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Cutting-edge multiplex imaging technologies have significantly advanced our 
understanding of the tumor immune microenvironment (TIME), delivering 
nanometer-scale spatial resolution that illuminates previously inaccessible 
cellular interactions and organizational patterns. This mini-review discusses the 
latest multiplex imaging methods, including Imaging Mass Cytometry (IMC), 
Multiplexed Ion Beam Imaging (MIBI), Cyclic Immunofluorescence (CycIF), and 
Digital Spatial Profiling (DSP), emphasizing their roles in identifying spatial 
immune signatures predictive of immunotherapy responses. Clinical 
applications across various cancers—such as NSCLC, melanoma, breast 
cancer, colorectal cancer, and hepatocellular carcinoma—highlight how 
spatially resolved immune profiles can enhance patient stratification and 
treatment personalization. Notably, increased CD8+ T cell density and spatial 
colocalization with tumor cells have been broadly correlated with improved 
immunotherapy response and survival across multiple cancer types. Despite 
current  technical  and  analytical  challenges,  ongoing  technological  
advancements  and  integration  with  emerging  methods  l ike  spatial  
transcriptomics and super-resolution imaging promise broader clinical utility, 
ultimately improving patient outcomes in precision immunotherapy. 
KEYWORDS 

tumor immune microenvironment (TIME), multiplex imaging, spatial profiling, immune 
cell interactions, immunotherapy biomarkers 
1 Introduction 

The advent of cancer immunotherapy has fundamentally reshaped modern oncology, 
empowering clinicians to reprogram the body’s immune defenses into a precision weapon 
against malignant cells (1–3). Despite breakthroughs in immune checkpoint inhibitors and 
adoptive cell therapies, significant clinical challenges remain due to heterogeneous patient 
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responses and resistance mechanisms (4–6). The efficacy of 
immunotherapies critically depends on the intricate spatial 
organization of the TIME, a highly complex ecosystem composed of 
tumor cells, immune cells (such as T cells, B cells, macrophages, 
dendritic cells, and neutrophils), stromal cells, cytokines, and 
extracellular matrix components. The spatial heterogeneity within 
the TIME significantly influences tumor progression, immune 
evasion, and therapeutic responsiveness (7, 8). Traditional 
immunotherapy biomarkers such as PD-L1 expression, tumor 
mutational burden, or immune infiltration scores have proven 
inadequate to fully capture the complexity and dynamic interactions 
occurring within the tumor microenvironment (9). 

The emergence of sophisticated multiplex imaging platforms, 
including Imaging Mass Cytometry (IMC), Multiplexed Ion Beam 
Imaging (MIBI), and Cyclic Immunofluorescence (CycIF), have 
enabled comprehensive spatial mapping of dozens of biomarkers at 
single-cell resolution (10, 11). These innovative methodologies enable 
comprehensive, single-cell resolution mapping of cell phenotypes, 
functional states, and precise spatial relationships among immune 
and tumor cells within intact tissue sections. By leveraging multiplex 
imaging, researchers can now decode spatial signatures predictive of 
immunotherapy efficacy, such as immune cell clustering patterns, 
tumor-immune cell proximity, and localized immune cell activation or 
exhaustion zones (12–14). Consequently, the spatial immune 
signatures identified through multiplex imaging hold great promise 
for stratifying patients likely to respond favorably to immune 
checkpoint blockade or other immunotherapeutic approaches. 

This mini-review aims to summarize current progress in 
applying multiplex imaging technologies to decipher the spatial 
architecture and functional dynamics of the TIME, with a specific 
focus on how these insights can guide precision immunotherapy. 
We discuss technical advancements, key spatial immune signatures, 
clinical implications, and future directions for integrating these 
powerful imaging tools into personalized cancer immunotherapy 
strategies. In contrast to previous reviews that focus primarily on 
imaging techniques or basic tumor biology (10, 15, 16), this mini-

review uniquely emphasizes the translational relevance of spatial 
immune features derived from multiplex imaging. By integrating 
tumor-specific clinical examples, we highlight how these spatial 
biomarkers are being applied to predict immunotherapy response, 
stratify patients, and guide precision treatment strategies. 
2 Multiplex imaging technologies for 
spatial analysis of TIME 

Recent advancements in multiplex imaging technologies have 
transformed our ability to comprehensively analyze the spatial 
dynamics within the TIME (17). These cutting-edge methods, 
including IMC, MIBI, CycIF, and DSP, enable simultaneous 
visualization of numerous biomarkers at single-cell resolution, 
providing unprecedented insights into cellular interactions and 
functional states (18–20). By mapping complex spatial patterns 
such as immune cell distributions, activation zones, and tumor-

immune interfaces, multiplex imaging significantly enhances our 
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capacity to identify predictive spatial immune signatures, 
facilitating more precise patient stratification and personalized 
immunotherapy strategies (21, 22). 

Mass spectrometry-based technologies, such as IMC and MIBI, 
utilize antibodies conjugated with metal isotopes (Figure 1a), which 
are detected by mass spectrometry to enable highly multiplexed 
analyses of up to approximately 40 markers (23, 24). These 
techniques offer superior specificity, minimal spectral overlap, and 
accurate quantification of marker expression, facilitating precise 
delineation of cell populations and states within intact tissues. This 
robust profiling capability supports in-depth exploration of 
immune cell interactions, activation states, and spatial 
distributions critical for understanding immune dynamics (25). 

Cyclic fluorescence-based imaging methods, notably CycIF and 
multiplex immunohistochemistry (IHC), employ sequential cycles 
of antibody staining and imaging, as illustrated in Figure 1b (26, 27). 
These iterative processes enable analysis of up to 50 biomarkers 
while maintaining tissue morphology and structural integrity. 
CycIF and multiplex IHC are broadly applicable due to their 
integration into conventional fluorescence microscopy workflows, 
providing comprehensive spatial characterization of cellular 
neighborhoods, tissue architecture, and localized immune 
phenotypes (28). 

Oligonucleotide-based imaging technologies, including 
CODEX and Signal Amplification by Exchange Reaction 
(SABER), use antibodies tagged with unique DNA oligonucleotide 
sequences (Figure 1c). Sequential hybridization with fluorescently 
labeled complementary probes permits detection of up to 60 
markers (29, 30). CODEX and SABER offer exceptional 
multiplexing capabilities coupled with high spatial precision and 
excellent preservation of tissue structures, enabling detailed 
exploration of immune-tumor spatial relationships and functional 
interactions (31). 

Digital Spatial Profiling (DSP) represents a specialized spatial 
analysis platform employing photocleavable oligonucleotide 
barcodes conjugated to antibodies or RNA probes. Targeted 
profiling of selected tissue regions is performed through 
controlled barcode cleavage and collection, enabling high-
dimensional protein and RNA analysis without physical 
disruption of tissues (32). DSP excels in targeted, region-specific 
biomarker discovery, providing critical molecular context to 
spatially resolved immune landscapes. Spatial Molecular Imaging 
(SMI) utilizes iterative hybridization cycles of fluorescently 
barcoded oligonucleotide probes, enabling simultaneous high-
dimensional detection of proteins or RNA transcripts at 
subcellular resolution within intact tissues (33). SMI significantly 
expands multiplexing capabilities and introduces transcriptomic 
profiling alongside protein analysis, offering deeper insights into the 
functional states and molecular mechanisms operative within 
spatially defined cellular environments. Table 1 provides a 
comprehensive comparison of contemporary multiplex imaging 
platforms, delineating their respective capabilities, advantages, 
and constraints to guide researchers and clinicians in selecting 
optimal methodologies tailored to their specific investigative or 
diagnostic requirements. 
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Across the cited studies applying IMC, MIBI, CycIF, CODEX, 
DSP, and mIHC in various tumor types, several trends and limitations 
become apparent. IMC and MIBI offer high spatial resolution and 
deep multiplexing, and have been used to map immune-tumor 
interactions in melanoma and NSCLC. CycIF and CODEX are 
better suited for whole-slide imaging and large-area spatial profiling, 
though they can be labor-intensive or technically demanding. DSP, 
while lower in spatial resolution, provides scalable region-specific 
quantification and is gaining traction in prospective studies (34, 35). 
Multiplex IHC (mIHC) remains the most clinically accessible platform 
but is limited in multiplexing capacity and standardization. Despite 
methodological diversity, a common limitation lies in the lack of 
cross-platform comparability, standardized analysis pipelines, and 
prospective clinical validation. Together, these insights suggest the 
need for harmonization efforts and for embedding spatial immune 
biomarkers into clinical trial designs to enable robust patient 
stratification in precision immunotherapy (16). 

Collectively, these multiplex imaging technologies profoundly 
enhance our understanding of the spatial complexities of TIME, 
providing critical insights into immune-tumor interactions that 
drive therapeutic efficacy. By systematically decoding these 
intricate spatial relationships, multiplex imaging significantly 
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advances precision oncology, optimizing patient stratification and 
personalized immunotherapy strategies. A comprehensive 
comparison of these technologies is summarized in Table 1. 
3 Decoding spatial immune signatures 
by multiplex imaging 

Multiplex imaging technologies have transformed our capacity 
to dissect the spatial characteristics and functional intricacies of 
immune cells within tumor tissues. By utilizing high-dimensional 
spatial data, researchers have begun identifying unique spatial 
immune signatures that reflect complex cellular interactions and 
predict therapeutic outcomes. 

Firstly, multiplex imaging allows precise characterization of 
immune cell subsets based on simultaneous detection of multiple 
markers, distinguishing activated, exhausted, regulatory, or effector 
immune phenotypes. For instance, CD8+ T-cells expressing high 
levels of granzyme B or interferon-g within tumor tissues have been 
identified as markers for effective immune surveillance and 
favorable therapeutic responses (36). Conversely, elevated 
numbers of regulatory T cells (FoxP3+ Tregs) or exhausted T-cell 
FIGURE 1 

Schematic overview of multiplex imaging platforms used to analyze spatial protein expression in the TIME. (a) IMC and MIBI platforms utilize metal-
conjugated antibodies detected by mass spectrometry, enabling highly multiplexed analyses with minimal spectral overlap. (b) Cyclic fluorescence-
based imaging techniques such as CycIF and multiplex IHC rely on sequential antibody staining and stripping cycles, providing moderate 
multiplexing with broad accessibility. (c) Oligonucleotide-based imaging methods including CODEX and SABER use DNA-barcoded antibodies for 
high-plex fluorescence detection with spatial precision. 
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populations expressing inhibitory receptors such as PD-1, TIM-3, 
and LAG-3 are frequently associated with poor prognosis and 
immunotherapy resistance. 

A critical aspect deciphered by multiplex imaging is the spatial 
proximity between immune and tumor cells, which directly affects 
immunological interactions and clinical outcomes. These spatial 
arrangements are governed in part by underlying molecular cues 
such as chemokine gradients. For example, the CXCL9/CXCL10– 
CXCR3 axis has been shown to facilitate directional migration of 
effector CD8+ T cells toward tumor cores, promoting effective 
immune surveillance and enhancing responses to checkpoint 
blockade therapies (37, 38). Disruption or exclusion of such 
gradients may contribute to immune-desert or immune-excluded 
phenotypes, which are frequently associated with resistance to 
immunotherapy.  Studies  have  i l lustrated  that  tumors  
characterized by tight spatial colocalization of tumor cells and 
cytotoxic T lymphocytes (CTLs) frequently correlate with 
improved clinical responses to checkpoint inhibitors (21, 39, 40). 
On the other hand, immune-exclusion phenotypes, characterized 
by T cells accumulating predominantly at the tumor margin and 
limited infiltration into tumor cores, typically predict resistance 
to immunotherapy. 

Furthermore,  multiplex  imaging  has  facilitated  the  
identification of distinct cellular neighborhoods or immune 
“hotspots”, clusters of interacting immune and stromal cells 
characterized by heightened immune activity. For instance, 
tertiary lymphoid structures (TLS)—organized clusters of B cells, 
dendritic cells, and T cells—detected through multiplex imaging 
have emerged as important predictive markers of immunotherapy 
response, indicating robust local immune activation and potential 
antitumor immune response centers (29). 

Spatial immune signatures identified by multiplex imaging 
extend beyond individual immune subsets to patterns and 
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configurations of cells in the tissue context. For example, distinct 
spatial patterns such as immune cell infiltration gradients, myeloid-

enriched immune suppression zones, or tumor cell proliferation 
regions surrounded by immunosuppressive macrophages have 
shown robust predictive values. A recent multiplex imaging 
analysis in melanoma indicated that specific spatial immune 
patterns, notably the co-localization of CD8+ T-cells with 
antigen-presenting dendritic cells expressing CD11c, significantly 
correlate with favorable responses to anti-PD-1 therapy (39, 40). 

In summary, by precisely decoding these spatial signatures 
within the tumor immune microenvironment, multiplex imaging 
technologies offer a nuanced understanding of immunological 
interactions and create new opportunities for predictive 
biomarker discovery, ultimately guiding more accurate patient 
stratification and personalized immunotherapy approaches. 
4 Clinical insights from multiplex 
imaging in immunotherapy 

Multiplex imaging technologies have significantly advanced our 
understanding of the TIME, enabling precise patient stratification 
and the development of tailored immunotherapy strategies. Clinical 
applications of multiplex imaging across various cancer types have 
underscored the significance of spatial immune profiling, thereby 
informing treatment choices and improving therapeutic outcomes. 
4.1 Non-small cell lung cancer 

Multiplex imaging studies in NSCLC have provided crucial 
insights into spatial immune characteristics predictive of 
immunotherapy responses (41). In a pivotal clinical study 
TABLE 1 Comparison of multiplex imaging technologies for spatial analysis of the tumor immune microenvironment. 

Technology Resolution Multiplex 
capability 

Strengths Limitations Clinical translatability 

Imaging Mass 
Cytometry (IMC) 

~1 µm 
Up to 

~40 markers 
High-dimensional data, minimal 

spectral overlap 

Specialized 
instrumentation, 
costly reagents 

Requires specialized facilities and is 
currently limited to research settings. 

Multiplexed Ion 
Beam 

Imaging (MIBI) 
~0.4 µm 

Up to 
~40 markers 

Subcellular resolution, minimal 
spectral overlap 

Complex data processing, 
specialized equipment 

Requires highly specialized equipment, 
limiting routine clinical adoption. 

Cyclic 
Immunofluorescence 

(CycIF) 
~0.5-1 µm 

30– 
50 markers 

Broad accessibility, integrates 
into standard workflows 

Potential tissue 
degradation over 
multiple cycles 

Suitable for clinical labs due to 
compatibility with standard 
fluorescence microscopy. 

CODEX (DNA-
barcoded 

antibody imaging) 
~0.5-1 µm 

40– 
60 markers 

Maintains tissue integrity, high 
multiplexing capacity 

Complex optimization, 
extensive 

image processing 

Increasing clinical adoption; requires 
trained personnel and controlled 

workflow integration. 

Digital Spatial 
Profiling (DSP) 

Region-specific 
Dozens 

of markers 
Targeted profiling, 
biomarker validation 

Lacks single-cell 
resolution, requires prior 

ROI selection 

Feasible in clinical settings with centralized 
testing models. 

Spatial Molecular Subcellular 100+ proteins High-plex profiling; subcellular Long processing time; Promising but not yet suitable for routine 
Imaging (SMI) or RNAs resolution; RNA/protein complex probe design; clinical workflows. 

co-mapping high cost 
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involving patients with advanced or metastatic NSCLC treated with 
PD-1 blockade combined with chemotherapy, multiplexed imaging 
revealed notable differences in immune cell composition and 
localization. Treatment responders exhibited markedly elevated 
infiltration densities of CD8+ cytotoxic T cells and CD68+ 

macrophages specifically within the tumor core region, revealing 
a distinctive spatial immune signature predictive of therapeutic 
success. These spatial immune signatures were strongly correlated 
with improved clinical outcomes, suggesting that immune cell 
infiltration into tumor cores plays a critical role in mediating 
therapeutic responses. Furthermore, this spatial information has 
practical implications for patient stratification, guiding clinicians in 
selecting patients most likely to benefit from combined 
immunotherapy and chemotherapy approaches. 
4.2 Mismatch repair-deficient metastatic 
colorectal cancer 

Multiplex imaging in patients with mismatch repair-deficient 
metastatic colorectal cancer undergoing anti-PD-1 therapy has 
highlighted significant correlations between spatial immune 
signatures and patient prognosis (29). Specifically, a higher 
density and closer proximity of CD8+ cytotoxic T cells to tumor 
cells have been associated with longer progression-free survival. 
This critical spatial arrangement underscores the importance of 
direct immune cell-tumor cell interactions in determining 
therapeutic efficacy, providing clinicians with powerful predictive 
biomarkers for identifying patients most likely to respond positively 
to immunotherapy. Such spatial immune profiling facilitates more 
informed treatment decisions, potentially improving clinical 
outcomes for this subset of colorectal cancer patients. 
 

4.3 Breast cancer 

Multiplex imaging has unveiled previously unrecognized 
complexity in the breast cancer immune landscape, establishing 
critical spatial relationships between immune cell distributions and 
therapeutic outcomes that were indiscernible with conventional 
techniques. Recent studies have demonstrated that specific spatial 
patterns, such as the formation of tertiary lymphoid structures 
(TLS) within tumors, are predictive of favorable responses to 
immunotherapies. Patients exhibiting these immune “hotspots”— 
rich in activated immune cells, including B cells, dendritic cells, and 
CD8+ T cells—typically experience better clinical outcomes and 
sustained therapeutic responses (42). Conversely, breast cancers 
characterized by immune-excluded phenotypes, where immune 
cells predominantly localize at  tumor margins rather than

infiltrating the tumor core, exhibit resistance to immunotherapy. 
These findings have significantly enhanced the ability to tailor 
treatment plans, guiding clinicians to select therapies or 
Frontiers in Immunology 05 
therapeutic combinations that could overcome resistance 
mechanisms associated with specific spatial immune patterns (43). 
4.4 Hepatocellular carcinoma 

Multiplex immunohistochemistry has been instrumental 
in dissecting the intricate spatial immune microenvironment 
of hepatocellular carcinoma (44). Detailed analyses have revealed 
distinct spatial distributions and interactions of immune cells, 
including regulatory T cells, cytotoxic T cells, and tumor-

associated macrophages. These spatial relationships have 
critical implications for immunotherapeutic strategies, as they 
influence both tumor progression and treatment response. For 
example, regions enriched with suppressive immune cells 
correlate with poorer outcomes, suggesting potential therapeutic 
targets for combination therapies aimed at disrupting these 
immunosuppressive networks. These comprehensive insights have 
significant potential for optimizing personalized therapeutic 
approaches for HCC patients. 
4.5 Melanoma 

Multiplex imaging studies in melanoma have extensively 
demonstrated the clinical relevance of spatial immune cell 
arrangements in predicting responses to immune checkpoint 
inhibitors. A key finding is the favorable prognostic implication 
of CD8+ T cell clustering in close proximity to melanoma cells, 
strongly associated with positive outcomes following anti-PD-1 
therapy. These insights have enabled clinicians to more accurately 
identify melanoma patients who are likely to benefit from specific 
immunotherapies. Moreover, multiplex imaging has identified 
immune exclusion patterns and exhausted immune cell 
populations that correlate with treatment resistance, offering 
potential avenues for developing combinatorial or alternative 
therapeutic strategies to overcome such resistance (39, 40). 

Collectively, these detailed clinical examples across multiple 
cancer types highlight the transformative impact of multiplex 
imaging technologies in precision oncology. By elucidating the 
complex spatial dynamics of the TIME, multiplex imaging 
significantly enhances the predictive accuracy and efficacy of 
immunotherapy, paving the way for improved patient care and 
personalized cancer treatment strategies. 
5 Current challenges and future 
perspectives in multiplex imaging for 
precision immunotherapy 

Multiplex imaging has emerged as a transformative technology in 
tumor immunology, yet several technical and translational challenges 
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continue to limit its routine clinical application. Technically, one 
major barrier is antibody validation. Multiplex assays require dozens 
of antibodies that must retain high specificity and compatibility within 
complex workflows. To address this issue, multicenter efforts such as 
the Human Protein Atlas project and the International Working 
Group for Antibody Validation (IWGAV) have proposed 
standardized validation strategies, including orthogonal methods, 
genetic knockdown models, and independent antibody cross-
verification (11, 45). These initiatives aim to ensure reproducibility 
and reliability of antibody-based detection in high-plex imaging 
platforms. In fluorescence-based platforms like CycIF or CODEX, 
repeated staining cycles may degrade tissue integrity or reduce epitope 
availability, affecting data quality and reproducibility (46). 

The formidable analytical challenges posed by these 
multidimensional datasets represent a substantial barrier to 
clinical implementation, requiring sophisticated computational 
pipelines to extract biologically and clinically meaningful insights. 
These technologies produce vast amounts of spatially resolved 
single-cell data, requiring advanced computational tools for 
segmentation, feature extraction, and interpretation. While 
machine learning and AI algorithms have improved analytical 
precision, they are not yet standardized or broadly accessible in 
clinical environments (14). Furthermore, the lack of unified 
pipelines and quality control measures hinders cross-institutional 
data comparability. 

From a translational perspective, high equipment costs, 
specialized technical expertise, and long processing times limit 
implementation in routine pathology workflows. While the 
upfront costs for multiplex imaging are indeed substantial, 
centralized testing models—similar to those used in next-
generation sequencing (NGS)—offer a scalable framework that 
can reduce per-sample costs over time. As adoption expands and 
workflows are streamlined, the economic burden may decrease, 
enabling broader clinical implementation and reimbursement 
justification in high-value oncology contexts. More importantly, 
regulatory frameworks for spatial biomarker interpretation are 
still underdeveloped (47). Without established clinical guidelines, 
it remains challenging to incorporate spatial immune signatures 
into decision-making processes for immunotherapy. 

Notwithstanding these challenges, relentless technological 
innovation continues to push the boundaries of multiplex 
imaging, progressively overcoming barriers to clinical translation 
while revealing ever more sophisticated aspects of tumor-immune 
biology. Integration with spatial transcriptomics now enables 
simultaneous mapping of protein and gene expression, offering 
deeper insight into the tumor TIME (48). Additionally, super-
resolution techniques like STORM and PALM can visualize 
nanoscale immune-tumor interactions, potentially identifying new 
therapeutic targets. Real-time and longitudinal imaging platforms 
such as intravital microscopy allow for dynamic tracking of 
immune responses over time. 
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Furthermore, the conceptual evolution of multiplex imaging in 
cancer immunology has moved from technical development and 
cell-type profiling toward clinically meaningful spatial biomarker 
discovery. Early studies emphasized spatial resolution and 
multiplexing capacity, while more recent work integrates spatial 
metrics—such as immune cell proximity, exclusion, and TLS 
formation—with therapeutic outcomes. The next phase involves 
embedding these markers into predictive models and trial designs. 
Emerging research is also increasingly focusing on integrating 
spatial proteomics with transcriptomics and AI-based image 
analysis. This progression reflects a paradigm shift from 
descriptive spatial biology to functional and predictive 
applications in precision oncology (11, 32, 49). 

Moving forward, key priorities include the standardization of 
imaging protocols, development of clinically friendly analysis 
platforms, and validation of spatial immune signatures through 
prospective trials. Despite significant advancements, the ultimate 
goal of multiplex imaging analysis remains clinical translation. 
To achieve this, current research should prioritize validating 
spatial immune signatures in prospective clinical trials and 
integrating multiplex imaging into companion diagnostics. 
Efforts towards standardizing protocols for tissue preparation, 
image acquisition, analytical workflows, and biomarker 
interpretation are essential to ensure reproducibility across 
clinical centers. Moreover, multidisciplinary collaboration 
among pathologists, oncologists, imaging specialists, and 
bioinformaticians will accelerate the translation of multiplex 
imaging findings into practical tools that enhance patient 
stratification, optimize therapeutic choices, and ultimately 
improve clinical outcomes. 
6 Conclusions 

By providing an unprecedented window into the spatial 
organization of the TIME, multiplex imaging technologies have 
fundamentally altered our conceptual framework of tumor-

immune-stromal interactions, revealing organizational principles 
with profound therapeutic implications. By accurately decoding 
complex spatial immune signatures, multiplex imaging has 
provided crucial biomarkers predictive of clinical responses to 
immunotherapies across multiple cancer types, such as

melanoma, breast cancer, and lung cancer. 
Despite existing challenges, including antibody standardization, 

assay reproducibility, analytical complexity, and limitations in 
clinical translation, the continued refinement of imaging 
platforms, computational algorithms, and integrative analysis 
methods promises to overcome these hurdles. Future advances 
involving combined approaches—such as integrating multiplex 
imaging with spatial transcriptomics, employing super-resolution 
microscopy, and utilizing real-time longitudinal imaging—will 
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further enrich our biological understanding and enhance 
therapeutic precision. In aggregate, multiplex imaging stands at 
the forefront of a paradigm shift in precision oncology, offering 
transformative potential to revolutionize patient stratification 
strategies, optimize personalized immunotherapy approaches, and 
ultimately deliver improved survival outcomes across diverse 
cancer types. 
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