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Antigen-presenting cell
internalization is key for
understanding and evaluating
therapeutic antibodies’
immunogenicity
Maria Lteif , Marc Pallardy † and Isabelle Turbica*†

Université Paris-Saclay, INSERM, Inflammation, Microbiome and Immunosurveillance, Orsay, France
Therapeutic antibodies have revolutionized the treatment of many diseases.

However, their safety and efficacy are often altered by their immunogenicity,

as many patients frequently develop anti-drug antibodies. Dendritic cells (DCs)

are the most potent antigen-presenting cells of the immune system. DCs initiate

the immunogenic adaptive immune response by internalizing therapeutic

antibodies using different pathways and receptors, leading to antigen

presentation to T-cells. Recently, studies have shown that the uptake of

antibodies by immune cells could contribute to their immunogenicity. This

review will present in detail the different DC internalization mechanisms and

then discuss the impact of therapeutic antibodies’ properties and aggregation on

their uptake by DCs and, therefore, their immunogenicity. We will also highlight

cellular models and strategies used to evaluate antibodies’ internalization.

Addressing the uptake of antibodies by DCs could help to predict the risk of

immunogenicity and to develop mitigation strategies.
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1 Introduction

Therapeutic antibodies (Abs) have emerged as the fastest-growing class of

biotherapeutics and are used to treat and detect many diseases (1). However, they can

elicit unwanted immunogenicity in a subset of patients, leading to the production of anti-

drug Abs (ADAs). This implicates the development of a T-cell-dependent immune

response. This response is initiated by the internalization of Abs by antigen-presenting

cells (APCs), such as dendritic cells (DCs), followed by the processing of these Abs into

peptides for presentation on major histocompatibility (MHC) class II molecules on the cell

surface. These peptides are recognized by cognate T cells, resulting in their activation,

which in turn activates antigen-specific B cells that mature into Ab-secreting plasma cells

(2). Recently, measurements of Ab internalization in DCs have been proposed as a tool for
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immunogenicity risk assessment (3–6). These assays have shown

that the rate of Ab internalization can influence immunogenicity

risk (4, 6–8). However, different factors contribute to ADA

generation, including the intrinsic properties of the therapeutic

protein, the therapeutic regimen, and the patient-specific

characteristics such as its immune status or genetic background (9).

Understanding the factors influencing Ab internalization into

DCs could help optimizing their design and reducing their

immunogenic risk. This review aims to explore the structure and

function of Abs, the mechanisms of Abs’ internalization by DCs,

and the impact of Abs’ properties on this process. By examining

these aspects, we will highlight how these factors influence the

immune response and discuss the current methods for evaluating

Abs’ internalization in vitro. Finally, we will propose an evidence-

based strategy for evaluating the immunogenicity risk of therapeutic

Abs candidates, including internalization assessment.

Immunoglobulin (Ig)-based therapeutic Abs have dominated

the biotherapeutic field mainly due to their structural and

functional properties. However, alternative Abs formats have been

developed over the past two decades. These include smaller or

engineered constructs designed to improve biodistribution, enhance

specificity, or reduce side effects. Importantly, the current

preclinical and clinical landscape now includes a wide array of

structurally and functionally diverse Ab-based molecules such as

single-domain Abs/nanobodies, multispecific Abs (e.g., bispecific,

trispecifics), polymeric Abs such as IgA dimers and IgM pentamers,

Ab-drug conjugates) (10). Numerous novel Abs are currently being

investigated in clinical trials, and the number of monoclonal Abs

receiving marketing authorization continues to grow. This evolving

landscape is reviewed annually in the “Antibodies to Watch”

series (1).

Abs or Igs mediate the humoral response and are most effective

against extracellular pathogens (11). They are typically composed of

light chains (LCs) and heavy chains (HCs). There are two LC

isotypes, kappa (k) and lambda (l), and five HC isotypes, gamma

(g), alpha (a), mu (µ), delta (d), and epsilon (e) which define the Ab

isotype (IgG: g, IgA: a, IgM: µ, IgD: d, IgE: e) and confer distinct

effector functions (12, 13). Importantly, the overall structure and

composition of Ig classes differ significantly. While IgG, IgA

(monomeric), IgD, and IgE exist as monomers composed of two

LCs and two HCs, IgM typically forms a pentameric structure (and

occasionally a hexamer), comprising five Ig units linked by disulfide

bonds and a joining (J) chain. This results in a molecule containing

10 HC and LC and confers high valency and strong avidity for

antigens. Dimeric forms of IgA also include a J chain and are

predominant in mucosal secretions (12, 14). Both HC and LC are

composed of constant and variable domains. The amino-terminal

variable regions of the HC and LC (VH and VL, respectively)

together form the antigen-binding site, shaped by three

hypervariable loops known as complementarity-determining

regions (CDRs 1, 2, and 3), which are separated by conserved

beta-sheet framework regions (FRs). The constant region

determines the Ab’s effector functions and varies by isotype. The

g, a, and d heavy chains contain three constant domains (CH1,

CH2, and CH3) and a hinge region, which provides flexibility and
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enhances antigen binding and cross-linking. In contrast, the µ and e
heavy chains include a fourth constant domain (CH4), which

replaces the hinge region and contributes to a more rigid

structure (15).

Based on enzymatic cleavage, the Ab can be divided into

functionally distinct regions: two fragment antigen-binding (Fab)

regions and one fragment crystallizable (Fc) region. The Fab region

contains the VH, VL, CH1, and CL domains and mediates antigen

recognition, while the Fc region—comprising CH2 and CH3

domains (and CH4 in IgM and IgE)—is responsible for

interacting with immune effector molecules (16). These functions

are determined by their interactions with different binding partners:

antigens or therapeutic targets through their Fab region, Fc

receptors (FcR) for IgG (FcgRs), the neonatal Fc receptor (FcRn),

and the complement system via their Fc portion (17). The main

mechanisms of action of Abs include antagonism or agonism for a

soluble ligand or receptor and blockade of cell–cell interaction. Ab-

receptor or target binding at the cell surface can thus lead to the

endocytosis of the formed complex (18, 19). On the other hand, the

Fc-mediated effector functions comprise Ab-dependent cell-

mediated cytotoxicity (ADCC), Ab-dependent cellular

phagocytosis (ADCP), and complement-dependent cytotoxicity

(CDC) (20). NK cells and macrophages express FcgRIIIa (CD16a)

on their surface, recognizing Abs’ Fc portion and are the major

mediators of ADCC, resulting in target cell killing. This mechanism

plays a key role in the mode of action of therapeutic monoclonal

Abs such as rituximab (anti-CD20) and cetuximab (anti-EGFR) in

immunotherapy (21).
2 Mechanisms of internalization by
dendritic cells

The mechanisms of therapeutic Ab internalization by DCs

depend on the physico-chemical properties of the Abs, which

influence the rate of uptake and the subsequent immune

responses. This internalization process is also significantly affected

by the expression levels of the target antigens on the DC surface.

Higher antigen density typically facilitates more efficient Ab

binding and uptake, thereby enhancing antigen processing and

presentation, critical steps for initiating effective immune responses.

Recent studies suggested a link between mAb’s internalization rate

and their immunogenicity (4, 22). Before considering the relevance

of different endocytic pathways for Abs by APCs, and particularly

DCs, we will first summarize the internalization pathways utilized

by DCs.

Internalization pathways include macropinocytosis, clathrin-

mediated endocytosis (CME), clathrin-independent dynamin-

dependent endocytosis or fast endophilin-mediated endocytosis

(FEME), clathrin-independent carrier/glycosylphosphatidylinositol-

anchored protein-enriched early endocytic compartment (CLIC/

GEEC), phagocytosis, and caveolae-dependent endocytosis. These

pathways have been described in detail in a previous review (3).

Macropinocytosis, CME, and phagocytosis, the three main

mechanisms implicated in DC internalization of therapeutic Abs,
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are described below and summarized in Figure 1. The FEME, CLIC/

GEEC, and caveolae-dependent pathways are less described in the

literature as involved in Abs uptake. Studies suggest their role in

oxidized low-density lipoprotein (23), polyomavirus particles (24),

and Simian Virus 40 uptake (23) by immune cells.

Macropinocytosis occurs constitutively in DCs and mediates

the non-specific uptake of soluble antigens. It is initiated by the

polymerization of actin at the plasma membrane, leading to the

formation of ruffles and large endocytic vesicles known as

macropinosomes (25). This process is regulated by the small

GTPases Rac1 and Cdc42, involved in actin polymerization, (26)

modifications of the submembranous pH, and the activity of Na+/H

+ exchangers (27). Macropinosomes destined for antigen

presentation undergo a defined sequence of maturation steps

involving acidification, fusion with endosomal compartments, and

enzymatic degradation to process their contents, a series of events

detailed later. Briefly, they might recycle back to the plasma

membrane or undergo a series of changes that ultimately lead to

their interaction and fusion with endolysosomal compartments,

where their cargoes are degraded by hydrolytic enzymes (28). Since

DCs are specialized in antigen capture, considerable research effort

has been expanded to study the mechanisms of antigen uptake in
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these cells. Many of these studies use pharmacological inhibitors to

study macropinocytosis. However, these inhibitors are notoriously

non-specific, which limits the understanding of the mechanisms

underlying constitutive macropinocytosis (29). For instance,

amiloride derivatives inhibit macropinocytosis by impairing Na

+/H+ exchanger activity, which is important for actin remodeling

mediated by Rho family GTPases (30). Similarly, wortmannin,

which inhibits PI3 kinase activity, also suppresses actin

polymerization, a process involved in other internalization

mechanisms, making the interpretation of these results more

complex (25, 31).

CME is the most studied and well-characterized endocytic

mechanism, as it constitutes the major endocytic pathway in

mammalian cells. This pathway is essential for regulating cell

signaling and mediates nutrient uptake (32). Upon binding,

activated receptors are phosphorylated by G protein-receptor

kinases, which in turn recruit adaptor proteins and initiate a

cascade leading to the formation of clathrin-coated pits. These

pits rapidly invaginate and pinch off to form clathrin-coated

vesicles, then outline pathways of uncoating, transport, and fusion

with early endosomes to deliver their cargo (33, 34). DCs express

several receptors mediating CME, such as C-type lectin receptors
FIGURE 1

Summary of endocytic pathways implicated in therapeutic antibodies internalization by dendritic cells. Top: Schematic representation of major
endocytic routes used by dendritic cells to internalize IgG or immune complexes, including clathrin-mediated endocytosis, macropinocytosis, and
phagocytosis. Bottom: Tabular summary comparing the key features of each pathway, including the mechanism of internalization, vesicle size, and
receptors involved. *includes target-mediated endocytosis. CLR, C-type lectine receptor; FcR, Fc receptor; FcRn, neonatal Fc receptor;IgG,
immunoglobulin G. Created using BioRender.com.
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(CLR), sialic acid binding immunoglobulin (Ig)-like lectins

(Siglecs), death receptors (Fas, TNF, and TRAIL receptors),

scavenger receptors (CD36, SR-A), and FcR (35–37). In this

review, we will mainly focus on CLR and FcR, as the literature

indicates that these are the most implicated receptors in the cellular

uptake of therapeutic Abs. Siglecs recognize sialic acid via their

extracellular domain (38). Scavenger receptors bind and internalize

modified low-density lipoproteins, and death receptors and

damage-associated molecular patterns that are released during

different cell death mechanisms will not be further detailed in this

review, as they are not implicated in Abs uptake. CLRs are a diverse

family of soluble and transmembrane proteins that bind

carbohydrates in a calcium-dependent manner using a conserved

carbohydrate recognition domain (CRD) (39). Type I

transmembrane CLRs possess various CRD and comprise the

mannose receptor family, such as DEC-205 (CD205 or LY75) and

the macrophage-mannose receptor (MMR or CD206), both

implicated in antigen uptake. Type II transmembrane CLRs have

a single CRD domain and include DC-associated C-type lectin 1

(Dectin-1 or CLCE7A), Dectin-2 (CLEC6A), macrophage-inducible

C-type lectin (Mincle or CLEC4A), the dendritic-cell-specific

ICAM3-grabbing nonintegrin (DC-SIGN or CD209), and DC NK

lectin group receptor-1 (DNGR-1 or CLEC9A). These receptors are

involved in pathogen recognition and the shaping of innate

immune responses (40). MMR (CD206) and DC-SIGN (CD209)

are some of the major mannose-binding CLRs in human DCs (41,

42). CD206 and CD205 recognize glycans that terminate in

mannose, fucose, or N-acetylglucosamine (43, 44). Whereas these

two receptors bind preferentially to a single residue, CD209 also

binds terminal high-mannose (HM) glycans (45). Ig’s glycosylation

(N-and O-glycosylation) is one of the major co‐translational

modifications and/or post‐translational modifications (PTMs)

(46). FcRs that recognize the Fc part of Abs are classified

according to the Ig isotype: FcgR and neonatal FcRn bind IgG,

FcaR binds IgA, FceR binds IgE, FcmR binds IgM, and FcdR binds

IgD (47). Since IgG are the main used isotype among Abs in the

therapeutic field (48), we will mainly focus on FcgR and FcRn.

FcgRs are broadly classified as activating or inhibitory, depending

on the signaling properties of their intracellular domain. In humans,

activating FcgRs include FcgRI, FcgRIIa, FcgRIIc, and FcgRIIIa,
signaling through immunoreceptor tyrosine activating motifs

(ITAMs). FcgRIIb represents the only inhibitory FcgR, signaling
through an immunoreceptor tyrosine inhibitory motif (ITIM) in its

cytoplasmic region (49). In vitro, APC expresses a wide range of

FcgRs with a potential role in antigen presentation. Human

monocyte-derived DCs (moDCs)s express mainly the activating

FcgRIIa and the inhibitory FcgRIIb receptors, and to a lesser extent,

FcgRI and FcgRIIIa. Human in vitro generated macrophages express

all FcgRs with high levels of FcgRIIa (50). FcgRs can also be

classified by their binding affinities to human IgG: FcgRI binds

monomeric IgG with high affinity, whereas FcgRII and FcgRIII bind
multimeric IgG or immune complexes (ICs) with very high affinity

(51), and also Abs aggregates. Binding of IgGs to activating FcgR
leads to ITAM phosphorylation, activation of the Src-Syk pathway,

FgR-IgG ICs’ internalization, and routing to lysosomes. Syk
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activates downstream signaling molecules, primarily increasing

calcium flux and the activation of protein kinase C (52) These

intracellular changes lead to activation of Rho GTPases and actin

remodeling, which is critical for IC’s internalization (53). The

studies on therapeutic Abs internalization through the FcRs are

detailed in the next section.

The FcRn binds to the Fc portion at acidic pH in the early

endosome and recycles IgGs to the plasma membrane to be released

at neutral pH (54), rescuing them from lysosomal degradation and

extending their serum half-life (55). At higher concentrations of

IgG, FcRn becomes saturated, leading to a smaller proportion of

IgG being routed to the lysosomal compartments. The latter

trafficking also occurs when FcRn binds to multimeric IgG, such

as aggregates or ICs (54). Importantly, FcRn saturation also affects

the processing of Abs in DCs’ endolysosomal compartments (56). If

the FcRn-mediated IgG recycling is saturated, a greater proportion

of IgG molecules is directed to lysosomal degradation within DCs

(54, 57). This enhances antigen presentation and may increase

immunogenicity by promoting T-cell activation against the

therapeutic Ab. This mechanism highlights a key consideration in

clinical Ab therapy, where FcRn saturation can influence both

pharmacokinetics and immune responses.

Phagocytosis consists of the recognition of particles larger than

0.5µm in diameter by phagocytic receptors and their uptake into a

plasma membrane-derived vesicle, known as phagosomes. In

humans, phagocytosis is restricted to specialized cells called

phagocytes, including macrophages, neutrophils, and DCs (58).

Plasma membrane receptors of phagocytes are divided into non-

opsonic or opsonic receptors. Non-opsonic receptors recognize

directly distinct molecular patterns on the particle and include C-

type lectins, such as Dectin-1, Dectin-2, Mincle, or DC-SIGN.

Opsonic phagocytic receptors include FcRs and complement

receptors recognizing Ab- or complement-opsonized particles,

respectively (59). C3bi is the major opsonin recognized by the

complement receptor on APCs, thus leading to the opsonized

particle’s phagocytosis (60). After ligand binding, phagocytic

receptors initiate signaling pathways leading to modification in

the membrane composition and regulation of the actin

cytoskeleton, therefore resulting in the formation of pseudopods

covering the particle. Additional pseudopods are generated around

the target, forming a phagocytic cup that closes up at their distal

margins to form phagosomes (61).

Phagocytosis is relevant to the immunogenicity of therapeutic

Abs because it governs the uptake, processing, and presentation of

Ab-derived peptides on MHC molecules, which in turn can activate

T cells and start adaptive immune responses. Evidence supporting

this comes from studies demonstrating that FcgR-mediated

phagocytosis enhances antigen processing and cross-presentation

by DCs, promoting robust CD4+ and CD8+ T cell responses (49).

Furthermore, alterations in the Fc glycosylation pattern of Abs can

modulate their interaction with FcgR and phagocytic uptake,

thereby influencing their immunogenic potential (62).

Importantly, this process is also shaped by factors such as the

size of the Ab or ICs, as well as the binding affinity of phagocytic

receptors—topics that will be explored in the following section.
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Collectively, these observations highlight phagocytosis as a critical

determinant in shaping the immunogenicity profi le of

therapeutic Abs.
3 Fate of internalized peptides

As for other proteins, there is strong evidence that the

trafficking fate of internalized Abs is common for all major

endocytosis pathways. Internalized protein particles are routed to

the early endosomes, also called the sorting endosomes (63). In this

sorting station, internalized material is either recycled back to the

plasma membrane or routed from the early endosome to late

endosomes and lysosomes for degradation for a subsequent

presentation (64). Early endosomes are characterized by the

presence of the GTPase Rab5, which regulates endocytic

membrane trafficking by recruiting several effectors. They will

become increasingly acidic as endosomes mature from early/

recycling to late endosomes. This process requires the switch

from Rab5 to Rab7 to drive the maturation of early endosomes

into late endosomes, which can then fuse with lysosomes for cargo

degradation (65). In the lysosomes, cathepsins are the most

abundant proteases responsible for degrading macromolecules.

They comprise 12 members, mainly endopeptidase-cleaving

peptide bonds. Among them, cathepsin S, a cysteine protease, has

a central role in degrading antigens in APCs and their presentation

in association with MHC-II molecules to CD4+ T cells (66). In fact,

MHC-II molecules bind peptides of around 13 to 25 amino acids

generated by this proteolysis process (67). Efficient peptide binding

requires the access of MHC-II molecules to lysosomal

compartments. Newly synthesized MHC class II molecules

associate with the invariant chain (Ii), preventing premature

ligand binding in the ER and directing the complexes to the

endocytic compartment (68). Ii is proteolyzed, and the resulting

CLIP occupies the peptide-binding groove (69). HLA-DM

facilitates the release of CLIP and stabilizes the empty MHC class

II until an exogenous peptide is loaded. The MHC class II-peptide

complex is then transported to the cell surface for recognition by

CD4+ T cells (70). Activation of antigen-specific CD4+ Th cells

helps activate cognate antigen-specific B cells to proliferate and

differentiate into plasma cells producing high-affinity ADA (71).
4 Impact of antibodies properties on
their internalization

The internalization of therapeutic Abs by APCs is influenced by

their properties, such as size, post-translational modifications,

charge distribution, hydrophobicity, degradation, and aggregation.
4.1 Size

The size of internalized protein particles mainly impacts the

route of internalization. While small particles tend to be
Frontiers in Immunology 05
internalized via fluid-phase endocytosis, bigger complexes and

aggregated peptides or proteins are probably uptaken by

phagocytosis (72). These uptake pathways differ in how they

deliver antigens to intracellular processing compartments,

potentially influencing the efficiency and nature of antigen

presentation to the immune system (73, 74). FcgRs generally

exhibit low affinity for monomeric IgG, preferentially binding ICs

that enable receptor cross-linking and subsequent internalization.

Although FcgRI (CD64) can bind monomeric IgG with higher

affinity and mediate Ab internalization in vitro (e.g., for avelumab

(75)), most FcgRs require multivalent ICs or antigen bound IgGs to

initiate uptake and signaling (15, 76). Endogenous IgGs are present

at high concentrations in plasma (~10 mg/mL) (77), exceeding

therapeutic Ab levels, leading to FcgRI saturation under

physiological conditions (78). This saturation limits FcgR
availability for free therapeutic Ab, which compete with

endogenous IgGs for receptor binding (76). When Abs’ targets

are soluble and circulate in the bloodstream, IC formation facilitates

effective FcgR engagement (79), thereby influencing Ab clearance

and immunogenicity. This competitive and dynamic interplay

underscores that IC formation, rather than free Ab concentration

alone, primarily governs FcgR-mediated uptake. Multimeric Abs

and large ICs are primarily routed to lysosomes as they escape FcRn

binding, resulting in their degradation into peptides that are later

loaded onto MHC class II molecules (54). This increases their

potential to trigger CD4+ T cell responses, a key step in the

development of ADA. On the other hand, stress occurring during

handling or administration can favor aggregation (80). Aggregated

forms of Abs more readily uptaken by immune cells (81–83), as they

engage low-affinity FcR more effectively than monomeric Abs (49).

This enhanced engagement may promote immune recognition by

facilitating antigen processing and presentation. Thus, both the size

and aggregation state of therapeutic Abs can significantly influence

their internalization route, intracellular fate, and ultimately, their

immunogenicity risk.
4.2 Protein modifications and their impact
on recognition by specific receptors

Glycosylation is a common post-translational modification that

occurs during the production of Abs. A significant proportion of

endogenous IgG Abs naturally exhibit N-glycosylated residues in

their Fab regions (84, 85). However, Fab glycosylation is generally

avoided in therapeutic Abs primarily for stability and

manufacturability reasons. Despite this, certain studies have

highlighted potential benefits of Fab glycosylation under specific

contexts. For example, Fab sialylation has been shown to improve

the serum half-life of Abs, such as cetuximab (an anti-EGFR

monoclonal Ab (86). Courtois et al. showed that introducing

glycans to shield aggregation-prone regions enhances Ab’s

stability to a comparable extent as replacing hydrophobic amino

acid residues with hydrophilic ones (87). Knowledge of the

biological role of Fab-associated glycans in immunity remains

limited, necessitating further investigation to elucidate their
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functional significance. On the other hand, IgGs contain a

conserved N-glycosylation site at the asparagine 297 (Asn297 or

N297) residue within their Fc region, which modulates their

interactions with CLR and FcgRs. The type of oligosaccharides

found in the conserved Asn297 glycosylation site of Ab Fc portions

depends on the mode of production. Mammalian systems generally

result in complex-type biantennary oligosaccharides in the Fc

portion (62). The oligosaccharides in the Fc region comprise HM

glycan, containing five to nine mannose residues that are recognized

by mannose receptors (MRs), complex glycans in which “antennae”

initiated by N-acetyl-d-glucosamine (GlcNAc) extend the core, and

hybrid glycans, which are the combination of HM and complex

glycans (88) (Figure 2). For biantennary N-glycans, additional

fucosylation, galactosylation, and sialylation may occur (89).

APCs expressing many CLR can recognize the glycans entities on

therapeutic Abs. While endogenous human IgG1 contains relatively

low percentages (0.1%) of HM glycans, recombinant IgG might

contain up to 10% depending on the producing cell line (90).

Studies have shown that HM has potentially advantageous

biological activities. Zhou et al. demonstrated that mannose

resulted in a higher ADCC activity and an increased binding

affinity to FcgRIIIa (91). These properties could be explained by

the lack of core fucose in addition to the presence of mannose-

ending glycans (92). Similar results were found by Yu and

collaborators but they demonstrated a negative impact on CDC

(93). On the other hand, HM residues influence Ig ’s

pharmacokinetics with an increased serum clearance of
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oligomannose glycoforms, which are recognized by mannose

receptors and rapidly eliminated from circulation (94). Fc’s HM

glycans are recognized by DC-SIGN and MR,and serum mannose-

binding lectin (95). These mannose-sensitive receptors are shown to

be implicated in the internalization of viruses (96) and factor VIII

procoagulant protein (FVIII) (97). Moreover, internalization of

mannosylated antigens are associated with an enhanced uptake by

DC and therefore with an enhanced presentation to CD4 T cells (97,

98). Few studies focused on therapeutic Abs’ uptake through

mannose-sensitive receptors. Wolf et al. showed an increased

internalization of mannosylated rituximab compared to the wild-

type form which colocalized in the lysosome (99). Interestingly

when therapeutic Abs are injected SC, the subcutaneous

compartment lacks the serum alpha-mannosidase that trims the

substrate Man9, and therefore, M9–6 glycans are not converted into

M5 types and may interact with cutaneous DC through DC-SIGN

(100). However, recognition by these specific CLRs can shape T-cell

responses. For instance, mannosylated antigens internalized via the

mannose receptor (MMR) enhance antigen presentation and T-cell

activation (reviewed in (101)). This was also observed with

mannosylated rituximab, which led to increased T-cell activation

in 50% of tested donors compared to the wild-type Ab. Similar

findings have been reported for antigens engaging DC-SIGN (102).

Wawrzyniak et al. found that fucosylation of adalimumab does not

influence its uptake by moDCs nor their activation (103). Human

IgGs contain low levels of sialylated Fc (5%–10%). Studies have

shown that sialylation of the N-linked glycan conveys Abs an anti-
FIGURE 2

Antibodies N-glycans and their recognition by dendritic cells receptors. ADCC, antibody dependent cell-mediated cytotoxicity; FcgR, Fc gamma
receptors; MR, mannose receptors. Monoclonal antibodies (mAbs) glycosylation modifies their functional properties and impacts their recognition by
dendritic cell (DC) receptors through carbohydrate residues. Sialic acid is primarily recognized by Siglecs and DC-SIGN on the surface of DCs. In
contrast, fucosylation of mAbs reduces their interaction with FcgRIII, leading to decreased antibody-dependent cellular cytotoxicity (ADCC).
However, mannosylation of mAbs enhances ADCC activity and is associated with increased clearance. Mannose-sensitive receptors, such as CD205,
CD206, and DC-SIGN, are capable of recognizing fucose and mannose residues. Created using BioRender.com.
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inflammatory activity. The dependency of this effect on the

interaction between DC-SIGN and sialylated Fc remains under

debate (104). Moreover, the uptake of sialic acid-modified antigens

by DCs results in the initiation of a tolerogenic T-cell response

(105). Wolf et al. showed that the hypersialylated variant of

rituximab had a decreased internalization rate by DC and weak

or nearly no co-localization in lysosomal compartments (99).

Besides their recognition by CLR, Fc fragment glycosylation on

Abs is also crucial for its interaction with FcR (106). The presence of

fucose on IgG N-linked glycan is a modification of the human IgG1

Fc structure with many functional consequences. The core fucose

causes a steric inhibition, limiting the interaction between FcgRIII-
glycan and IgG-Fc and, therefore, leading to a suboptimal affinity

(107). Hence, afucosylated IgG bind to FcgRIIIa and FcgRIIIb with a
higher affinity (108). Studies have shown that a fucosylated IgG

induces FcgRIIIa-dependent signaling and promotes ADCC (109,

110), the major mode of action to deplete tumor cells. Macrophages

also express FcgRIII, which could mediate phagocytosis of

opsonized IgG. However, many studies report FcgRI as the major

implicated receptor (111, 112). Afucosylated therapeutic Abs are

not generally reported to enhance phagocytosis significantly. On the

other hand, Abs can be engineered to reduce or completely

eliminate their interaction with FcgRs, thereby minimizing their

effector functions such as ADCC and CDC. This approach is

particularly applied to Abs used in oncology to reduce off-target

toxicity and enhance therapeutic efficacy. One common strategy

involves removing the N-linked glycosylation site at Asn297 as

exemplified by atezolizumab, an anti-PDL1 (113), or introducing

silencing mutations such as the so-called LALA mutation

(Leu234Ala together with Leu235Ala) to reduce or abolish FcgR
binding and effector functions like ADCC/CDC (114). Glycan

residues on the Fc region of IgG critically influence the

recruitment and binding affinity of FcgR on DCs, thereby

modulating Ab internalization and directing their intracellular

trafficking and immunological fate (78, 115). Jin et al. showed a

higher internalization level of avelumab through FcgRI-mediated

internalization in comparison to the non-glycosylated variant (75).

The Fc-mediated internalization of ICs is associated with enhanced

antigen uptake and presentation by DCs and macrophages (50, 116,

117). Amigorena et al. showed the dependency of this enhanced

antigen presentation on tyrosine residues of the cytoplasmic

domain of ITAM as the mutation of these residues motif

inhibited both the internalization of IgG–antigen complexes and

the presentation of the IgG-coated antigen (118). FcgR activation by

ICs also induces their sequestration in intracellular vesicles for

lysosomal degradation and antigen processing (119). However,

beyond the internalization step, FcgRs vary in their intercellular

trafficking capacities of ICs. ICs transported by the full-length

FcgRIA are routed to MHC-II compartments, whereas those up

taken by a truncated, tail-deleted FcgRIA are redirected to recycling

compartments, resulting in reduced antigen presentation (120).

Thus, the uptake pathway might significantly influence their

functional response. FcgRIIb also plays a role in antigen capture.

However, its inhibitory role is controversial; some studies have

shown that FcgRIIb deficiency results in an enhanced potential to
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generate antigen-specific T cell responses, while others indicate that

FcgRIIb-mediated uptake by DCs can elicit a weak T cell response

(121, 122). Since both glycan recognition by CLR and FcR binding

modulate immune cell activation and antigen presentation, these

molecular modifications may play a crucial role in clinical

immunogenicity by influencing the likelihood of immune

responses. However, translating in vitro findings on FcgR-
mediated internalization to clinical settings is challenging, and

many aspects should be considered, such as the competitive

receptor occupancy by endogenous IgGs, the dynamic formation

of ICs in vivo and the receptor expression profiles on relevant cell

types. The use of humanized Abs may therefore provide more

predictive insights into FcgR interactions and therapeutic Ab fate in

patients (76, 123).

Another modification that could influence therapeutic Abs

receptor recognition is PEGylation. Polyethylene glycol (PEG) is a

flexible, hydrophilic polymer that is chemically attached to

therapeutic Abs after the purification process. PEG enhances the

half-life of Abs by creating a steric barrier that reduces protein

binding, thereby decreasing the frequency of administration. This

technique, known as PEGylation, can resemble to post-translational

modifications of proteins and is clinically proven as an effective

strategy for extending the half-life of protein-based therapies (124).

Sanchez and collaborators showed that partial coating of PEG

reduces the macrophage uptake of particles (125). Other studies

demonstrated a reduced internalization of nanocarriers with a

longer PEG chain by macrophages (126, 127). Recently, de

Bourayne et al. showed that pegylation of certolizumab reduces

its uptake by DC, peptide presentation to T-cells, and T-cell

priming (128). PEGylation is frequently associated with

diminished immunogenicity by masking immune epitopes (129,

130). PEGylation shields therapeutic Abs from recognition and

internalization by immune cells, thereby playing a key role in

minimizing clinical immunogenicity.
4.3 Charge distribution and hydrophobicity

Abs’ behavior is influenced by their surface characteristics.

Results have demonstrated that modifying the charged and

hydrophobic regions can enhance the solution properties of Abs

(131, 132). However, positive charge patches were also described as

adversely affecting Abs pharmacokinetic (133). The presence of

large positively charged patches in the CDR can lead to non specific

binding (134). On the other hand, hydrophobicity as well as surface

charges have been linked to undesirable aggregation in IgG (135,

136). Studies have shown a higher internalization rate of positively

charged polymeric nanoparticles following an ionic interaction with

negatively charged membranes (137, 138). Jin et al. observed in vitro

a lower internalization of a variant of avelumab (anti-PD-L1) with

lower isoelectric point (75). Moreover, bococizumab, an anti-

PCSK9 Ab with excess positive charges, showed poor

pharmacokinetics properties and high immunogenicity (139).

Wen et al. showed its high internalization rate in vitro by moDCs

in comparison to other Abs (8). Liu et al. also found that positively
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charged Abs exhibited enhanced cellular uptake (140). Thompson

et al. observed an accumulation of transferrin and an endosomal

maturation following positively charged proteins’ internalization,

thus suggesting an alteration of peptide processing and presentation

(141). Another recent study also showed that adding positive

residues to therapeutics Abs resulted in their lysosomal

accumulation and the increase of antigenic presentation (5), two

critical steps of immune response initiation. Other studies showed a

correlation between particle uptake and their hydrophobicity (142,

143) following an improvement of their interaction with the cellular

membrane. This effect is interesting for enhancing Ab drug

conjugates (ADC)s antitumor activity by favoring cell penetration

(144). Together, these findings emphasize that both charge

distribution and hydrophobicity can influence how therapeutic

Abs are internalized, processed, and presented by immune cells.
4.4 Aggregation

Abs aggregation occurs during storage manufacturing, processing,

storage, handling, and administration due to exposure to different

stresses such as temperature variation, shaking, or light exposure (145).

This stress results in Ab’s partial unfolding, leading to monomer-

monomer association followed by nucleation and growth (80).

Changes in hydrophobicity and charge, which are probably linked to

an increased uptake, also promote aggregation (146). Even though it is

now well accepted that Abs aggregates enhance immunogenicity, few

data are published concerning their internalization by DCs. Ahmadi

et al. showed that aggregated rituximab has a higher internalization rate

compared to the native Abs, and it rapidly accumulates in late

endosomes associated with antigen presentation (147). Another

study identified the implication of FcgRs in ADC aggregates

internalization into non-target cells compared to the control (148).

Moreover, usingMHC-Associated Peptide Proteomics assay (MAPPs),

Rombach-Riegraf et al. identified a higher number of Ab-specific

peptides associated with MHC class II molecules after loading

moDCs of stir-stress aggregated Abs. According to the authors, these

results suggest a higher uptake (149). The factors mentioned above

impact mAb’s internalization rate and presentation by DCs. An

increased presentation of internalized particles might allow the

recruitment of T cells with a lower T cell receptor avidity. Moreover,

modifications such aggregation can lead to structure and sequence

modification, which could lead to the generation of neoepitopes

priming T-cells. Therefore, evaluating Abs’ internalization should be

considered part of in vitro testing of therapeutic Ab immunogenicity.
5 Target-mediated internalization

The target-mediated endocytosis is a process initiated by the

binding of ligands to specific receptors on the cell surface.This leads

to the formation of receptor-ligand complexes that initiate receptor-

mediated endocytosis. During internalization, these complexes are

internalized into early endosomes then either recycled back to the

plasma membrane or degraded in lysosomes. The fate of these
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complexes is often determined by their pH-dependent dissociation:

ligands that dissociate rapidly in acidic endosomal conditions tend

to promote receptor recycling, whereas complexes that remain

intact under low pH conditions are targeted for lysosomal

degradation (150). Target expression by DCs facilitates

therapeutic Abs’ uptake. For example, atezolizumab, binds to PD-

L1 expressed on DCs as well as tumor cells, influencing immune

checkpoint regulation and enhancing antitumor immunity (151). A

study demonstrated that high uptake of radiolabeled anti-PD-L1

occurred in the liver and spleen, corresponding to its binding to PD-

L1 receptors expressed on lymphocytes and DCs in these tissues

(152). Jin et al. also showed that a variant of avelumab (an anti-PD-

L1) deficient in PD-L1 binding exhibited significantly reduced

internalization by immune cells, highlighting that PD-L1

engagement is critical for efficient receptor-mediated uptake of

the Ab (75). Another group demonstrated that anti-TNF Abs

undergo rapid target-mediated endocytosis following their

binding to transmembrane TNF on the DC surface followed by

its routing to degradative compartments (153). Internalization and

processing of Ab-receptor complexes by DCs can potentially

modulate immune responses by enhancing antigen presentation.

The degradation of therapeutic Abs in lysosomes could lead to the

generation of immunogenic peptides that might provoke ADA

responses, impacting treatment efficacy and safety. Therefore,

understanding target-mediated endocytosis is essential not only

for optimizing therapeutic Ab design and delivery but also for

anticipating and managing immunogenicity-related challenges in

clinical applications.
6 Assays to evaluate internalization

As internalization gained interest in the last decade, different in

vitro assay formats were developed (Table 1). Endocytosis

mechanisms are commonly evaluated by flow cytometry and

fluorescence microscopy (154), both requiring tracking of the

molecule by direct or secondary labeling. Direct Abs labeling with a

fluorescent dye is a widely used method to study their internalization

(147, 155). Although this technique is straightforward, it is partially

limited by the difficulty of discriminating between surface-bound and

effective-internalized material and the lack of information concerning

the intracellular trafficking. This could be completed by microscopic

study or by adding more controls. For instance, incubating cells at 4°

C inhibits the internalization, and the measured fluorescence

corresponds to the surface binding signal. Washing with an acid

buffer or using quenchers like trypan blue could also remove the cell

surface binding signal (156). Alternative methods based on direct

labeling with a pH-sensitive dye, either reactive to amine or directed

to heavy chain N-linked glycans, are developed to evaluate the

endocytosis and to assess lysosomal degradation. Using this

technique, Deora et al. demonstrated the rapid internalization of

anti-tumor necrosis factor (TNF) Abs following their formation of a

complex with transmembrane TNF (tmTNF) (153). This complex is

initially routed into early endosomes and subsequently transported to

lysosomes, where it undergoes further degradation. Jin et al. also
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compared the internalization of different variant of avelumab using

pHrodo labeling (75). Moreover, Siegel et al. also labeled different

therapeutic Abs with a pH-sensitive fluorophore specifically directed

to their Fc glycosylation site and compared their internalization rate

in moDCs (5). Results revealed a linear correlation between the

cellular accumulation of these Abs and their subsequent presentation

by MHC-II molecules. Förster resonance energy transfer (FRET) is

another method that allows the evaluation of internalized Abs. It

requires the conjugation of the Ab with both a fluorophore and a

quencher dye. At the cell surface, the fluorophore is masked by the

quencher, and once internalized and degraded, the physical

separation of the fluorophore and quencher results in a fluorescent

signal detected by flow cytometry (157). This method was used in
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different studies to compare many Abs’ internalization rate and

correlate with their immunogenic potential (8, 158, 159). However,

since the FRET construct binds to the Fc region, Fc-mediated

endocytosis could not be assessed, despite it being a potentially

significant uptake pathway for many Abs. Recently, a group

developed a new format for assessing Ab’s internalization based on

cell surface staining and an intracellular staining of cells with an anti-

human IgG F(ab’)2 following a 24 hours incubation with unlabeled

mAb studies tested different Abs and compared their internalization

rate and their immunogenic potential through different assay ( (4,

7).These different tools used to evaluate therapeutic Ab’s

internalization are summarized in Table 1. Many in vitro assays are

available based on different techniques to evaluate the role of a
TABLE 1 Tools to evaluate the internalization of therapeutic antibodies and their limitations.

Internalization test Internalization test Limitations

Quantification of internalization by flow cytometry
and evaluation of lysosomal degradation by

confocal microscopy

Direct labelling

Challenges related to the labelling
Amine-reactive labeling can modify lysine residues

critical for antigen binding or Fc receptor interaction,
potentially reducing binding affinity or altering

effector functions
Labelling could increase the risk of structural

destabilization and aggregation

Challenges in Discriminating Between Surface-Bound
and Effectively Internalized Material, and Limitations

in Intracellular Trafficking Analysis
Discriminating between surface-bound and effectively
internalized material is challenging, particularly when
not using confocal microscopy. Furthermore, a lack of

detailed information on intracellular trafficking
pathways adds complexity for interpreting

experimental data.

Challenges in Comparing Antibodies with Different
Degrees of Labeling

Comparisons between antibodies can be unreliable if
the degree of labeling is not standardized

or equivalent.

External and internal labelling with an
anti-human IgG F(ab’)2 or F(ab’)2 anti-human IgG

(H+L) conjugated to a fluorophore

Partial assessment
Using anti-F(ab’)2 labeling (either recognizing the Fab
or Fc region) for tracking antibody internalization
may hinder the ability to fully assess Fc-mediated or
target-specific interactions. This could lead to an
incomplete understanding of Ab trafficking,

processing, and interaction with both Fc receptors and
target molecules, limiting insights into the Abs’s full

internalization pathway.

Quantification of lysosomal degradation by
flow cytometry

FRET

Binding to the Fc Portion
Binding exclusively to the Fc portion prevents the

evaluation of Fc/glycosylation-dependent endocytosis
mechanisms. This limitation arises because

interactions with C-type lectin receptors (CLRs) or Fcg
receptors (FcgRs) are abrogated.

pH-
rodo labelling

Dye reactive to amine
Degrees of Labeling

Comparisons between antibodies can be unreliable if
the degree of labeling is not standardized or equivalent

Dye directed to heavy chain N-
linked glycans

Degrees of Labeling
Comparisons between antibodies can be unreliable if
the degree of labeling is not standardized or equivalent

Challenges to analyze unglycosylated antibodies
Ab, antibody; Fab, fragment antigen-binding region; FcR, Fc receptors; FRET, Förster resonance energy transfer.
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specific receptor in mAb’s internalization. Jin et al. demonstrate the

implication of FcgR in avelumab’s uptake by testing and comparing it

to FcgR binding–deficient variants (75). On the other hand, Xue et al.

showed that an anti-IL21 receptor internalization by DCs is slightly

dependent on FcgR as blocking these receptors by an Fc block did not

modify the cellular binding (155). Other studies were based on

competition or blocking experiments to identify a specific receptor.

For example, Aoyama et al. identified the implication of FcgRs in

ADC aggregates internalization by analyzing the uptake inhibition by

flow cytometry after blocking FcgRIIa (148). Another study

demonstrated the MMR-dependent endocytosis of factor VIII by

blocking mannose-sensitive receptors after preincubating DCs with

mannan (97). Another alternative consists of analyzing uptake by

cellular model that overexpresses a particular receptor. After

incubation with wild type or CD206-expressing Chinese hamster

ovary (CHO) cells, a receptor-specific targeting and uptake was

shown for nanocarriers by flow cytometry and confocal microscopy
Frontiers in Immunology 10
(160). Anderson et al. showed that using the same technique

principle, the specific uptake of a glycopeptide in DC-SIGN CHO

(+) was achieved (161).
7 Conclusion

The development of an immune response against therapeutic Abs

requires their internalizationbyAPCs,mainlyDCs, and their processing

intopeptides.Understandinghow theseAbs are internalizedby cells and

the influence of their physico-chemical properties on their uptake is

critical for evaluating their immunogenicity. Here, we focused on Abs’

properties and the aggregation impact on their uptakebyDCs, presented

a general overview of the current understanding of endocytosis, and

discussed current experimental techniques. Aspects of Abs’ properties,

such as size, PTM, surface chemistry, and their aggregation propensity,

are thought to influence the route and the rate of internalization. The
FIGURE 3

An evidence-based strategy for assessing the immunogenicity risk of therapeutic protein candidates, including an internalization assessment test.
DC, dendritic cell; MAPPS, MHC-associated peptide proteomics; MHC, major histocompatibility complex, The immunogenicity of therapeutic
antibodies is evaluated using complementary approaches. In silico evaluation, based on a database of therapeutic antibodies with known
immunogenic risks, predicts MHC-II binding, identifies aggregation-prone regions (APRs), and assesses epitope-based risks and implicated alleles.
This approach can guide antibody sequence optimization by selecting variants with lower MHC-II affinity, reduced APRs, and fewer T cell epitopes,
while maintaining activity. The next step involves in vitro evaluation of the cellular mechanisms involved in T cell response initiation. Assessing the
internalization and processing of antibodies by monocyte-derived dendritic cells (moDCs)—two key steps in this immune response—is important for
quantifying antibody uptake and comparing it to a reference antibody with known immunogenicity. This is complemented by identifying
internalization pathways and receptors using pharmacological inhibitors or receptor-overexpressing models, as antibody entry depends on
properties such as glycosylation and charge. Optimization involves modifying the antibody’s physicochemical properties, such as testing different
monoclonal antibodies (mAbs) with the same Fab but varying Fc portions (e.g., glycosylated versus non-glycosylated). The MAPPS assay
complements internalization evaluation by identifying peptides presented on MHC-II molecules to CD4 T cells. Additionally, dendritic cell (DC)
activation testing is crucial for assessing the biological activity of impurities or large aggregates. T cell assays encompass multiple stages of the
immune response: internalization, antigen presentation, peptide recognition, and T cell activation. These assays either identify the presence of a T
cell repertoire in response to an antibody, which is a prerequisite for T cell initiation, or assess T cell proliferation in response to the antibody. Based
on these results, antibody sequence optimization may be considered to eliminate impurities and reduce immunogenicity by removing, masking, or
reducing T cell epitopes. Creating using BioRender.com.
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current assays evaluating Ab’s internalization present some limitations,

such as the evaluation of onemain endocytic route, whichmight lead to

false output. Considerable research effort is still expanding to develop

tools to evaluate Ab’s internalization and integrate it into the overall

evaluation of risk of immunogenicity. An increased understanding of

these processes could greatly improve the ability to predict the risk of

immunogenicity and facilitate the development of effective mitigation

strategies. To this end, an evidence-based strategy is proposed for

assessing the immunogenicity risk of therapeutic Abs candidates. This

strategy includes internalization assessments, along with other

evaluation methods that address various stages of the immune

response. It also incorporates multiple risk-mitigation approaches,

allowing for a more comprehensive and predictive evaluation of

potential immunogenic reactions. Such a framework is essential for

optimizing Ab design, minimizing the risk of adverse immune

responses, and improving the overall safety and efficacy of Ab-based

therapies (Figure 3).
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101. Paurević M, Šrajer Gajdosǐk M, Ribić R. Mannose ligands for mannose receptor
targeting. Int J Mol Sci. (2024) 25:1370. doi: 10.3390/ijms25031370
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