index was also

evaluated to determine the vaccine’s overall hydrophobic or

hydrophilic nature, aiding in understanding its solubility and stability.
2.13 Secondary structure analysis and
prediction

The secondary structure of the developed vaccine was predicted

using the PSIPRED tool (52), a widely used online resource for protein

structure annotation and prediction. PSIPRED offers comprehensive

protein analysis tools (53), with a focus on structural feature

prediction. This analysis yielded valuable insights into how the

vaccine might interact, its stability, and its functional properties.

After entering the amino acid sequence of the final vaccine

construct, the PSIPRED server analyzed the sequence and predicted

the secondary structure, identifying coil, b-sheet, and a-helical
regions. These predictions provide crucial insights about the overall

structure and organization of the vaccine’s protein backbone.
2.14 Prediction and computational
refinement of tertiary structure

To predict the three-dimensional (3D) structure of the

developed vaccine and facilitate docking analysis, the ROBETTA

server and AlphaFold (54, 55), which employ deep-learning
frontiersin.org
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techniques for accurate protein modeling, were utilized. The

complete amino acid sequence of the vaccine was entered into

both platforms, resulting in the prediction of multiple 3D structures

in PDB format. These structures were enhanced in quality and

accuracy using the GalaxyRefine tool (56). This tool refines the

models by correcting structural errors, optimizing energy levels, and

minimizing steric clashes. A comparative analysis of the refined

models was conducted, and the best-performing structure, as

determined by structural validation using a Ramachandran plot

and other quality metrics, was selected for further docking studies.
2.15 Molecular docking and interaction
studies

We employed molecular docking analysis to examine the

interactions between the vaccine construct and Toll-like receptors

TLR2 and TLR4, which are critical mediators of innate immune

responses to infection. TLR2 was selected for its ability to detect

various pathogen-associated molecular patterns and initiate immune

responses (57). RS09 is a synthetic TLR4 agonist peptide that stimulates

innate immunity. The TLR4 receptor recognizes a TLR4 agonist linked

to the N-terminus of the vaccine construct. When TLR4 is activated, it

triggers an intracellular signaling process via the NF-kB pathway,

resulting in the production of inflammatory cytokines (58, 59). We

retrieved the 3D structures of TLR2 and TLR4 from the RCSB PDB

database, using IDs 2Z7X and 3FXI for TLR2 and TLR4, respectively,

for further analysis (60, 61). Before docking, we thoroughly prepared

the receptor structures by removing heteroatoms, water molecules, and

bound ligands to ensure accurate analysis. This step was vital to prevent

any interference during the docking process. Docking simulations were

pe r f o rmed us ing th e HDOCK web s e r v e r (h t tp : / /

hdock.phys.hust.edu.cn/) (62). It employs a hybrid docking

algorithm that combines template-based and free docking

methods. In this study, we did blind docking to allow unbiased

prediction of potential interaction sites between the vaccine

construct and immune receptors. HDOCK, which is known for

its intuitive interface and robust protein-protein docking

capabilities, facilitated the simulation process by leveraging the

refined 3D structure of the vaccine and the immune receptor

models of TLR2 and TLR4. The docking affinity scores, indicating

the strength of interaction between the vaccine and the receptors,

were used to evaluate the results. Additionally, key residues

involved in binding interactions were identified, providing

insights into how these immune receptors recognize the vaccine.

This study helps elucidate how the vaccine may effectively interact

with TLR2 and TLR4, key components of the innate immune

system, to trigger an immune response.
2.16 Molecular dynamics simulation
analysis

To conduct molecular dynamics (MD) simulations for 1000ns, we

utilized the CHARMM-GUI server’s Solution Builder protocol,
Frontiers in Immunology 06
applying the CHARMM36 force field to generate the necessary input

files (63). The TIP3P water model was used to solvate the protein-

protein complexes, creating a realistic simulation environment by

enclosing the system in a periodic cubic box extending 10 Å from

the protein atoms in all directions (64). Counter ions were added to

neutralize the system, ensuring overall charge balance. The Verlet cutoff

method was employed with a 10 Å cutoff distance, striking a balance

between computational efficiency and accuracy to calculate electrostatic

and van der Waals interactions. Bond constraints were applied using

the LINCS algorithm to stabilize the simulation by maintaining fixed

bond lengths. The Particle Mesh Ewald (PME) method was used to

precisely calculate long-range electrostatic interactions, enhancing

simulation accuracy in systems with periodic boundary conditions

(65). To remove undesirable interactions and stabilize the system, the

solvated system was subjected to energy minimization using the

steepest descent technique (66). Two equilibration phases followed:

the first in the NVT ensemble (constant Number of particles, Volume,

and Temperature) to stabilize temperature, and the second in the NPT

ensemble (constant number of particles, Pressure, and Temperature) to

stabilize pressure. Proper thermostat and barostat techniques

maintained constant temperature and pressure levels. This dual

equilibration ensured system stability before the production run. The

simulation recorded coordinates every 1 ps with a time step of 2 fs,

striking a balance between computational efficiency and accuracy.

CHARMM-GUI provided Python scripts to convert topology (top)

and parameter (itp) files into GROMACS-compatible formats,

simplifying input file preparation (67). Following the post-

production run, we performed thorough trajectory analyses,

including calculating Root Mean Square Deviation (RMSD) for

structural stability, Root Mean Square Fluctuation (RMSF) for

flexibility, hydrogen bond analysis (HBOND) for molecular

interactions, Principal Component Analysis (PCA) for dominant

motion patterns, Buried Surface Area (BSA) for evaluating binding

stability, and Free Energy Landscape (FEL) analysis for the

conformational states of the protein-protein complexes. Free energy

calculations were performed for the interaction between TLR

complexes and the vaccine construct (POA_V_RS09,

POA_V_BDEF) using the MM-PBSA method with a Poisson-

Boltzmann approach (68, 69). These approaches account for various

energy components, including bonded interactions, van der Waals

forces, electrostatic effects, and both polar and non-polar solvation

energies. Here inMM-PBSA, the polar solvation energy is derived from

the Poisson–Boltzmann equation, utilizing the molecular dynamics

(MD) trajectory to compute interaction energies throughout the

simulation. These analyses provided valuable insights into structural

stability, flexibility, interaction dynamics, and potential conformational

changes, enhancing our understanding of protein-protein interactions

over time (70–72).
2.17 In silico cloning and expression
analysis

To ensure optimal expression in the desired host, the gene of

interest was first subjected to codon optimization using the
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GenScript program (www.genscript.com), aligning the gene

sequence with the host’s preferred codon usage (73). Using

SnapGene software (https://www.snapgene.com/), we cloned the

vaccine construct via in silico. The result showed that the gene of

interest and the pET-28a(+) plasmid did not share any restriction

sites. This was addressed by adding specific nucleotide sequences to

the gene’s N-terminal and C-terminal ends, which matched the

restriction sites XhoI and NdeI, thereby aiding in cloning. These

sequences provided suitable restriction sites for the accurate

insertion of the gene into the plasmid. The appropriate

recombinant plasmid construct was then produced by cloning the

codon-optimized gene into the pET-28a(+) plasmid in silico using

additional restriction sequences (74).
2.18 C-IMMSIM-based immune simulation

The C-IMMSIM server (https://kraken.iac.rm.cnr.it/C-

IMMSIM/index.php) (75), a widely used tool for simulating

immune responses, was employed to evaluate the in-silico

immunological response of the developed vaccine. This server

utilizes a simulation-based framework to replicate the function of

the human immune system and its organs, with a particular

emphasis on primary lymphoid tissues. It uses a position-specific

scoring matrix, enhanced by machine learning algorithms, to

predict immune reactions. To achieve a total simulation period of

1050 steps, the vaccine and adjuvant were given in three doses: an

initial dose, a second dose administered 84 days later, and a third

dose administered 1050 days later, spaced eight hours apart. The

adjuvant concentration was set to 100, and the injected antigen

amount was 1000, following the server’s default parameters. This

setup enabled a comprehensive evaluation of the immune response

triggered by the vaccine or the adjuvant.
3 Results

3.1 NCBI data retrieval

A diverse array of 864 complete P. aeruginosa genomes,

encompassing strains such as PAO1, PA14, PAK, LESB58, and

CF39S, was sourced from the NCBI Assembly database utilizing the

NCBI-genome-download toolkit. Supplementary Table S1 contains

detailed information on all included genomes, ensuring a

comprehensive genomic representation for subsequent analyses.
3.2 Pangenome analysis

A thorough pangenome analysis was performed on 864 complete

genomes of P. aeruginosa sourced from the NCBI Assembly database.

Genome annotation was executed using Prokka, followed by

pangenome analysis with Roary, which identified a total of 63,239

genes. Of these, 3,325 were classified as core genes. Within this core
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set, 296 genes were consistently present across all genomes, with 79

hypothetical genes excluded from further analysis. Additionally, 3,149

accessory genes were identified in 15–95% of the genomes. The

significant genomic diversity revealed by this open pangenome

analysis highlights the extensive variability within P. aeruginosa

(Figure 1). The figures were generated using R. This variability

provides crucial insights into strain-specific adaptations,

pathogenicity, and antibiotic resistance. Furthermore, identifying

universally conserved targets among the core genes points to

promising candidates for vaccine development applicable across

diverse P. aeruginosa strains. These findings are pivotal in guiding

future research and therapeutic strategies.
3.3 Subcellular localization and virulence
prediction

PSORTb analysis identified three outer membrane proteins, while

the remaining proteins were classified as cytoplasmic or belonging to

other categories (Table 1). Subsequent BLASTP analysis against the

human proteome in NCBI showed no homologous hits for the outer

membrane proteins, ensuring their specificity and minimizing the risk

of cross-reactivity in vaccine development. BLASTP analysis against

the VFDB revealed that only the PAL_1 protein matched known

virulence factors, confirming its potential as a relevant target for

further therapeutic or vaccine development. Further analysis of PAL_1

against the P. aeruginosa database identified the protein as LptF, with

an e-value of 0. To validate the conservation of the selected vaccine

target LptF across diverse P. aeruginosa strains, a multiple sequence

alignment was performed using LptF sequences from 864 genomes

using Python (76). The conservation analysis revealed that over 98%

of the amino acid positions were fully conserved (with 100% identity),

and a pairwise sequence identity of greater than 99% was observed

among all strains. A corresponding heatmap of the pairwise identity

matrix further confirmed the uniform conservation pattern

(Supplementary Figure S1). These results underscore the

evolutionary stability of LptF and support its candidacy as a

universal target for vaccine or therapeutic development.
3.4 Analysis of immunogenic and
physicochemical characteristics

The ProtParam tool was used to predict the physicochemical

characteristics of the LptF protein. It has a molecular weight of 28.5

kDa and displays slight instability under standard laboratory

conditions, with an instability index of 42.30. The GRAVY index

of -0.574 indicates its hydrophilic nature. With an aliphatic index of

80.15, which reflects the protein’s thermostability, LptF is

considered a strong candidate for vaccine development due to its

stability at physiological temperatures. Its potential as an

immunogenic candidate is further supported by an antigenicity

score of 0.6442 (classified as likely antigenic with a threshold of 0.4)

and its classification as non-allergenic by AllerTOP.
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3.5 Signal peptide prediction

The analysis identified a Sec/SPII cleavage site at position 20 of the

protein sequence, indicating the presence of a signal peptide that is

likely cleaved during the maturation process via the Sec-dependent

secretion pathway or the Sec/SPII system (Figure 2). With the signal

peptide removed, the mature protein sequence begins at position 20.

The signal peptide was excluded from further analysis, and the mature

protein sequence was used in subsequent bioinformatics analyses. This

sequence underwent secondary structure prediction, functional

annotation, and potential epitope mapping, all of which are essential

for understanding the protein’s biological function and its potential use

in vaccine design. This approach ensures that only the biologically

relevant mature protein is considered for downstream analyses.
3.6 Prediction of B-cell epitope

The BepiPred Linear Epitope Prediction 2.0 tool was initially used

to predict B-cell epitopes, identifying nine epitopes for the LptF protein.

One of these epitopes, a 72-mer, was re-analyzed to ensure no potential

epitopes were missed. This re-evaluation revealed eight additional

epitopes (Figure 3), with figures generated in R (77). They were
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carefully selected based on several critical factors to confirm the

suitability of the identified epitopes for vaccine development. VaxiJen

v2.0 predicted high antigenicity scores for these epitopes, indicating

their potential to trigger a robust immune response. Additionally, their

non-toxic nature was confirmed using ToxinPred, ensuring they would

not cause adverse effects. The non-allergenic properties of the epitopes

were verified using AllerTOP v2.0, further ensuring their safety. As

shown in Table 2, the selected epitopes were chosen for further research

after careful consideration of these factors. Supplementary Table S2

provides a detailed analysis of the epitope’s suitability for inclusion in

potential vaccine formulations, including their toxicity, allergenicity,

and antigenicity profiles.
3.7 Prediction of T-cell epitope (MHC-I and
MHC-II)

The MHC-I and MHC-II epitopes were predicted for the LptF

protein sequence using NetMHCpan 4.1 from IEDB. The finalized

epitopes are presented in Tables 3, 4, with detailed T-cell epitope

analyses in Supplementary Tables S3, S4. While VaxiJen v2.0 is

primarily designed for complete proteins, it was utilized here as an

additional tool to assess the antigenicity of both MHC class I and II T
FIGURE 1

Pangenome analysis of P. aeruginosa genomes. (A) Pie chart showing the distribution of core, accessory, and unique genes. (B) Comparison of
conserved genes with the total number of genes, highlighting genetic conservation across genomes. (C) Unique versus new gene ratio, emphasizing
genome variability. (D) The number of genes identified within the pangenome provides insights into overall genomic diversity and its potential
impact on vaccine development.
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cell epitopes, supporting selection alongside MHC binding,

immunogenicity, and toxicity criteria. Initially, 6,265 MHC-I epitopes

were predicted and filtered based on a rank cutoff of 0.5 and a core

score cutoff of 0.60. Similarly, 6,130 MHC-II epitopes were filtered

using a rank cutoff of 2 and a score of 0.75. These thresholds were

chosen because lower rank and score values indicate a higher binding

affinity to MHC alleles, which is crucial for identifying effective

immunogenic candidates. The finalized epitopes were further

assessed for toxicity, antigenicity, and allergenicity to confirm their

immunogenic potential while minimizing the risk of adverse reactions.

All selected epitopes were predicted to be IL-10 inducers, suggesting

their potential to regulate immune responses and prevent excessive

inflammation. Notably, epitope 3 exhibited balanced induction of IL-4,

IL-6, IL-10, and IL-13, making it a strong vaccine candidate. Epitopes 2

and 4 also induced IL-6 alongside IL-10, supporting a mixed pro-

inflammatory and regulatory profile (Supplementary Table S5).

Interferon-g scores were computed for MHC-II epitopes to rank

those that could elicit a strong immunological response. The chosen

MHC-I andMHC-II epitopes, identified according to these criteria, are

presented in Table 4.
3.8 Vaccine design and conservancy
evaluation

Two vaccine constructs were developed, incorporating adjuvants

such as RS-09 and Beta-defensin and with the predicted epitopes from
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the LptF protein. Each vaccine included the selected epitopes,

comprising five MHC-II, four MHC-I, and five B-cell epitopes.

Fifteen epitopes were incorporated into the final vaccine constructs

(Figure 4). The sequences and corresponding lengths of both

constructions are described in Table 5, and the proposed vaccines

ranged from 248 to 283 amino acids. The combined term for these

constructs was POA_V. The presence of the chosen epitopes in

P. aeruginosa was verified using a BLASTP analysis. The results

demonstrated 100% sequence similarity across P. aeruginosa strains,

indicating that the chosen epitopes are conserved and present in

all strains.
3.9 Analysis of population coverage

Based on estimated population coverage, the vaccine could

potentially reach 87.35% of the global population. Tables 3, 4

comprehensively analyse the epitope distribution, demonstrating

its adaptability across different regions and demographic groups.

Additionally, Figure 5 visually represents the global coverage,

underscoring the vaccine’s potential for widespread impact

(Supplementary Table S6, Supplementary Figure S2). Notably,

regions such as the United States (98.33%), Kenya (98.58%),

Germany (98.26%), Brazil (97.93%), France (98.04%), and Canada

(95.58%) showed high predicted population coverage, emphasizing

the vaccine’s potential effectiveness across diverse geographic and

genetic backgrounds. Moderate coverage was observed in countries

such as India (85.56%), Japan (87.60%), and China (89.81%),

further confirming the vaccine’s adaptability in densely populated

and genetically diverse regions. On the other hand, lower coverage

was observed in regions such as the United Kingdom (56.38%),

Hong Kong (56.64%), and American Samoa (56.40%), which may

be attributed to regional HLA allele distribution patterns. Overall,

the population coverage analysis strongly supports the broad

usability and potential of the designed vaccine to fight the

targeted pathogen worldwide.
TABLE 1 Subcellular localization predictions for selected proteins based
on PsortB analysis.

Sno Protein PSORTb result

1 oprB OuterMembrane – 10.00

2 bamB OuterMembrane – 10.00

3 pal_1 OuterMembrane – 10.00
FIGURE 2

Signal peptide prediction for the LptF protein sequence was performed using SignalP.
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3.10 Physicochemical property analysis

The physicochemical evaluation of the vaccine candidates

POA_V_RS09 and POA_V_BDEF underscores their potential

viability. POA_V_RS09, with a molecular weight of 25,734.39 Da

comprising 248 amino acids, has an isoelectric point (pI) of 9.43. It
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exhibits hydrophilicity, as indicated by a GRAVY score of -0.856,

and is considered stable with an instability index of 23.29. Similarly,

POA_V_BDEF has a molecular weight of 29,763.15 Da, a pI of 9.53,

and consists of 283 amino acids. Its instability index, 26.34, also

suggests stability, and the GRAVY score of -0.761, which confirms

its hydrophilic nature. These favorable stability and solubility
FIGURE 3

B-cell Epitope Prediction. (A) depicts the prediction of epitopes from the entire protein sequence, while (B) highlights the re-analyzed 72-mer
epitope to ensure no potential epitope is overlooked.
TABLE 2 Predicted B-cell epitopes for the LptF protein, identified as potential targets for vaccine development.

No Start End Peptide Length Antigenicity Score Probable Antigen Allergenicity Toxicity

8 201 217 YGKEYPVASNGTSSGRA 17 1.3767 Antigen Non-allergen Non-toxic

5 127 136 DLDKSDLKPG 10 1.1824 Antigen Non-allergen Non-toxic

3 18 37 LQSQPDATKVAALETKDAGD 20 0.7914 Antigen Non-allergen Non-toxic

1 5 13 GEDQRDVDQ 9 1.4255 Antigen Non-allergen Non-toxic

5 42 51 SAQRAQARLD 10 1.2283 Antigen Non-allergen Non-toxic

8 62 69 SQLNAKQT 8 1.4671 Antigen Non-allergen Non-toxic
fro
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properties render both candidates promising for further validation

as vaccine prospects.
3.11 Secondary structure, tertiary structure,
and refinement

The secondary structure of the vaccines was estimated using the

PSIPRED approach, concentrating on the ratios of coils, b-sheets, and
a-helices due to their immunogenic potential. PSIPRED’s analysis of the

vaccine candidates POA_V_RS09 and POA_V_BDEF revealed distinct

structural features. POA_V_RS09 comprised 58.87% alpha helices,

4.03% beta strands, and 37.10% random coils. In contrast,

POA_V_BDEF consisted of 50.53% alpha helices, 7.07% beta strands,

and 42.40% random coils (Supplementary Figure S3). These findings

indicate a predominance of alpha helices and a significant presence of

coils in both candidates, with a relatively low content of beta strands.

This structural profile suggests a balance between stability and flexibility,

which is beneficial for antigenic presentation in vaccine design. Using

ROBETTA and AlphaFold, we modelled the vaccine’s 3D structures.

Following structure generation, we refined all the models using

GalaxyRefine to improve stereochemical accuracy. Among the

generated models, Model 1 demonstrated superior performance for

both vaccines, with RMSD values ranging from 0.9744 to 0.9889.

Further validation was conducted using QMEAN4 scores and

Ramachandran plot analysis to evaluate the structural quality at both

global and local levels. For the POA_V_BDEF construct, the ROBETTA

model yielded a QMEAN4 score of –0.72, while the AlphaFold model
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scored –2.67. Similarly, for the POA_V_RS09 construct, the ROBETTA

model scored –0.19, compared to –2.24 for the AlphaFold prediction.

QMEAN4 integrates four structural descriptors and is widely used to

evaluate model quality in the absence of a native structure. These results

indicate that the ROBETTA-generated models exhibit superior

reliability and structural accuracy for both constructs. Further

structural assessment using Ramachandran plot analysis (Table 6)

revealed that ROBETTA models have over 96% of residues in favored

regions, with only 0.71–0.81% falling in the disallowed areas. In contrast,

AlphaFold models had a higher percentage of disallowed residues (up to

2.44%), particularly in functionally important loops and epitope-

accessible regions. While AlphaFold has shown remarkable success in

protein structure prediction and has been used in several recent vaccine

design studies with promising results (78), we opted for ROBETTA-

refined models in our research. This decision was based on comparative

structural validation, where ROBETTA constructs exhibited fewer steric

clashes and better Ramachandran statistics. Therefore, the ROBETTA-

generated models were chosen for both POA_V_RS09 and

POA_V_BDEF constructs and used in all downstream docking and

immunological simulations to ensure structural reliability and predictive

robustness. The Ramachandran plot of POA_V_RS09 and

POA_V_BDEF shows that the structural value exceeds 90% of

residues in favored regions, indicating a good overall geometry

(Supplementary Figure S4). For the POA_V_BDEF construct,

residues like Ser-26 and Gly-134 were located in disallowed areas,

while for the POA_V_RS09 construct, residues Pro-100 and Gly-141

were also found in similar disallowed areas. The vaccine models are

detailed in Supplementary Figure S5.
TABLE 3 Finalized MHC-I epitopes identified for the LptF protein.

Allele Length Peptide Score Rank Antigenicity Score Antigen Allergenicity Toxicity

HLA-A*01:01 10 YTDSTGSANY 0.9955 0.01 1.3013 Antigen Non-Allergen Non-Toxin

HLA-B*57:01 10 QTSRGTMVTF 0.7892 0.22 0.5176 Antigen Non-Allergen Non-Toxin

HLA-B*40:01 10 GEDQRDVDQL 0.6866 0.16 1.0027 Antigen Non-Allergen Non-Toxin

HLA-A*31:01 10 KSDLKPGAMR 0.6452 0.19 0.9618 Antigen Non-Allergen Non-Toxin
f

TABLE 4 Finalized MHC-II epitopes identified for the LptF protein, optimized for vaccine design.

Allele Peptide Score Rank Antigenicity Score Antigen Allergenicity IFN-g Score

HLA-DRB1*03:01 VEVTISNDAKPVAPR 0.9766 0.05 0.4458 Antigen Non-Allergen 0.0856

HLA-
DQA101:02/DQB106:02

VLRNAEAQLQNASAQ 0.8975 0.01 0.7313 Antigen Non-Allergen 0.5321

HLA-DRB1*01:01 EAQLQNASAQRAQAR 0.8624 0.61 1.3141 Antigen Non-Allergen 0.7388

HLA-
DQA101:02/DQB106:02

IVLRNAEAQLQNASA 0.8601 0.03 0.7121 Antigen Non-Allergen 0.2149

HLA-
DQA105:01/DQB103:01

EAQLQNASAQRAQAR 0.8171 0.31 1.3141 Antigen Non-Allergen 0.7388

HLA-
DQA101:02/DQB106:02

TIVLRNAEAQLQNAS 0.7961 0.10 0.5276 Antigen Non-Allergen 0.2391

HLA-
DQA101:02/DQB106:02

EAQLQNASAQRAQAR 0.7768 0.13 1.3141 Antigen Non-Allergen 0.7388
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3.12 Molecular docking analysis

The HDOCK server performed docking tests to evaluate the

interactions between the suggested vaccine candidates POA_V_RS09

and POA_V_BDEF and the immunological receptors TLR2 and

TLR4, respectively. These receptors are vital in recognizing

pathogen-associated molecular patterns (PAMPs) and triggering

immune responses, such as cytokine production and the

recruitment of immune cells. The results indicated strong binding

affinities for all complexes, with POA_V_RS09 achieving the highest

docking scores of -310.2 (kcal/mol) for TLR4 and -286.76 (kcal/mol)

for TLR2 (Table 7, Figure 6). The MD simulations were conducted to

further validate the interactions by examining the stability and

conformational behavior of the docked complexes under

physiological conditions. Both vaccine candidates exhibited stable

interactions, with minimal fluctuations at the receptor-binding

interface, suggesting their ability to engage immune receptors
Frontiers in Immunology 12
and potentially elicit robust immune responses effectively. These

findings highlight the promising immunogenic potential of the

designed vaccines.
3.13 Molecular dynamics simulation
analysis

The MD simulations for the vaccine complexes (POA_V_RS09

and POA_V_BDEF) with TLR2 and TLR4 were conducted over

1000 ns and revealed notable differences in stability and interaction

properties (Table 8). The RMSD (backbone) value indicated that the

POA_V_RS09 vaccine complex was the most stable, with the

TLR4_POA_V_RS09 complex showing the lowest RMSD

(0.57 ± 0.06 nm), followed by TLR2_POA_V_RS09 (0.80 ± 0.19)

nm. These complexes remained stable throughout the 1000-ns MD

simulation. In contrast, the POA_V_BDEF-based vaccine
FIGURE 4

Graphical representation showcasing the formulation of the designed vaccine.
TABLE 5 Amino acid sequences and sequence lengths of the finalized vaccine constructs.

POA_V Sequence Length

POA_V_BDEF

FTQGISNPSSCRRNRGFCLAFWCPGSMRQIGTCFGFPVKCCREAAAKSQLNAKQTKKGEDQR
DVDQKKYGKEYPVASNGTSSGRAKKSAQRAQARLDKKDLDKSDLKPGKKLQSQPDATKVAAL
ETKDAGDGPGPGVEVTISNDAKPVAPRGPGPGVLRNAEAQLQNASAQGPGPGEAQLQNASAQ
RAQARGPGPGIVLRNAEAQLQNASAGPGPGTIVLRNAEAQLQNASAAYYTDSTGSANYAAYQT
SRGTMVTFAAYGEDQRDVDQLAAYKSDLKPGAMR

283

POA_V_RS09

APPHALSEAAAKSQLNAKQTKKGEDQRDVDQKKYGKEYPVASNGTSSGRAKKSAQRAQARLDK
KDLDKSDLKPGKKLQSQPDATKVAALETKDAGDGPGPGVEVTISNDAKPVAPRGPGPGVLRNAE
AQLQNASAQGPGPGEAQLQNASAQRAQARGPGPGIVLRNAEAQLQNASAGPGPGTIVLRNAEA
QLQNASAAYYTDSTGSANYAAYQTSRGTMVTFAAYGEDQRDVDQLAAYKSDLKPGAMR

248
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complexes had higher RMSD values, with TLR2_POA_V_BDEF

(1.08 ± 0.14 nm) and TLR4_POA_V_BDEF (1.03 ± 0.10 nm),

indicating more significant structural deviations and less stable

interactions (Figure 7A). These complexes slightly fluctuated at

the beginning of the MD simulation (0-200ns), and later they

equilibrated at 1 nm. To investigate the observed fluctuations, we

analyzed the backbone RMSD and Calpha RMSF of TLR2 and

TLR4. Both receptors exhibited considerable structural stability,

with average RMSD values of TLR2 in POA_V_BDEF at (0.33 ±

0.03 nm), TLR2 in POA_V_RS09 at (0.40 ± 0.07 nm), TLR4 in

POA_V_BDEF at (0.26 ± 0.03 nm), and TLR4 in POA_V_RS09 at

(0.23 ± 0.03 nm). The RMSF profiles also indicated stable

conformations across all complexes, TLR2 in POA_V_BDEF at

(0.15 ± 0.08 nm), TLR2 in POA_V_RS09 at (0.16 ± 0.14 nm), TLR4

in POA_V_BDEF at (0.15 ± 0.07 nm), and TLR4 in POA_V_RS09
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at (0.14 ± 0.07 nm), as illustrated in Supplementary Figure S6. The

predicted POA_V_BDEF complex displayed enhanced flexibility,

primarily attributed to the presence of less structured epitope and

linker regions Supplementary Figure S7. This inherent structural

looseness likely accounts for the comparatively elevated average

RMSD observed across its associated complexes. When coming to

the vaccine stability in residue wise, RMSF (Calpha) analysis

showed that the RS09 vaccine complexes were more rigid, with

the TLR4_POA_V_RS09 complex showing the lowest RMSF (0.21

± 0.07 nm) and the TLR2_POA_V_RS09 complex showing (0.32 ±

0.18 nm), indicating minimal flexibility at the interaction interface

and that all the residues were around 0.5nm. Conversely, the

POA_V_BDEF-based vaccine complexes had higher RMSF

values, with TLR2_POA_V_BDEF (0.64 ± 0.23 nm) and

TLR4_POA_V_BDEF (0.47 ± 0.25 nm), suggesting increased
FIGURE 5

Global population coverage of the designed vaccine was analyzed using the IEDB tool, considering HLA allele frequencies across regions.
TABLE 6 Structural validation of POA_V_RS09 and POA_V_BDEF-based vaccine models generated using Robetta and AlphaFold.

Metric Robetta (RS09) AlphaFold (RS09) Robetta (BDEF) AlphaFold (BDEF)

Total residues 248 248 283 283

Favored regions 96.34% 91.46% 96.09% 92.53%

Allowed regions 2.85% 6.10% 3.20% 5.69%

Disallowed regions 0.81% 2.44% 0.71% 1.78%

Disallowed residues Pro-100, Gly-141
Asp-28, Asp-30, Pro-138,
Glu-227, Asp-228, Gln-229

Ser-26, Gly-134
Val-75, Leu-112, Pro-175,
Gly-261, Gly-280

Quality
Better geometry &
fewer outliers

More outliers Better geometry More outliers

QMEANDisCo Global Score 0.41 ± 0.05 0.55 ± 0.05 0.52 ± 0.05 0.48 ± 0.05

QMEAN –0.19 –2.24 –0.72 –2.67
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flexibility and dynamic behaviour (Figure 7B). In contrast, the

POA_V_BDEF vaccine construct exhibited pronounced

fluctuations, particularly in regions interacting with TLR4 and

TLR2. For the TLR4_POA_V_BDEF complex, notable flexibility

was observed in the N-terminal linker region (residues 53–57), as

well as in combined epitope and linker segments spanning residues

50–85, 165–180, and 207–216, in addition to the C-terminal end.

Similarly, the TLR2_POA_V_BDEF complex showed continuous

fluctuation across the linker (55–60), the epitope region (73–83),

the extended linker–epitope stretch (109–150), and residues 173–

180 and 195–220, along with the C-terminal region. In contrast to

the POA_V_BDEF construct, the POA_V_RS09-based vaccine

formulation demonstrated notably greater structural stability.

PCA was performed on the vaccine constructs extracted from

their respective TLR2 and TLR4 complexes to evaluate their

conformational dynamics. The POA_V_RS09 construct, when
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analyzed post-interaction with both TLR2 and TLR4, exhibited

compact PCA clusters, indicating limited conformational

fluctuations and stable structural behavior throughout the 1000 ns

simulation. In contrast, the POA_V_BDEF construct displayed

broader dispersions in PCA space, suggesting greater structural

flexibility and reduced conformational stability. This trend remained

consistent when the standalone vaccine models were analyzed, where

POA_V_RS09 continued to show tight clustering and structural

integrity, while POA_V_BDEF exhibited higher variability. These

results align with earlier RMSD and RMSF analyses, collectively

highlighting POA_V_RS09 as the more stable and potentially

immunogenic vaccine candidate. (Supplementary Figure S8).

Hydrogen bond (HBOND) analysis was conducted over the 1000 ns

molecular dynamics simulation using GROMACS. The default criteria

were used, which include a donor–acceptor distance cutoff of 0.35 nm

and a hydrogen–donor–acceptor angle cutoff of ≥150° (i.e., ≤30°
TABLE 7 Molecular docking scores of POA_V_BDEF and POA_V_RS09 with TLR2 and TLR4, showing binding affinities.

Rank Docking Score (kcal/mol) Confidence Score Interface residues Complex

1 -299.98 0.9526 model_1 TLR2 - POA_V_BDEF

1 -286.76 0.9391 model_1 TLR2 - POA_V_RS09

1 -305.23 0.9571 model_1 TLR4 - POA_V_BDEF

1 -310.2 0.961 model_1 TLR2 - POA_V_RS09
FIGURE 6

Illustrates the docking models of the vaccine constructs with the receptor, focusing on the lowest binding energy conformations. The identified
interaction residues reveal strong binding affinities, highlighting critical contacts that contribute to the complex’s stability and potential efficacy.
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deviation from linearity), consistent with established definitions for

biologically relevant hydrogen bonds. The analysis focused specifically

on the intermolecular hydrogen bonds formed between the vaccine

constructs and the TLR receptors. The POA_V_BDEF vaccine

complexes exhibited a higher average number of hydrogen bonds

(19 with TLR2 and 14 with TLR4) compared to the POA_V_RS09

complexes (11 with TLR2 and 10 with TLR4). However, the relatively

higher RMSD and RMSF values observed in the POA_V_BDEF

complexes suggest that these additional hydrogen bonds may be less

stable or more transient (Figure 7C). The buried surface area (BSA)

during the 1000 ns simulation at the interface of the

TLR4_POA_V_RS09 complex was 42.09 nm² ± 3.98, indicating

stable interactions and low variability. This was closely followed by

TLR4_POA_V_BDEF, with a BSA of 41.12 nm² ± 5.83, showing a
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similar interaction pattern. In contrast, TLR2_POA_V_BDEF had a

higher BSA of 52.37 nm² ± 6.60, while TLR2_POA_V_RS09 showed a

BSA of 35.70 nm² ± 5.19, both with higher standard deviations,

suggesting relatively fewer stable interactions (Figure 7D). Analysis of

the apo forms revealed that POA_V_BDEF exhibited the highest

RMSD (1.75 ± 0.25 nm) and RMSF (1.07 ± 0.35 nm), indicating

significant conformational flexibility in the absence of receptor

binding. In contrast, POA_V_RS09 exhibited lower deviation (0.83

± 0.10 nm RMSD and 0.26 ± 0.13 nm RMSF), suggesting it remains

relatively stable even when unbound. The FEL analysis effectively

showed us the structural stability and flexibility of the vaccine-protein

complexes. All complexes exhibited energy basins, indicating the

presence of metastable states. However, notable differences were

observed in the shape and depth of these energy wells. Complexes

involving TLR4 exhibited more compact and deeper energy minima

compared to those involving TLR2, suggesting a higher degree of

structural stability. In particular, the TLR4_POA_V_RS09 complex

exhibited a well-defined global minimum, indicating a stable and

energetically favorable conformation throughout the simulation.

Although the TLR4_POA_V_BDEF complex also reached stable

conformations, it showed slightly more conformational variability.

Conversely, the TLR2 complexes exhibited broader and more

scattered low-energy regions, indicating increased conformational

flexibility and less stable interaction patterns. Among them, the

TLR2_POA_V_RS09 complex exhibited relatively smoother energy

transitions compared to TLR2_POA_V_BDEF, which displayed more

rugged features in its energy landscape (Supplementary Figure S9).
TABLE 8 Post-MD analysis averages for protein-protein complexes,
including RMSD, RMSF, and H-bond values, reflecting structural stability
and interactions.

Complexes RMSD (nm) RMSF (nm) Avg. H-bond

POA_V_RS09_TLR2 0.80 ± 0.19 0.32 ± 0.18 11

POA_V_RS09_TLR4 0.57 ± 0.06 0.21 ± 0.07 10

POA_V_BDEF_TLR2 1.08 ± 0.14 0.64 ± 0.23 19

POA_V_BDEF_TLR4 1.03 ± 0.10 0.47 ± 0.25 14

POA_V_RS09_APO 0.83 ± 0.10 0.26 ± 0.13 –

POA_V_BDEF_APO 1.75 ± 0.25 1.07 ± 0.35 –
FIGURE 7

Molecular dynamics (MD) analysis results. (A) Root mean square deviation (RMSD) Backbone analysis. (B) Root mean square fluctuation (RMSF)
Calpha Analysis. (C) Hydrogen bond (HBOND) analysis. (D) Buried surface analysis (BSA).
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We calculated the binding free energy using MMPBSA, which

revealed notable differences between the POA_V_RS09 and

POA_V_BDEF-based vaccine constructs in complex with TLR2 and

TLR4 receptors. The TLR2_POA_V_RS09 showed a more favorable

binding energy (–1483.14 kJ/mol) than TLR2_POA_V_BDEF (–

1335.16 kJ/mol), indicating that RS09 forms a more stable and

energy-efficient complex with TLR2, compared to POA_V_BDEF.

In contrast, TLR4_POA_V_BDEF exhibited a significantly stronger

binding energy (–4600.83 kJ/mol) than TLR4_RS09 (–2682.66 kJ/

mol), likely due to its extended area, which enables an increased

contact surface. However, prior dynamic and structural analyses, such

as RMSF and FEL plots, indicate that POA_V_BDEF is more flexible,

particularly at the linker and epitope regions. This flexibility may

contribute to reduced structural stability, especially in the TLR2

complex compared to POA_V_RS09.
3.14 In silico codon adaptation, cloning,
and immune simulation

Codon optimization was performed using GenScript to enhance

the expression of the POA_V_RS09 vaccine sequence in E. coli K-

12. With a GC content of 60.22% and a total length of 744 base

pairs, the optimized sequence falls within the ideal range (30–70%)

for effective expression in E. coli. This balanced GC content ensures

efficient transcription and translation, making the sequence suitable

for high-level expression in the host. The optimized vaccine

sequence was then used for in-silico cloning with SnapGene

software, successfully inserting the gene into the pET-28a(+)

expression plasmid (Figure 8). The immune response dynamics

elicited by POA_V_RS09 are shown in Figure 9. Figure 9A

illustrates the antigen (Ag) and antibody responses over a 350-

day period, where an early antigen peak, followed by a sharp

decline, indicates effective recognition and clearance by the host

immune system. This is accompanied by a strong humoral

response, characterized by an initial surge in IgM, typical of a

primary response, followed by a sustained increase in IgG1 and

IgG2, which shows class switching and maturation of the immune

response. The dominance of IgG subclasses over time reflects the

development of long-term protective immunity. Notably, IgG1 and

IgG2 are associated with Th1-type immune responses, which are

essential for combating pathogens such as viruses and certain

bacteria. Figure 9B illustrates cytokine dynamics, where high

levels of Interleukin-2 (IL-2) and IFN-g early on indicate strong

T-cell activation and a Th1-biased immune response, which is

particularly important for combating pathogens. Their gradual

decline over time suggests immune regulation and resolution of

inflammation, highlighting the vaccine’s safety profile. Figure 9C

illustrates the dynamics of the B-cell population, exhibiting an

increasing trend in memory B cells and a shift in isotype

expression from IgM to IgG, which further validates class

switching and the generation of long-lasting humoral memory.

Figure 9D focuses on B-cell states, showing that active and antigen-

internalizing B cells peak early, while anergic cells remain relatively

constant, suggesting efficient antigen processing and presentation.
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The low level of anergic B cells suggests that immune tolerance is

not induced, further supporting the vaccine’s immunogenicity.

Figure 9E presents helper T-cell (TH) populations, with an initial

spike in total TH cells, followed by the emergence of memory TH

cells, supporting long-term immunity. Finally, Figure 9F depicts

cytotoxic T-cell (TC) states, showing early activity and duplication

followed by a steady increase in resting memory TC cells, which are

critical for sustained immune surveillance. This can contribute to

the direct killing of bacteria or infected host cells in bacterial

infections that evade extracellular immune mechanisms. These

outcomes underscore the successful initiation of both humoral

and cellular immune responses, supporting the potential for the

development of long-lasting immunological memory. Moreover,

the observed immune signatures align with the protective responses

typically seen in effective bacterial vaccines, validating the rational

design of POA_V_RS09, which incorporates TLR agonists, multi-

epitope constructs, and immune-enhancing linkers to induce broad,

durable immunity against bacterial pathogens.
4 Discussion

The opportunistic pathogen P. aeruginosa is a significant cause

of hospital-acquired infections worldwide. It presents a serious

threat to human health, especially in immunocompromised

individuals, due to its innate antibiotic resistance and ability to

develop biofilms (79, 80). The increasing prevalence of drug-

resistant strains has complicated treatment options, highlighting

the urgent need for alternative therapeutic strategies (81). Despite

progress in antimicrobial therapies, no licensed vaccine exists for P.

aeruginosa, revealing a critical gap in combating this pathogen (82).

Immunoinformatics has emerged as a powerful tool in vaccine

development, facilitating the rational design of in silico vaccines, as

demonstrated in the development of vaccines against pathogens

such as the Ebola virus, SARS-CoV-2, and Mycobacterium

tuberculosis (83–85). These approaches hold significant promise

for addressing the challenges posed by P. aeruginosa.

Previous immunoinformatics-based vaccine studies against P.

aeruginosa often relied on single-strain datasets or focused on a

narrow range of targets. Some selected cytoplasmic proteins have

limited surface accessibility, while others used previously known

antigens without assessing their conservation across diverse strains.

Additionally, several studies selected targets which is completely based

on literature without genome-wide screening (86–89). Other broader

approaches involving multiple pathogens have also identified shared

virulence or essential gene-derived epitopes while filtering for self-

tolerance (90). However, such strategies typically lack species-specific

optimization, structural validation, and comprehensive strain-level

genomic coverage—critical aspects that our study addresses. In this

study, we conducted a comprehensive pangenome analysis (91) of 864

P. aeruginosa genomes. This extensive dataset enabled robust

pangenome analysis and the identification of conserved, surface-

exposed, and virulence-associated targets, distinguishing our study

from previous investigations. Here we identified 63,239 genes,

including 3,325 core genes and 3,149 accessory genes. We focused on
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conserved core genes essential for bacterial survival and pathogenicity to

ensure broad-spectrum coverage. The Pal_1 protein was identified as a

potential vaccine candidate, which is classified as an outer membrane

protein via PSORTb, and confirmed as a virulence-associated factor

through BLASTP analysis against the VFDB. Its sequence was validated

against the P. aeruginosa database, where it was identified with 100%

confidence and an E-value of 0, and it is known as LptF (lipotoxin F).

Sequence comparison with the human proteome confirmed the absence

of homologous hits, minimizing the risk of adverse cross-reactivity.

LptF, an OmpA-like outer membrane protein, plays a crucial role in P.

aeruginosa’s survival, particularly in stressful environments such as lung

colonization in cystic fibrosis, and may serve as an important target for

therapeutic strategies (92). LptF remains an underexplored target. Its

classification as a lipotoxin, along with evidence from structural

proteomics revealing interactions with key membrane proteins like

OprI and LptE, further highlights its relevance as a promising vaccine

candidate against P. aeruginosa. Due to the increasing antibiotic

resistance of P. aeruginosa, an effective vaccine is urgently needed,
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and lipotoxins have been identified as potential targets in studies (24).

The LptF protein exhibited favorable physicochemical and

immunogenic properties, with a molecular weight of 28.5 kDa,

thermostability indicated by an aliphatic index of 80.15, and a

hydrophilic nature reflected in a GRAVY index of -0.574.

Immunogenic analysis revealed its suitability as a vaccine target, with

an antigenicity score of 0.6442 and classification as a non-allergen.

SignalP analysis showed that the protein has a signal peptide, which is

likely removed during maturation. This was accounted for in later

analyses that focused on the mature protein sequence. We identified B-

cell epitopes and chose high-affinity T-cell epitopes based on their

binding affinities to MHC-I and MHC-II molecules, with additional

refinement based on their potential to stimulate interferon-g production.
Ultimately, 15 epitopes were incorporated into the vaccine design,

comprising four MHC-I epitopes, five MHC-II epitopes, and six B-

cell epitopes. Additionally, the cytokine prediction analysis revealed that

all selected epitopes possess IL-10-inducing potential, a cytokine shown

to be critical in controlling inflammation and enhancing bacterial
FIGURE 8

In silico cloning of POA_V_RS09. (A) Cloning of RS09 (which is POA_V_RS09) into the pET-28a(+) vector. (B) final vaccination design with additional
restriction sites.
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clearance during P. aeruginosa infection (93). The vaccine constructs

POA_V_RS09 and POA_V_BDEF were designed, incorporating RS-09

and Beta-defensin as adjuvants. We selected RS09 as it functions as a

TLR4 agonist, effectively stimulating the innate immune response. b-
defensin was chosen for its dual role in activating both innate and

adaptive immunity. Incorporating these adjuvants aimed to enhance the

immunogenic potential of the constructs. This strategic design allowed

us to evaluate and compare their impact on vaccine performance. These

constructs exhibited broad global population coverage (87.35%) and

strong immunogenic potential. Secondary structure analysis revealed

that both vaccines predominantly consisted of a-helices and random

coils, enhancing antigenic presentation. Structural validation through

Ramachandran plot analysis ensured the reliability of the tertiary

structures. We selected the Robetta server over AlphaFold for tertiary

structure prediction because Robetta offers more reliable modeling for

synthetic, chimeric constructs involving multiple domains, such as

adjuvants, epitopes, and linkers. Unlike AlphaFold, which is

optimized for natural protein sequences, Robetta’s de novo prediction

approach is better suited for handling novel vaccine constructs. For the

BDEF-based construct, serine-26 (Ser-26) and glycine-134 (Gly-234)

residues were found in disallowed regions, while the RS09-based

construct showed proline-100 (Pro-100) and glycine-141 (Gly-141)

residues in disallowed regions. These residues were primarily located

in loop and linker regions and were not associated with key epitope or

adjuvant domains, suggesting that they are unlikely to compromise the

overall structural integrity of the protein. Therefore, the refined and
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validated vaccine structures were subsequently used for molecular

docking studies to assess receptor interactions. Molecular docking

analyses revealed high-affinity interactions between the vaccine

constructs and Toll-like receptors TLR2 and TLR4, which play pivotal

roles in initiating innate immune responses. POA_V_RS09 showed

superior docking scores, with -310.2 (kcal/mol) for TLR4 and -286.76

(kcal/mol) for TLR2, while MD simulations confirmed the stability of

these interactions under physiological conditions. We conducted

extensive 1000-ns molecular dynamics simulations to analyze the

long-term structural stability and interaction dynamics of the vaccine-

receptor complexes. This extended simulation duration exceeds the

standard practice in similar studies, providing deeper insights into

conformational behavior, particularly in flexible regions such as

linkers and epitopes. It enhances the structural validation of our

vaccine constructs and reinforces the reliability of our results. The

TLR4_POA_V_RS09 complex demonstrated minimal structural

fluctuations, with the lowest RMSD and RMSF values, indicating

stable interactions compared to POA_V_BDEF. Although

POA_V_BDEF demonstrated good structural quality based on

validation metrics, MD simulations revealed considerable flexibility,

even in its apo form (without receptor binding). This inherent flexibility,

especially in the epitope-linker regions, might weaken stable receptor

binding and influence immune activation. While some mobility

facilitates epitope presentation, too much fluctuation can reduce

vaccine effectiveness. These findings underscore the importance of

dynamic assessment in conjunction with static validation when
FIGURE 9

Immune Response Induced by the POA_V_RS09 Vaccine: (A) antibody response. (B) Cytokine response. (C) B-Cell population (cells/mm³). (D) B-Cell
population by state. (E) TH-cell population by state. (F) TC-cell population by state.
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evaluating multi-epitope vaccine designs. Further analysis confirmed

POA_V_RS09’s stable conformational states, with tighter cluster

dispersion and distinct energy minima. MMPBSA analysis showed

that although POA_V_BDEF has a strong binding affinity with TLR4,

POA_V_RS09 exhibits a more balanced and consistent interaction

profile with both TLR2 and TLR4, along with fewer structural

fluctuations. These qualities make POA_V_RS09 a robust and

dependable adjuvant candidate for the design of multi-epitope

vaccines. Codon optimization for POA_V_RS09 allowed efficient

expression in E. coli (K-12), and in silico cloning into pET-28a(+)

validated its expression potential. Immune simulations demonstrated

robust adaptive immune responses, characterized by sustained IgG

production, memory B-cell formation, and effective cytokine

engagement, rendering POA_V_RS09 a promising vaccine candidate

for long-term immunity. The POA_V_RS09 vaccine demonstrated

strong stability, optimal expression potential, and robust immune

activation, positioning it as an ideal candidate for further

development. By targeting P. aeruginosa, a highly resistant pathogen,

the POA_V_RS09 vaccine could offer a valuable strategy for preventing

infections and addressing the global threat of antimicrobial resistance,

ultimately improving patient outcomes. In this study, we designed two

separate vaccine constructs using RS09 and b-defensin adjuvants to

independently evaluate their immunostimulatory potential. This

separation allows for comparative assessment of construct stability,

population coverage, and immunogenicity. However, future studies

could explore the integration of both adjuvants into a single

construct, as combinatorial adjuvants have been shown to enhance

immune responses more effectively than individual components (78).

One limitation of this study is that it lacks experimental validation.

While our computational approach provides a cost-effective and time-

efficient method for epitope screening, future in vitro and in vivo studies

(e.g., ELISA, ELISPOT) are essential to confirm immunogenicity and

support vaccine development of the POA_V_RS09 vaccine candidate

against P. aeruginosa. However, we have thoroughly examined the

structural and immunological characteristics of the vaccine candidate

through in silico methods, including 1000 ns molecular dynamics

simulations, epitope mapping, TLR docking, population coverage

analysis, and immunogenicity prediction. Long-timescale MD

simulations allow for the capture of biologically relevant

conformational changes, showing that microsecond to millisecond

scale simulations can uncover protein folding pathways and slow

structural transitions. This supports the use of 1000 ns MD to study

dynamic molecular interactions (94). Several previous studies have

demonstrated that immunoinformatics-based vaccine designs can

reliably predict antigenic determinants and immune interactions,

often correlating well with experimental outcomes (95–97). These

findings support the translational relevance of computational

predictions in the early stages of vaccine design. Further validation

using comprehensive in vitro assays is also necessary to evaluate the

safety profile and immunogenic potential of the POA_V_RS09-based

vaccine, including its ability to induce pro-inflammatory cytokines,

activate T cells, and generate specific antibody responses. Such

investigations will provide valuable insights into the clinical feasibility

of POA_V_RS09 as a vaccine candidate for P. aeruginosa infections.
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5 Conclusion

This study uti l ized an integrated pangenome and

immunoinformatics approach to develop an epitope-based peptide

vaccine targeting P. aeruginosa. Through pangenome analysis, we

identified LptF as a promising and underexplored vaccine target,

specifically. From LptF, we predicted potential epitopes. The resulting

vaccine candidate, POA_V_RS09, demonstrated promising immune

response outcomes and strong binding affinity to immunological

receptors (TLRs). Notably, the 1000-ns molecular dynamics

simulation provided valuable insights into the structural stability of

the vaccine–receptor complexes over an extended timescale,

reinforcing the robustness of the construct under physiological

conditions. This computational strategy holds significant potential

for addressing the escalating issue of antimicrobial resistance,

particularly in resource-limited settings and low-income countries.

This strategy provides a comprehensive and practical approach to

combating infections by targeting conserved NS proteins, identifying

high-affinity B-cell and T-cell epitopes, and utilizing suitable

adjuvants. Future studies should assess the vaccine’s safety,

effectiveness, and scalability through in vitro investigations, animal

model testing, and ensuing clinical trials. To transform this

computational framework into a valuable tool for combating P.

aeruginosa resistance to multiple drugs, these steps are crucial.
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