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Neoantigens, derived from tumor-specific mutations, are promising targets of

cancer immunotherapy by eliciting tumor-specific T-cell responses while sparing

normal cells. Accurate neoantigen prediction relies on immunogenomics and

immunopeptidomics. Immunogenomics identifies tumor-specific mutations via

next-generation sequencing. Immunopeptidomics detects MHC-presented

peptides using mass spectrometry. Integrating these two methods enhances

prediction accuracy but faces challenges due to tumor heterogeneity, HLA

diversity, and immune evasion. Future advancements will focus on dynamic

tumor microenvironment monitoring, multi-omics integration, improved

computational models and algorithms to refine neoantigen prediction, and

developing optimized personalized vaccines.
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1 Introduction

The landscape of cancer therapy is undergoing a transformative shift from traditional

chemotherapy and radiotherapy to immunotherapy, which focuses on modulating the

tumor microenvironment to activate the patient’s immune system (1). The advent of

immune checkpoint inhibitors (ICIs), such as PD-1 and CTLA-4, heralds a new era in

cancer immunotherapy (2, 3). Despite their ability to elicit durable clinical responses

against various malignancies, the efficacy of these inhibitors is not universally observed

across patient populations (4–7).

Neoantigens, arising from unique mutations in tumor cells, are expressed solely within

the tumor (8), capable of eliciting T-cell responses against the tumor with minimal immune

tolerance (9, 10). These neoantigens typically originate from genetic mutations in tumor

cells, such as single nucleotide variations, gene rearrangements, and splicing alterations,
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making them ideal targets for immunotherapy (11). The

concomitant administration of ICIs alongside neoantigen-based

immunotherapies represents a synergistic strategy to enhance the

efficacy of tumor-directed T cell responses (12). The ongoing

investigation of neoantigens as biomarkers for immunotherapy

response is expected to refine patient stratification protocols (6,

13), thereby enhancing the precision of therapeutic interventions

and enabling personalized treatment regimens to maximize

clinical benefits.

With the rapid advancement of next-generation sequencing

technologies like Whole Genome Sequencing (WGS) and Whole

Exome Sequencing (WES), the identification of genomic variations

in tumors has become significantly more efficient (14, 15). However,

predicting the immunogenicity of these variations remains a major

challenge (10). Simultaneously, mass spectrometry (MS) is used to

directly identify peptides that actually exist in tumor cells, aiding in

the detection of neoantigens that might be lost due to immune

escape or overlooked due to their rarity or low abundance in

traditional bioinformatics predictions (16, 17).

Despite these advancements, neoantigen prediction and

validation continue to face substantial challenges. Immune

evasion further complicates accurate prediction, underscoring the

need for precise strategies and combination therapies to enhance

immunotherapy efficacy. Key areas for improvement include

refining MHC-peptide binding predictions, expanding datasets,

and developing more advanced algorithms—crucial steps toward

achieving more precise and effective cancer immunotherapy.
2 The biological mechanism of
neoantigens

Neoantigens are tumor-specific protein fragments generated by

cancer cell mutations, exhibiting minimal structural similarity to

normal proteins, and rarely shared among patients. Unlike tumor-

associated antigens, neoantigens offer high tumor specificity, reducing

off-target toxicity and addressing antigen scarcity in targeted cancer

immunotherapy (10, 11, 18). Neoantigens arise from various

mechanisms, including non-synonymous single-nucleotide variants

(SNVs), insertions/deletions (INDELs), gene fusions, splice variants,

endogenous retrovirus reactivation, and protein fragments generated

by HLA somatic mutations or non-coding region translation (19, 20)

(Figure 1). The high specificity of neoantigens makes them attractive

biomarkers for immunotherapy response. They can serve as targets for

personalized cancer vaccines and adoptive T-cell therapies (21).

Furthermore, the load and quality of neoantigens have been linked

to patient outcomes in several malignancies, including metastatic

melanoma and non-small cell lung cancer (22, 23). However, only a

small fraction of SNVs is immunogenic (24), limiting their vaccine

potential to cancers with a high neoantigen load, such as metastatic

melanoma with high SNV burden (20, 25). Their low prevalence

across patients poses challenges for the development of universal

therapeutic approaches. Leukemias and sarcomas, which have lower

SNV burden, often express shared gene fusions and splice variant

transcripts, indicating the potential for universal therapy development
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(14). The new tool SNAF systematically identifies splicing

neoantigens, revealing potential common targets in the treatment of

heterogeneous cancers (25). Thus, accurately identifying and

validating neoantigens is a crucial strategy for optimizing

immunotherapy applications. Based on the different sources of

neoantigens, various identification methods are employed. Table 1

summarized three strategies for the identification of neoantigens.
3 Technological platforms for
neoantigen prediction

3.1 Genomic and transcriptomic
approaches

Neoantigens arise from five primary sources: genomic

variations, transcriptomic variations, proteomic variations, virus-

derived tumor antigens, and other sources (11). Genomic variations

include SNVs, INDELs, and gene fusions. (Next-Generation

Sequencing) NGS technologies, such as Whole Genome

Sequencing (WGS) and Whole Exome Sequencing (WES), have

enabled the rapid identification of genomic alterations in tumors.

By comparing tumor and normal tissue sequencing data,

researchers can pinpoint somatic mutations that may lead to

neoantigen formation. Complementary RNA sequencing (RNA-

Seq) further helps in assessing the expression levels of these mutant

genes and detecting alternative splicing events (26). By analyzing

sequencing data from individual tumors, neoantigens derived from

SNVs and INDELs can be identified as potential target epitopes.

Conceptually, predicting epitopes based on NGS data involves three

steps: (a) converting genomic mutations into mutated protein

sequences, (b) predicting MHC binding, and (c) evaluating

immunogenicity based on predicted binding, expression levels,

and sequence similarity to non-mutated self-proteins (27)

(Figure 1). These steps reflect the core principle that an immune

response requires the transcription, translation, processing, and

MHC presentation of abnormal gene products. The integration of

genomic and transcriptomic data is critical for filtering potential

neoantigen candidates. Consequently, verifying expression and

assessing MHC-binding affinity are pivotal in current

computational pipelines (9). For example, the automated

workflow pVAC-Seq (28), developed by J. Hundal et al., evaluates

the binding capacity of candidate neoantigens to a patient’s HLA

molecules, integrating tumor gene expression and mutation

coverage data. Tools such as BWA (Burrows-Wheeler Aligner)

and GMS (Genome Modeling System) align WES/WGS and

RNA-seq data, while HLAminer and Athlate perform HLA

typing. Mutations are annotated using the Ensembl database and

Variant Effect Predictor (VEP), and NetMHC (29) predicts binding

affinities, followed by filters to select optimal mutated peptide

candidates. Similar pipelines include TSNAD (30), CloudNeo

(31), and TIminer (32). Although these methods consider MHC-

peptide affinity, they often omit other crucial factors like TCR

recognition and sequence similarity to highly immunogenic

epitopes (33, 34). In contrast, pipelines such as MixMHCpred2.2
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FIGURE 1

Neoantigen prediction and validation workflow. (A) Neoantigens originate from diverse genetic alterations including SNVs, INDELs, gene fusions,
splice variants, endogenous retroviruses, and post-translational modifications. (B) Neoantigen prediction initiates with mutation identification
through WES/RNA-seq and peptide extraction via LC-MS/MS, complemented by TCR-seq for immune receptor profiling. (C) The process begins
with HLA typing of the peptides to assess their binding affinity to HLA molecules. This step is crucial for identifying which peptides can be
recognized by the immune system. Following this, the peptides undergo T cell recognition assays to evaluate their ability to activate T cells. Deep
learning models are then employed to predict the presentation probability of neoantigens and to rank mutations, thereby prioritizing the most
promising candidate peptides. These models analyze extensive datasets, including peptide sequences, HLA types, and expression levels, to forecast
the immunogenicity of the peptides. (D) Validated immunogenic peptides are confirmed through immunological assays, identifying potential
neoantigen candidates for cancer immunotherapy. Validated neoantigen data can serve as input for retraining, which is used to refine and enhance
the predictive accuracy of deep learning models. SNVs, Single Nucleotide Variants; INDELs, Insertions and Deletions; WES/RNA-seq, Whole Exome/
RNA sequencing; LC-MS/MS, Liquid Chromatography-Mass Spectrometry/Mass Spectrometry; TCR, T-cell receptor; MHC, Major Histocompatibility
Complex; APC, Antigen-Presenting Cell; HLA, Human Leukocyte Antigen.
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and PRIME2.0 (35), address these limitations, improving

predictions of antigen presentation and TCR recognition.
3.2 Immunopeptidomics

Immunopeptidomics uses mass spectrometry (MS) to directly

identify peptides presented by MHC molecules in tumor cells. This

approach involves two steps: (1) isolatingMHC-bound peptides from

tumor cells and (2) analyzing these peptides via MS to pinpoint

tumor-specific neoantigens (36) (Figure 1). MS-based

immunopeptidomics has emerged as a powerful tool to directly

profile the peptides presented on MHC molecules. This method

complements NGS by verifying the actual presence of neoantigens on

tumor cells (37). The direct detection of MHC-bound peptides

addresses some limitations of bioinformatic predictions, particularly

for neoantigens that are rare or prone to immune escape (38). To

improve the positive predictive value of neoantigen prediction,

advanced models integrate deep learning with MS data. The EDGE

model (39) is trained directly usingMS data rather thanHLA-peptide

binding affinity measurements in vitro. SHERPA (40) systematically

combines 128 monoallelic and 384 multiallelic samples, employing

an HLA-null K562 parental cell line with stably transfected HLA

alleles to better emulate native antigen presentation. However,

proteomics-based approaches have their own drawbacks, including

limited sensitivity in detecting low-abundance peptides, technical

variability in MS data, and the inability to capture all potential

neoantigens due to sample processing constraints (Table 1).
3.3 Bioinformatics and Computational
Models

Bioinformatics tools play a pivotal role in predicting neoantigen

immunogenicity. Several algorithms, including RPEMHC (41),

UniPMT (42) and TEIM-Res (43) have been developed to assess

MHC-peptide binding affinity, stability, and the likelihood of TCR
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recognition, respectively. Machine learning and deep learning

further improved prediction accuracy by integrating large-scale

multi-omics datasets, such as proteomic and immunopeptidomic

profiles (44). However, the variability in HLA alleles and the

complexity of antigen processing pathway continue to pose

challenges for these computational models (45).
4 Challenges in neoantigen prediction

4.1 Tumor heterogeneity

The inherent heterogeneity of tumors, both spatially and temporally,

complicates the accurate prediction of neoantigens. Variability in

mutation profiles within a single tumor and across different tumor

sites may lead to inconsistent neoantigen expression and immune

recognition. The analysis of melanoma samples from two distinct

metastatic sites—the gastrointestinal tract and the pelvic cavity—in the

same patient revealed significant heterogeneity in the functionality of the

antigen presentation machinery (APPM) (44). Some tumor cells lose

their ability of antigen presentation due to the deletion or mutation of

b2-microglobulin (b2M) gene (46). This highlights the importance of

considering tumor spatial heterogeneity when predicting neoantigens.

By integrating multi-omics data, NeoDisc (44) can identify the defects in

the mechanism of antigen presentation, shaping the heterogeneous

landscape of tumor antigens. Over time, certain neoantigens may no

longer be effectively presented due to the tumor evolution (47), or their

immunogenicity may diminish as a results of alterations in the tumor

microenvironment (48). To better understand the temporal

heterogeneity of tumors, analyzing tumor samples at different time

points provides valuable insights into their evolution.
4.2 Tumor microenvironment complexity

The immunogenicity of neoantigens is shaped by both their

intrinsic physicochemical properties, such as MHC-binding affinity
TABLE 1 Overview of neoantigen epitope identification strategies.

Identification
strategy

Description Technological
methods

Advantages Limitations

Immunogenomic
Strategy

Predicts neoantigens based on NGS
data using computational methods

·Whole Exome Sequencing
(WES)
·RNA Sequencing (RNA-seq)
·Computational prediction
tools (e.g.,
NetMHC, MHCflurry)

·Rapid screening of a large
number of potential
neoantigens
·Suitable for large-
scale analysis

·Requires experimental validation
·Possibility of false positives

Immunopeptidomic
Strategy

Analyzes MHC-loaded peptides
using mass spectrometry

·Mass Spectrometry (MS)
·Immunoprecipitation (IP)

·Provides direct experimental
evidence
·Identifies peptides actually
presented on tumor cells

·Limited by the coverage and
sensitivity of mass spectrometry
technology
·High cost and complexity
of operation

TCR-
Guided Strategies

Utilizes TCR specificity to
identify neoantigens

·TCR transgenic mouse models
·TCR-cloned T cells
·TCR-mimic antibodies

·Directly assesses the
immunogenicity of
neoantigens
·Suitable for
functional validation

·Requires specific TCR tools
·May be limited by the availability
of TCRs
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and T cell receptor recognition and the dynamic interplay within the

tumor microenvironment (TME). Neoantigens from mutant proteins

at the cell membrane are more accessible to immune cells, enhancing

immunogenicity, whereas those confined to the nucleus or other

organelles are less likely to be processed and presented effectively (49).

Within the TME, immunosuppressive cells play a critical role.

Regulatory T cells (Tregs) express high levels of CTLA-4 and PD-1,

suppressing effector T cell activity (50). Myeloid-derived suppressor

cells (MDSCs) secrete inhibitory factors such as IL-10, TGF-b, and
arginase, further attenuating T cell responses (51). Tumor-

associated macrophages (TAMs) also contribute by releasing

cytokines like IL-10, which impair dendritic cell maturation and

antigen presentation (52). TME exhibits considerable heterogeneity

across different tumor types and individuals, which significantly

influences the immunogenicity of neoantigens (53). Moreover, the

composition of the TME varies significantly among tumors, with

some dominated by Tregs and others by MDSCs, underscoring the

need for personalized neoantigen prediction models that account

for these differences. Combining TME remodeling strategies with

immunotherapies—such as pairing ICIs with chemotherapy or

targeted therapies—has improved clinical outcomes (52, 54). To

achieve this, it is critical to incorporate TME remodeling strategies

into neoantigen prediction frameworks, enabling more precise and

tailored immunotherapies. This necessitates a holistic

understanding of TME complexity, leveraging multi-omics data

from genomics, transcriptomics, proteomics, and metabolomics.

Furthermore, advanced simulations of the TME during neoantigen

screening are vital to assess the immunogenicity of neoantigens

within their specific heterogeneous contexts. For example,

integrating the functional profiles of immunosuppressive cell

populations, such as Tregs and MDSCs, into predictive models

can refine neoantigen selection. These evolving requirements

underscore the growing challenges and opportunities in

developing robust neoantigen prediction pipelines.
4.3 HLA polymorphism

The high degree of HLA polymorphism among individuals adds

another layer of complexity. The HLA gene is situated on the short

arm of human chromosome 6 and represents one of the most

complex gene systems in the human genome (55). Due to the

polymorphism of HLA gene, there are significant differences in

genetic background among different races and regions (56). This

polymorphism is primarily manifested in the amino acid positions of

the antigen-binding groove, where variations at these sites determine

the specific antigenic peptides that HLA molecules can bind, as well

as the peptide binding affinity, stability and TCR recognition ability

(57). Differences in HLA binding preferences and antigen

presentation can significantly affect the immunogenicity of

predicted neoantigens, necessitating personalized approaches in

prediction and validation.
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4.4 Limitations of current algorithms and data

The performance of current bioinformatics models is inherently

constrained by the quality and size of available datasets, which

directly influence their predictive accuracy and generalizability.

Incomplete datasets with lacking essent ia l genomic ,

transcriptomic, or proteomic information, pose significant

challenges to comprehensive characterization of neoantigens (58).

Furthermore, many models are trained on datasets that lack

sufficient representation across diverse cancer types, potentially

introducing biases and reducing their applicability to

underrepresented malignancies (33). These limitations often result

in overfitting, where models exhibit high performance on training

data but fail to generalize to independent datasets, or result in

misclassification of neoantigen immunogenicity, producing false-

positive or false-negative predictions that may impact therapeutic

decision-making (59). To overcome these challenges, efforts are

required to enhance dataset curation, including the integration of

multi-omics data, the establishment of standardized data collection

protocols, and the inclusion of diverse patient cohorts (60).

Additionally, the complexity of algorithmic models presents

difficulties in interpretability, which may compromise their

reliability in both research and clinical settings. Improving model

transparency and developing explainable AI frameworks could

mitigate these issues, ultimately fostering greater confidence in

computational predictions (61).
5 Future perspectives

Accurate neoantigen prediction is essential for the development

of personalized cancer vaccines and adoptive T-cell therapies.

Tailoring immunotherapy to a patient’s unique mutational

landscape holds great potential for enhancing treatment efficacy

while minimizing adverse effects. However, several challenges

remain in improving the precision and applicability of

neoantigen-based therapeutic strategies.

A comprehensive approach to neoantigen prediction involves

multiple advancements. First, employing longitudinal sampling and

single-cell sequencing enables the capture of tumor evolution and

neoantigen dynamics over time. Second, integrating multi-omics

data with advanced computational models can significantly

enhance prediction accuracy. Third, developing more

sophisticated algorithms that account for HLA polymorphism

and tumor immune evasion mechanisms is crucial for improving

the reliability of neoantigen identification. Additionally,

establishing standardized protocols for validating predicted

neoantigens in clinical trials is imperative to ensure their

translational success.

The incorporation of artificial intelligence and machine learning

into neoantigen prediction pipelines presents a promising avenue for

future research. By enhancing predictive models and enabling real-
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time monitoring of tumor immunogenicity, these technologies may

contribute to the development of more effective and adaptive cancer

immunotherapy regimens. Furthermore, combining neoantigen-

based strategies with other immunotherapies, such as immune

checkpoint inhibitors, has the potential to synergistically enhance

anti-tumor responses. Such combination approaches could help

counteract immune evasion mechanisms and ultimately improve

clinical outcomes for cancer patients.

6 Conclusion

Neoantigen prediction is at the forefront of personalized cancer

immunotherapy. Despite significant technological advances, challenges

such as tumor heterogeneity, HLA variability, and immune evasion

remain. Continued innovation in sequencing technologies,

immunopeptidomics, and computational models is essential for

overcoming these obstacles. Future research that bridges the gap

between prediction and clinical validation will be critical for

translating neoantigen-based strategies into routine clinical practice.
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et al. HLA-B, and HLA-C allele frequencies in Romanian hematopoietic stem cell
donors. Int J Mol Sci. (2024) 25:8837. doi: 10.3390/ijms25168837

56. Silva N, Souza ADS, Andrade HS, Pereira RN, Castro CFB, Vince N, et al.
Immunogenetics of HLA-B: SNP, allele, and haplotype diversity in populations from
different continents and ancestry backgrounds. Hla. (2023) 101:634–46. doi: 10.1111/
tan.v101.6

57. Ursu R-I, Caragea AM, Constantinescu I, Bohiltea LC, Constantinescu AE. NGS
and immunogenetics: sequencing the HLA genes. In: Abdurakhmonov IY, editor. DNA
Sequencing - History, Present and Future. IntechOpen, Rijeka (2025).

58. Wells DK, van Buuren MM, Dang KK, Hubbard-Lucey VM, Sheehan KCF,
Campbell KM, et al. Key parameters of tumor epitope immunogenicity revealed
through a consortium approach improve neoantigen prediction. Cell. (2020)
183:818–34.e13. doi: 10.1016/j.cell.2020.09.015

59. Balachandran VP, Łuksza M, Zhao JN, Makarov V, Moral JA, Remark R, et al.
Identification of unique neoantigen qualities in long-term survivors of pancreatic
cancer. Nature. (2017) 551:512–6. doi: 10.1038/nature24462

60. Fotakis G, Trajanoski Z, Rieder D. Computational cancer neoantigen prediction:
current status and recent advances. Immuno Oncol Technol. (2021) 12:100052.
doi: 10.1016/j.iotech.2021.100052

61. Xiang W, Yu L, Chen X, Herold MJ. Artificial intelligence in cancer
immunotherapy: navigating challenges and unlocking opportunities. Engineering.
(2025) 44:12–6. doi: 10.1016/j.eng.2024.12.014
frontiersin.org

https://doi.org/10.1038/s41576-019-0166-7
https://doi.org/10.1016/j.molmed.2019.08.001
https://doi.org/10.1126/scitranslmed.aau5516
https://doi.org/10.1126/science.aaa4971
https://doi.org/10.1016/S1470-2045(17)30516-8
https://doi.org/10.1016/S1470-2045(17)30516-8
https://doi.org/10.1038/s41568-019-0162-4
https://doi.org/10.1038/nature22991
https://doi.org/10.1056/NEJMoa1406498
https://doi.org/10.1126/science.aaa1348
https://doi.org/10.1158/2159-8290.CD-18-1494
https://doi.org/10.1126/scitranslmed.ade2886
https://doi.org/10.1038/nm.2323
https://doi.org/10.1007/s00262-017-2001-3
https://doi.org/10.1186/s13073-016-0264-5
https://doi.org/10.1093/nar/gkaa379
https://doi.org/10.1098/rsos.170050
https://doi.org/10.1093/bioinformatics/btx375
https://doi.org/10.1093/bioinformatics/btx377
https://doi.org/10.1038/nature24473
https://doi.org/10.1016/j.cels.2019.08.009
https://doi.org/10.1016/j.cels.2022.12.002
https://doi.org/10.1158/2326-6066.CIR-24-0514
https://doi.org/10.1158/2326-6066.CIR-24-0514
https://doi.org/10.1038/s41587-021-01038-8
https://doi.org/10.1038/s41587-021-01038-8
https://doi.org/10.1136/jitc-2020-002071
https://doi.org/10.1038/nbt.4313
https://doi.org/10.1016/j.mcpro.2023.100506
https://doi.org/10.1093/bioinformatics/btad785
https://doi.org/10.1093/bioinformatics/btad785
https://doi.org/10.1038/s42256-025-01002-0
https://doi.org/10.1038/s42256-023-00634-4
https://doi.org/10.1038/s41587-024-02420-y
https://doi.org/10.1038/s41587-024-02420-y
https://doi.org/10.1038/s41467-024-50583-8
https://doi.org/10.1007/978-3-030-17864-2
https://doi.org/10.1038/nature10762
https://doi.org/10.1038/s41576-019-0114-6
https://doi.org/10.1016/j.canlet.2024.217385
https://doi.org/10.1038/s41571-024-00870-6
https://doi.org/10.1038/s41571-024-00870-6
https://doi.org/10.1186/s12943-024-02208-3
https://doi.org/10.1136/jitc-2024-010826
https://doi.org/10.1136/jitc-2024-010826
https://doi.org/10.1002/path.v254.4
https://doi.org/10.1126/scitranslmed.adm7269
https://doi.org/10.1126/scitranslmed.adm7269
https://doi.org/10.3390/ijms25168837
https://doi.org/10.1111/tan.v101.6
https://doi.org/10.1111/tan.v101.6
https://doi.org/10.1016/j.cell.2020.09.015
https://doi.org/10.1038/nature24462
https://doi.org/10.1016/j.iotech.2021.100052
https://doi.org/10.1016/j.eng.2024.12.014
https://doi.org/10.3389/fimmu.2025.1617654
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Advances and challenges in neoantigen prediction for cancer immunotherapy
	1 Introduction
	2 The biological mechanism of neoantigens
	3 Technological platforms for neoantigen prediction
	3.1 Genomic and transcriptomic approaches
	3.2 Immunopeptidomics
	3.3 Bioinformatics and Computational Models

	4 Challenges in neoantigen prediction
	4.1 Tumor heterogeneity
	4.2 Tumor microenvironment complexity
	4.3 HLA polymorphism
	4.4 Limitations of current algorithms and data

	5 Future perspectives
	6 Conclusion
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References


