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Identification and validation of
genes related to stem cells
and telomere maintenance
mechanisms as biomarkers
for breast cancer
Shuang Zhen †, Lifeng Huang †, Qiannan Zhu, Rui Chen,
Jue Wang and Xiaoming Zha *

Department of Breast Surgery, Department of General Surgery, The First Affiliated Hospital with
Nanjing Medical University, Nanjing, China
Background: Stem cell-related genes (SCRGs) and telomere maintenance

mechanism-related genes (TMMRGs) are pivotal in breast cancer (BC)

pathogenesis by facilitating tumor cell proliferation and self-renewal. This

study employed integrated transcriptomic and single-cell RNA sequencing

(scRNA-seq) analyses to investigate SCRGs and TMMRGs as potential

biomarkers for BC and to elucidate their underlying cellular mechanisms.

Methods: Total RNA was extracted from eight BC tumor samples and eight

matched adjacent non-tumorous tissues. Differential expression profiling,

protein-protein interaction (PPI) network construction, and Molecular Complex

Detection (MCODE) were conducted. Biomarker candidates were identified

using the least absolute shrinkage and selection operator (LASSO) algorithm,

followed by pathway enrichment and immunological analyses. Publicly available

scRNA-seq datasets were utilized to delineate BC cell types, with emphasis on

cellular subsets exhibiting differential biomarker expression. Heterogeneity,

communication, and pseudo-temporal analyses of key cells were examined.

Biomarker expression was further validated by reverse transcription-quantitative

polymerase chain reaction (RT-qPCR).

Results: JUN, NFKB1, and SP1 were significantly downregulated in BC, potentially

modulating disease progression through mechanisms involving extracellular

matrix (ECM) remodeling, intracellular signaling, oxidative stress response, and

translational regulation. Activated B cells and natural killer (NK) cells

demonstrated elevated infiltration levels, accompanied by increased expression

of immune checkpoint molecules CD200, CD274, TIGIT, TNFRSF25, and

TNFSF15. Nine distinct cellular lineages were annotated, among which

mesenchymal cells exhibited pronounced biomarker expression differences

and enhanced differentiation potential, designating them as key cellular

mediators. Interactions between mesenchymal subpopulations (MSC1, MSC2,

MSC3) and other cell types were markedly reduced in BC, despite an overall

expansion in mesenchymal cell numbers during disease progression. MSC1

emerged as the predominant subtype. RT-qPCR analyses corroborated the

downregulation of JUN, NFKB1, and SP1 in BC tissues.
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Conclusion: JUN, NFKB1, and SP1 were identified as potential biomarkers for BC.

These findings highlight the critical role of mesenchymal cells in tumor biology

and suggest potential therapeutic targets.
KEYWORDS

breast cancer, telomere maintenance mechanism, stem cell, whole transcriptome,
single-cell RNA sequencing, biomarkers
1 Introduction

Breast cancer (BC) remains one of the most prevalent

malignancies among women globally, with incidence rates

continuing to escalate and posing a significant public health burden

(1). Established risk factors—including age, sex, ethnicity, family

history, genetic mutations, timing of menarche and menopause,

and hormone replacement therapy—contribute to the diagnostic

and therapeutic complexity of BC, adversely impacting patient

survival (1–4). Although therapeutic advances have been made,

five-year survival outcomes are still largely contingent upon the

timeliness and accuracy of disease detection (5). The multifaceted

nature of BC and its unpredictable clinical course highlight the urgent

need for novel biomarkers to enhance early diagnosis, clarify

underlying mechanisms, and support individualized treatment

approaches, ultimately improving therapeutic outcomes and patient

well-being (4, 6, 7). Consequently, intensified efforts in biomarker

research are essential not only for advancing the biological

understanding of BC but also for informing preventive, diagnostic,

and therapeutic innovations—crucial for optimizing global healthcare

resource allocation.

Telomeres, composed of repetitive nucleotide sequences at

chromosomal termini, preserve genomic stability by preventing

degradation and end-to-end fusion during mitosis. Progressive

telomere shortening with successive cell divisions ultimately triggers

replicative senescence or apoptosis upon reaching a critical threshold

(8). Studies have shown that the shortening of telomeres is closely

related to the senescence of immune cells, which can lead to the

exhaustion of T cell function and the decline of proliferation ability,

thereby weakening the immune response of the body (9–11). Telomere

maintenance mechanisms (TMM), predominantly regulated by

telomerase (12), counteract this attrition, enabling sustained cellular

proliferation (13).The maintenance of telomere length is crucial for the

normal function of cells, and telomere dysfunction is associated with

various diseases (14). In cancer research, the activation of TMM is

strongly linked to the occurrence and development of tumors. For

instance, TMM activation in malignant neuroblastoma is closely

associated with high-risk diseases and poor prognosis (15). Studies

on hepatocellular carcinoma (HCC) have also shown that telomere

maintenance plays a key role in the occurrence mechanism of HCC

and helps define the clinical characteristics of patients (16). Stem cells,

defined by their capacity for self-renewal and multilineage
02
differentiation, are pivotal in tissue homeostasis, regeneration, and

development (17, 18). Due to the unique immune escapemechanism of

stem cells, they are crucial in the occurrence and development of tumor

and immune therapy resistance (19–21). For example, tumor stem cells

can down-regulate the expression of major histocompatibility complex

class I (MHC-I) molecules, therefore reducing antigen presentation and

making it difficult for cytotoxic T lymphocytes to recognize and kill

tumor cells (22). The interplay between TMM, stem cells, and BC is

particularly significant (23, 24). Dysregulated TMM activity, frequently

observed in malignancies including BC, facilitates the bypass of

senescence and confers unlimited replicative potential to tumor cells

(25). Numerous studies have shown that telomerase reactivation is a

common strategy employed by cancer cells to stabilize telomeres and

circumvent programmed cell death. Additionally, cancer stem cells—a

distinct subset with tumor-initiating and self-renewing properties—

exhibit robust telomere maintenance activity and engage in oncogenic

signaling cascades that drive tumor progression andmetastasis (26, 27).

TMM supports the proliferative and regenerative capacity of these cells,

thereby contributing to oncogenesis and therapeutic resistance. Despite

substantial evidence linking TMM and stem cells to BC pathogenesis,

the precise molecular pathways mediating their effects remain

incompletely elucidated (28).

Single-cell RNA sequencing (scRNA-seq) can reveal the dynamic

changes, functional status and intercellular interactions of tumor-

infiltrating immune cells at the single-cell level, providing key

insights in clarifying the mechanism of anti-tumor immune

responses (29, 30). At present, many studies have been conducted on

tumors through scRNA-seq sharing. Liu et al. revealed the

immunosuppressive effect of APOE+ macrophages in immune

checkpoint inhibitor therapy through scRNA-seq analysis (31). Xie

et al. elucidated the landscape of BC brain metastases through scRNA-

seq analysis and identified ILF2 as a potential therapeutic target (32).

Meanwhile, they also clarified the contribution of intercellular

communication of the tumor microenvironment cells guided by

histone chaperones to BC metastasis through scRNA-seq analysis

(33). These studies indicate that single-cell sequencing technology

can systematically analyze the heterogeneity of the tumor immune

microenvironment, providing pivotal data for revealing treatment

resistance mechanisms and discovering new therapy targets.

BC is orchestrated by intricate genetic and cellular networks,

wherein stem cell-related genes (SCRGs) and TMM-related genes

(TMMRGs) play pivotal roles in sustaining tumor cell renewal and
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unchecked growth. Elucidating the function of these genes at both the

transcriptomic and single-cell resolution offers a promising strategy for

uncovering actionable biomarkers and therapeutic targets. This study

integrated transcriptomic profiling and scRNA-seq to characterize

SCRGs and TMMRGs in BC. Tumor and matched adjacent normal

tissue samples from patients with BC, alongside publicly available

scRNA-seq datasets, were analyzed to assess gene expression patterns

and functional relevance. By delineating key biomarkers and mapping

their expression across diverse cellular subsets, this investigation aims

to clarify their roles in BC progression. The resulting insights enhance

the molecular understanding of BC and inform the development of

precision therapies aimed at improving clinical outcomes.
2 Materials and methods

2.1 Data source

Tumor tissue samples were collected from eight patients with

BC at The First Affiliated Hospital of Nanjing Medical University,

with matched paracancerous tissues from eight healthy individuals

serving as controls. All specimens underwent RNA-seq and

stringent quality control (QC) to form the whole transcriptome

RNA-seq dataset. The study was approved by the Ethics Committee

of The First Affiliated Hospital of Nanjing Medical University, and

informed consent was obtained from all participants.

To enhance analytical robustness, additional BC-related

datasets were sourced from public repositories. Specifically, RNA-

seq data comprising 1,082 BC tumor samples and 113

paracancerous samples were retrieved from The Cancer Genome

Atlas (TCGA) database (https://portal.gdc.cancer.gov/) for

expression validation. Concurrently, the scRNA-seq dataset

GSE245601, based on the GPL18573 platform, was downloaded

from the Gene Expression Omnibus (GEO) database (https://

www.ncbi.nlm.nih.gov/gds), including 10 BC tumor samples and

2 normal tissue samples for cellular-level expression analysis (34).

Stem cell-associated gene data were curated by referencing

established literature (35), and 26 stem cell gene sets were extracted

from the StemChecker database (http://stemchecker.sysbiolab.eu/),

yielding 4,419 SCRGs. Additionally, 218 TMMRGs were

incorporated based on published literature (13). The overall

analytical workflow of this study was illustrated in Figure 1.
2.2 RNA-seq and data preprocessing

Total RNA from the 8 tumor and 8 paracancerous tissue samples

was isolated using TRIzol reagent (Invitrogen, CA, USA). RNA

integrity and concentration were evaluated using a NanoDrop ND-

1000 spectrophotometer (Wilmington, DE, USA) and an Agilent

Bioanalyzer 2100 system (Agilent, CA, USA). Sequencing libraries

were prepared with the Hieff NGS Ultifaillumina Dual-mode mRNA

Library Prep Kit to generate inserts of 300 ± 50 bp, followed by

high-throughput paired-end sequencing (PE150) on the Illumina

NovaSeq 6000 platform.
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Raw sequencing data in FASTQ format underwent QC using

fastp software (v0.23.4) (36) with default parameters, including

adapter trimming, deduplication, and removal of low-quality reads.

Cleaned reads were aligned to the human reference genome

(GRCh38) using HISAT2 (v2.2.1) (37), and alignment outputs

were stored in BAM format. Transcript assembly and

quantification were performed using StringTie (v2.2.0) (38), and

expression levels were normalized to FPKM, calculated as:

FPKM = total exon f ragments=(mapped reads in millions

� exon length in kilobases) :
2.3 Construction of differential expression
analysis and enrichment analysis

Differential expression analysis between tumor and normal

tissues was conducted on the transcriptome-wide RNA-seq data

using the DESeq2 package (v1.38.0) (39). Differentially expressed

genes (DEGs) were defined by |log2 fold change (FC)| > 0.5 and P <

0.05. Visualization of DEGs was performed using a volcano plot and

heatmap, generated with ggplot2 (v3.3.6) (40) and ComplexHeatmap

(v2.14.0) (41), respectively. Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) enrichment analyses

were performed using the clusterProfiler package (v4.7.1.3) (42), with

significance set at P < 0.05. GO terms were classified into three

categories: biological processes (BPs), molecular functions (MFs), and

cellular components (CCs).
2.4 Identifying hub genes through protein-
protein interaction network visualization

The intersection of DEGs, SCRGs, and TMMRGs was identified

using the VennDiagram package (v1.7.1) (43) to isolate candidate

genes implicated in both stemness and telomere regulation within

the context of BC. These candidate genes were subsequently

analyzed using the Search Tool for the Retrieval of Interacting

Genes (STRING) database (http://string-db.org) with a confidence

threshold set at > 0.7, and a protein–protein interaction (PPI)

network was generated to elucidate potential molecular interactions

at the protein level. The Molecular Complex Detection (MCODE)

plugin was used to select the highest-scoring cluster and identify

hub genes. A PPI network was subsequently constructed for these

hub genes. Both networks were generated using Cytoscape software

(v 3.9.1) (44).
2.5 Combining machine learning
algorithms and expression profiling to
screen biomarkers

To assess the diagnostic potential of the hub genes, Least

Absolute Shrinkage and Selection Operator (LASSO) regression
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analysis was performed using the glmnet package (v4.1.4) (45),

configured with the ‘binomial’ family parameter. The optimal

model was established at the point of minimal model error and

the lowest lambda value, at which the genes as candidate

biomarkers were selected for expression analysis. These genes

were then subjected to expression analysis in both the in-house

whole transcriptome RNA-seq dataset and the TCGA-BC dataset,

comparing tumor and normal tissues. Expression differences were

visualized via box plots generated with the ggplot2 package, and

genes exhibiting consistent and statistically significant differential

expression across both datasets (P < 0.05) were selected

as biomarkers.
2.6 Gene set enrichment analysis

To investigate the functional relevance of these biomarkers,

enrichment analyses were conducted on the whole transcriptome

dataset. Using the Molecular Signatures Database (MSigDB, https://

www.gsea-msigdb.org/gsea/msigdb), the curated gene set collection

c2.cp.v2023.2.Hs.symbols.gmt was employed. For each biomarker,
Frontiers in Immunology 04
Spearman correlation coefficients were computed with all other

genes, and genes were ranked in descending order of correlation.

GSEA was performed using the clusterProfiler package, with

statistical thresholds set at P < 0.05 and False Discovery Rate

(FDR) < 0.05. The top five significantly enriched pathways per

biomarker were visualized using the enrichplot package (v1.18.4)

(46), ranked by enrichment significance.
2.7 Analyzing immune microenvironment
differences and immune checkpoint
expression profiling

To further explore the differences in the immune

microenvironment between patients with BC and normal

individuals, a single-sample GSEA (ssGSEA) approach from the

GSVA package (v1.42.0) (47) was applied to estimate the infiltration

levels of 28 predefined immune cell types (48) within each sample of

the whole transcriptome dataset. Comparative analysis revealed

statistically significant differences in immune cell abundance

between tumor and normal samples (P < 0.05). Additionally, a set
FIGURE 1

The analysis flowchart of this study.
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of 40 immune checkpoints was compiled from previously published

literature (49), and differences in the expression of these

checkpoints between tumor and normal samples were analyzed

within the same dataset (P < 0.05).
2.8 Drug prediction analysis and
construction of regulatory network

Drug–biomarker interactions were identified using the Drug

Gene Interaction Database (DGIDB, https://dgidb.org), with the top

five candidates ranked by interaction score. The resulting drug–

biomarker network was visualized using Cytoscape.

To investigate the underlying molecular mechanisms of the

biomarkers, the DESeq2 package was employed to analyze

differentially expressed miRNAs and lncRNAs (DE-miRNAs and

DE-lncRNAs) from a whole transcriptome RNA-seq dataset,

comparing tumor and normal tissues under the criteria of P <

0.05 and |log2FC| > 0.5. Volcano plots were generated to depict the

distribution of DE-miRNAs and DE-lncRNAs.

Candidate miRNAs targeting the biomarkers were predicted via

miRDB (https ://mirdb.org/) and TargetScan (https ://

www.targetscan.org/) using a prediction score threshold of

500,000. Correspondingly, target lncRNAs for these miRNAs

were identified through starBase (http://starbase.sysu.edu.cn/

index.php), filtered by a clipExpNum > 4.

Subsequent analysis involved intersecting DE-miRNAs with the

predicted miRNA targets and DE-lncRNAs with the predicted

lncRNA targets to isolate key regulatory miRNAs and lncRNAs.

A lncRNA–miRNA–mRNA regulatory network was then

constructed in Cytoscape to elucidate the multifaceted regulatory

landscape influencing biomarker expression.
2.9 ScRNA-seq analysis

To investigate the cellular mechanisms underlying BC and to

characterize biomarker heterogeneity at the single-cell level,

comprehensive analyses were conducted using the GSE245601

dataset. QC, clustering, and annotation were performed with the

Seurat package (v5.0.1) (50). Key quality metrics—including gene

count, cell count, and mitochondrial gene percentage—were

calculated. Cells with fewer than 200 genes and genes covered by

fewer than three cells were filtered out, as were cells expressing

either less than 200 or more than 5000 genes. Genes expressed in

fewer than three cells or with total counts below 500 or above 20,000

were filtered out. Mitochondrial content was capped at 10%.

Distributions of nFeature_RNA, nCount_RNA, and percent.mt

before and after filtering were visualized, and only cells meeting

all criteria were retained for downstream analysis. Subsequently,

data normalization was applied, and the top 2,000 highly variable

genes were selected using the vst method. Principal component

analysis (PCA) was conducted to evaluate variance across

components, with results visualized via a PCA elbow plot.
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Statistically significant principal components, identified using the

JackStrawPlot function based on gene-level P-values, were selected

for further analysis. Unsupervised clustering was performed using

the FindNeighbors and FindClusters functions, and clusters were

visualized using Uniform Manifold Approximation and Projection

(UMAP) at a resolution of 0.4. Cell type annotation was based on

canonical marker genes reported in prior research (34), and a

bubble plot was generated to illustrate the specificity of these

markers across identified cell populations. In addition, the NF-kB
activation, stemness-related signatures, and ERK-JUN signaling

pathway scores of the annotated cell types were evaluated using

the AddModuleScore method.
2.10 Identification and heterogeneity
analysis of key cells

In the scRNA-seq analysis, the AddModuleScore function

from the Seurat package was utilized to compute enrichment

scores of specific gene sets for each sample in the GSE245601

dataset, thereby assessing metabolic pathway activity across cell

populations. A curated background gene set, encompassing

candidate genes associated with both stem cells and TMM in

BC, served as the basis for this scoring. Scores were calculated

across annotated cell types in tumor and normal tissues, and cell

populations demonstrating significant differences (P < 0.05) were

designated as candidate key cells. Subsequent single-cell-level

analysis examined the expression profiles of biomarkers within

these candidate key cells across tumor and normal tissues. Cells

exhibiting consistent and significant differential expression

across all biomarkers (P < 0.05) were defined as key cells

relevant to both stemness and telomere maintenance in BC.

Additionally, heterogeneity within these key cells was examined.

UMAP-based reclustering was performed using FindNeighbors

and FindClusters to delineate cellular subtypes, followed by

assessment of biomarker expression across the resulting

subclusters (P < 0.05).
2.11 Cell communication and pseudo-time
analyses of key cells

To infer intercellular interactions, cell–cell communication

analysis was conducted by evaluating receptor–ligand expression

and pairing patterns among cell types. The distribution and

proportions of key cell subtypes relative to other populations in

tumor and normal tissues were quantified. Communication

networks were constructed using the CellChat package (v1.6.1)

(51), generating aggregated intercellular signaling maps and

visualizing the contribution of each cell cluster to the overall

communication landscape. Developmental trajectories and lineage

dynamics of key cells and their subtypes were further explored

through pseudo-time analysis using the Monocle package

(v2.26.0) (52).
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2.12 Expression validation of biomarkers

Tumor tissue samples were obtained from five patients diagnosed

with BC, alongside five adjacent normal tissue samples from healthy

individuals, all collected at The First Affiliated Hospital of Nanjing

Medical University. RT-qPCR was performed for experimental

validation of biomarker expression. Total RNA was extracted from

the ten samples using TRIzol reagent (Ambion, Austin, USA), and

cDNA synthesis was carried out using the SureScript First-Strand

cDNA Synthesis Kit (Servicebio, Wuhan, China), following

manufacturer protocols. qPCR amplification was performed with

the 2 × Universal Blue SYBR Green qPCR Master Mix (Servicebio,

Wuhan, China). GAPDH served as the internal control, and gene

expression was quantified using the 2−DDCt method (53). Primer

sequences are provided in Supplementary Table 1.
2.13 Statistical analysis

All statistical analyses were conducted in R software (v4.2.2).

Group comparisons were performed using the Wilcoxon test, with

P < 0.05 considered statistically significant.
3 Results

3.1 Identification of candidate genes and
associated pathways

Differential expression analysis of the whole transcriptome RNA-

seq dataset identified 8,193 DEGs between tumor and normal

samples, including 7,014 upregulated and 1,179 downregulated

genes in BC (Figures 2A, B). These DEGs underwent enrichment

analysis, yielding 649 significantly associated GO terms: 404 BPs such

as “cell cycle,” “DNA damage response,” and “signal transduction”

(Figure 2C); 112 CCs, including “plasma membrane,” “extracellular

exosome,” and “cell junction” (Figure 2D); and 133 MFs, including

“protein binding,” “protein kinase activity,” and “DNA-binding

transcription factor activity” (Figure 2E). Additionally, 68 KEGG

pathways enriched in DEGs were identified, including “pathways in

cancer,” “PI3K-Akt signaling pathway,” “proteoglycans in cancer,”

“MAPK signaling pathway,” and “focal adhesion” (Figure 2F). These

pathways reflect essential mechanisms contributing to BC

pathogenesis, reinforcing the reliability of differential expression

results and providing functional insight into molecular alterations

associated with BC. By intersecting the 8,193 DEGs with 4,419 SCRGs

and 218 TMMRGs, 33 candidate genes related to both stemness and

TMM in BC were identified (Figure 2G).
3.2 Selection of JUN, NFKB1, and SP1 as
biomarkers for BC

A PPI network encompassing 26 nodes and 77 edges was

constructed based on these 33 candidate genes using a publicly
Frontiers in Immunology 06
available database (Figure 3A). Further analysis with the MCODE

plugin identified the most prominent functional module,

comprising 9 hub genes: JUN, HDAC1, HSP90AB1, SP1, ESR1,

NFKB1, MYC, STAT3, and TP53. An additional PPI network was

generated to visualize the interactions among these hub

genes (Figure 3B).

Subsequently, the nine hub genes were subjected to LASSO

regression analysis. At log(lambda.min) = −7.49352 and log

(lambda.1se) = −5.725879, the optimal model retained five genes:

JUN, SP1, NFKB1, STAT3, and TP53 (Figures 3C, D). Expression

profiling across both the whole transcriptome RNA-seq dataset and

the TCGA-BC cohort identified JUN, NFKB1, and SP1 as exhibiting

statistically significant and consistent expression patterns (P < 0.01)

(Figures 3E, F). These three genes were subsequently designated as

biomarkers associated with both stem cell function and TMM in

BC. Notably, all three demonstrated markedly reduced expression

in tumor tissues compared to normal counterparts (P < 0.01).
3.3 Exploring the pathways by which
biomarkers influence BC development

GSEA was performed to elucidate biological pathways

associated with the identified biomarkers. Due to the lack of

significant pathway enrichment for NFKB1, downstream analysis

focused on pathways enriched by JUN and SP1. Enrichment

analysis revealed that JUN was predominantly associated with

pathways such as “ECM organization,” “RhoA regulation

pathway,” “Nrf2 pathway,” “S1P–S1P3 pathway,” and “ECM

proteoglycans” (Figure 4A). In contrast, SP1 enriched pathways

included “selenoamino acid metabolism,” “SRP-dependent

cotranslational protein targeting to membrane,” “translation

initiation via medicus reference,” “ribosome,” and “eukaryotic

translation elongation” (Figure 4B). These pathways are involved

in key processes including ECM structure and tissue reconstruction,

cell signaling regulation, oxidative stress responses, and protein

synthesis and transport, all of which may contribute to BC

pathogenesis through their interaction with these biomarkers.
3.4 Revealing altered immune
microenvironments and activated immune
checkpoints in patients with BC

Comprehensive analysis of the immune microenvironment in

BC revealed distinct immune infiltration patterns, as visualized in a

stacked bar chart illustrating the relative abundance of 28 immune

cell types across individual samples, computed via the ssGSEA

algorithm (Figure 4C). Notably, activated B cells and NK cells

demonstrated statistically significant differences between tumor and

normal tissues (P < 0.05), with both cell types showing elevated

infiltration in tumor samples (Figure 4D). This heightened immune

presence likely reflects immune activation within the tumor

microenvironment. Specifically, activated B cells may contribute

to antibody-mediated responses, while NK cells are known for their
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FIGURE 2

Identification of candidate genes and associated pathways. (A) Volcano plots of DEGs between BC samples and normal samples. In the
figure, each dot represents a gene. Pink indicates up-regulation of gene expression, while blue indicates down-regulation of gene
expression. (B) The expression heat map of DEGs. Red represents high expression and blue represents low expression. The darker the color,
the higher/lower the expression. (C-E) GO analysis with up-regulated (the outer circle) and down-regulated (the inner circle) DEGs,
including biological process(C), cellular component (D), and molecular function (E). (F) KEGG analysis with up-regulated (the inner circle)
and down-regulated (the inner circle) DEGs. (G) 33 overlapping genes were identified as both stem cell and telomere maintenance
mechanism related DEGs in BC.
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FIGURE 3

Screening of JUN, NFKB1, and SP1 as biomarkers for BC. (A) Protein–protein interaction network of 33 DEGs. (B) A significant module containing 9
hub genes was selected using MCODE. (C, D) The gene coefficient plot of LASSO analysis and the error plot of cross-validation. The horizontal
coordinates were all log(Lambda), and the vertical coordinates were respectively the coefficient of the gene and the error of cross-validation. LASSO
algorithm indicates the optimal model contained 5 genes. (E, F) The expression levels of these genes in tumor and normal samples were assessed in
both whole transcriptome RNA-seq dataset (E) and TCGA-BC dataset (F) by Wilcoxon rank sum test. The tumor samples were colored red, and the
normal samples were colored blue. ns represents P > 0.05, ** represents P < 0.01, *** represents P < 0.001, **** represents P < 0.0001.
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direct cytotoxic activity against malignant cells, indicating that

differential immune cell infiltration may be associated with

immune escape, tumor growth, and the broader pathophysiology

of BC.

Expression profiles were available for 34 out of the 40 immune

checkpoints identified in the literature. An analysis of these immune

checkpoints in tumor and normal samples revealed significant

differences in the expression of CD200, CD274, TIGIT,

TNFRSF25, and TNFSF15 between the two groups (P < 0.05)

(Figure 4E). These five immune checkpoints also exhibited

elevated expression levels in tumor samples (P < 0.05). This

suggests that these checkpoints may be activated within the

tumor microenvironment, potentially aiding tumor cells in

evading immune surveillance and clearance, thereby positioning

them as promising therapeutic targets. Targeting these immune

checkpoints could inhibit tumor growth and metastasis.
3.5 Investigating targeted drugs and
potential molecular mechanisms for
biomarkers

Utilizing DGIdb, drug–biomarker interactions were

predicted and ranked by interaction scores (Supplementary

Table 2). Based on the selected candidates, a drug–biomarker

interaction network was constructed, comprising 14 nodes and

11 edges (Figure 5A).

Parallel differential expression analysis identified 272 DE-

miRNAs (248 upregulated, 24 downregulated) and 12,287 DE-

lncRNAs (11,899 upregulated, 388 downregulated) between

tumor and normal samples (Figures 5B, C). Predictions of

miRNAs targeting the biomarkers, along with their corresponding

target lncRNAs, were obtained from public databases. Intersections

between DE-miRNAs and predicted target miRNAs, as well as

between DE-lncRNAs and predicted target lncRNAs, enabled the

identification of key miRNAs and lncRNAs. These regulatory

elements were integrated into a lncRNA–miRNA–mRNA

network consisting of 18 nodes and 31 edges (Figure 5D),

including 7 miRNAs, 9 lncRNAs, and 2 biomarkers (SP1 and

JUN). Within this network, complex regulatory relationships were

delineated; for example, XIST may regulate JUN via hsa-miR-139-

5p, and potentially modulate SP1 through hsa-miR-199a-3p, hsa-

miR-7-5p, hsa-miR-324-5p, and hsa-miR-299-5p.
3.6 All 9 annotated cell types exhibited
higher counts in BC

Following transcriptomic analysis, single-cell studies provided

insights into the unique expression patterns of biomarkers across

various cell types and investigated the underlying cellular

mechanisms of BC. Data QC was initially performed on the

GSE245601 dataset , with metrics for nFeature_RNA,

nCount_RNA, and percent.mt visualized before and after QC

(Supplementary Figures 1A, B). Initially, the dataset contained
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69,275 cells and 25,558 genes, which were reduced to 55,204 cells

post-filtering, retaining the same number of genes. The top 2,000

highly variable genes were selected for further analysis

(Supplementary Figure 1C). PCA demonstrated that cells from

both tumor and normal samples were concentrated, with minimal

variation beyond the 30th principal component, leading to the

selection of the first 30 components (dims = 30) and a clustering

resolution of 0.4 (Supplementary Figures 1D, E). UMAP clustering

revealed 21 distinct clusters (Figures 6A, B). Marker gene analysis

identified nine cell types: plasmablasts, mast cells, B cells, myeloid

cells, basal cells, endothelial cells, mesenchymal cells, T cells, and

luminal cells (Figure 6C). The specificity of these marker genes was

validated using a bubble plot, enabling precise annotation of cell

types (Figure 6D). The distribution of these nine cell types in tumor

and normal samples was also visualized, revealing similar clustering

patterns between groups but with higher cell counts in tumors

across all types compared to normal samples (Supplementary

Figure 2). These differences are likely attributed to the tumor

microenvironment and the activation of immune responses in

patients with BC. Additionally, basal cells had higher scores in

the ERK-JUN signaling and stemness-related signatures pathways,

while myeloid cells had the highest score in the NF-kB activation

pathway (Supplementary Figure 3). This suggested that the

proliferation, differentiation, and stemness regulation of basal

cells, as well as the inflammatory response of myeloid cells, might

play important roles in the biological processes of BC.
3.7 Defining mesenchymal cells as a key
cell population

Subsequent analyses employed the AddModuleScore function,

using the previously identified 33 candidate genes associated with

stem cells and TMM in BC as the background gene set. The scores

for the nine annotated cell types in tumor and normal samples

were calculated and compared. Noteworthy differences in

AddModuleScore were observed among endothelial cells, luminal

cells, mesenchymal cells, and myeloid cells (P < 0.01), indicating

alterations in cell function and state within the tumor

microenvironment. These cells were thus classified as candidate

key cells (Figure 7A). Specifically, endothelial, luminal, and

mesenchymal cells exhibited significantly lower scores in tumor

samples (P < 0.0001), suggesting suppression of their stem cell

properties and TMM within the tumor microenvironment. This

suppression may be linked to tumor aggressiveness, metastatic

potential, or treatment resistance. In contrast, myeloid cells

displayed significantly higher scores in tumor samples (P < 0.01),

potentially reflecting their active role in supporting tumor growth

and maintaining the tumor microenvironment, such as by

promoting inflammation, enhancing tumor cell survival, or

suppressing immune responses.

Further investigation of the expression patterns of JUN,

NFKB1, and SP1 in these key cell types revealed significant

differences in both mesenchymal and luminal cells (P < 0.01)

(Figures 7B–D).
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3.8 Recognition of mesenchymal cell
subtypes: MSC1, MSC2, and MSC3

Subsequent investigations examined the heterogeneity of

mesenchymal cells, with UMAP clustering categorizing these cells

into three subtypes: MSC1, MSC2, and MSC3 (Figure 8a). The

distribution of these subtypes in tumor and normal tissues revealed
Frontiers in Immunology 10
that, compared to normal samples, MSC1 and MSC2 were more

abundant in BC, while MSC3 was less prevalent (Figure 8b). A bubble

plot further emphasized the specificity of marker genes across the

three subtypes (Figure 8c). Biomarker expression was then evaluated

across these subtypes. In tumor samples, JUN exhibited significantly

lower expression in MSC1 and MSC2 (P < 0.05), while NFKB1 was

significantly reduced in MSC2 and MSC3 (P < 0.01) (Figures 8d, e).
FIGURE 4

Reveal of signaling pathways associated with biomarkers and potential interaction of immune system in BC patients. (A, B) GSEA enrichment results
of JUN (A) and SP1 (B). Each polyline represents a pathway, and the peak of each polyline is the enrichment fraction of that pathway. (C) The relative
abundance of 28 immune cells. (D) The differences in ssGSEA scores of 28 immune cell types between tumor samples and normal samples were
compared by Wilcoxon rank-sum test. (E) The expression differences of immune checkpoints between tumor samples and normal samples were
compared by Wilcoxon rank-sum test. ns represents P > 0.05, * represents P < 0.05, ** represents P < 0.01.
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SP1, however, showed no significant expression differences across the

three subtypes (P > 0.05) (Figure 8f).
3.9 Analyzing communication relationships
between mesenchymal cell subtypes and
other cell types

The study further assessed the distribution and abundance of

three mesenchymal cell subtypes, alongside eight other cell types, in

both tumor and normal tissues, revealing significant variations in cell

type proportions between these environments (Figure 9A). These

differences suggested that BCmay influence the interaction dynamics

among various cell populations. Subsequently, communication

analysis was conducted to evaluate interactions between MSC1,

MSC2, and MSC3, as well as the other eight cell types, under both

normal and tumor conditions, focusing on both the frequency and

strength of these interactions. Under BC conditions, the number of

interactions between the mesenchymal subtypes and other cell types

was generally reduced compared to normal tissues (Figure 9B),

implying that the tumor microenvironment may alter cell
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functionality and behavior by diminishing communication between

mesenchymal cells and other cell types.

In terms of interaction strength, compared to normal conditions,

communication between MSC1 and endothelial cells was weakened in

BC, while interactions with B cells and myeloid cells were enhanced.

Similarly, MSC2 showed reduced interaction with endothelial cells but

increased communication with basal and myeloid cells. MSC3

exhibited similar patterns, with decreased communication with

endothelial cells and increased interaction with myeloid cells

(Figure 9C). These findings may reflect alterations in immune

regulation within the tumor microenvironment, potentially

contributing to tumor invasiveness and environmental changes. The

results suggest that BC could reorganize functional and interaction

patterns among cells, particularly between mesenchymal and immune

cells, which may be critical for understanding tumor progression and

developing effective therapeutic strategies. Additionally, ligand-receptor

interactions among the mesenchymal cell subtypes and other cell types

under both normal and BC conditions were also examined (Figure 10),

highlighting the importance of these interactions in regulating cellular

behavior, maintaining tissue function, and responding to

environmental changes.
FIGURE 5

Investigating targeted drugs and potential molecular mechanisms for biomarkers. (A) The drug-biomarker network selected by DGIdb. Biomarkers
were represented in red, and drugs were represented in orange. (B, C) The volcano plot of differentially expressed miRNAs (B) and lncRNAs (C)
between tumor and normal samples. The color pink represented upregulation, while the color blue indicated downregulation. The horizontal axis
corresponded to log2FC, denoting the logarithmic value of the gene expression change ratio, and the vertical axis represented the -log10 of the P-
value. (D) Biomarker-miRNA-lncRNA regulatory network. Red represented biomarkers, cyan indicated miRNAs, and orange denoted lncRNAs.
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3.10 Pseudo-time trajectory inference of
mesenchymal cells

In the final stages of the study, pseudo-time analysis was

performed on mesenchymal cells to trace their developmental

trajectory. The analysis identified a clear starting point, from which

cells underwent maturation as they progressed along the trajectory.

Four differentiation nodes were detected, signaling points where

individual cell clusters began to diverge into distinct cellular states

or fates, underscoring the heterogeneity within mesenchymal cells

that guides their progression through various developmental paths

(Figure 11A). The mesenchymal cell trajectory was divided into nine

stages, with cells evenly distributed across early, middle, and late

developmental stages, highlighting the continuous and complex

nature of mesenchymal cell development (Figure 11B).

Notably, under BC conditions, the number of mesenchymal

cells across all developmental stages significantly increased,

corroborating previous findings (Figures 11C, D). This suggests

that the BC microenvironment promotes an expansion of

mesenchymal cells, enhancing their differentiation potential and
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possibly contributing to tumor progression and the remodeling of

the tumor microenvironment. The study also depicted the

distribution of the three mesenchymal subtypes—MSC1, MSC2,

and MSC3—along the mesenchymal cell differentiation trajectory

(Figure 11E). These subtypes were present throughout all stages,

indicating the intrinsic heterogeneity and complex interactions

among mesenchymal cells within the tissue. Interestingly, MSC1

was predominantly more abundant at every stage, possibly

reflecting its central role in mesenchymal cell development and

function. This suggests that MSC1 may possess greater biological

activity or functionality, influencing both neighboring cells and the

broader cellular community.
3.11 Verification of biomarkers expression

Previous analyses revealed significantly lower expression levels of

JUN, NFKB1, and SP1 in BC samples from both the whole

transcriptome RNA-seq dataset and the TCGA-BC dataset (P <

0.01) (Figures 3E, F). To further validate these findings at the clinical
FIGURE 6

Cell clustering analysis and annotation. (A, B) UMAP clustering analysis identified 21 clusters. (C, D) The UMAP (C) and the bubble plot (D) of 9
distinct cell types annotated by marker genes.
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level, RT-qPCR was employed to assess the expression of these

biomarkers in patients with BC (Figures 12A–C). RT-qPCR results

confirmed that both NFKB1 and SP1 exhibited significantly reduced

expression in BC samples (P < 0.05), aligning with initial observations.

Although JUN demonstrated a trend toward decreased expression in

BC, the difference was not statistically significant (P = 0.0139).
4 Discussion

BC is a multifactorial disease, influenced by various biological

factors, with SCRGs and TMMRGs playing critical roles in tumor

progression through the enhancement of tumor cell proliferation

and self-renewal capabilities (23). Understanding the interactions
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between these mechanisms is crucial for identifying potential

therapeutic targets and improving patient outcomes. This study

highlights JUN, NFKB1, and SP1 as biomarkers with significantly

reduced expression levels in BC tissues. These biomarkers are

implicated in the progression of BC through various biological

processes, such as ECM remodeling, cell signaling regulation,

oxidative stress response, and mechanisms governing protein

synthesis and transport. Notably, scRNA-seq analysis revealed

high infiltration levels of activated B cells and NK cells in BC,

alongside elevated expression of immune checkpoints, including

CD200, CD274, TIGIT, TNFRSF25, and TNFSF15.

JUN promotes the self-renewal and stemness maintenance of

cancer stem cells by activating stem cell-related pathways such as

b-catenin and Notch and enhances tumor initiation ability and
FIGURE 7

Analysis of key cell biomarkers. (A) AddModuleScore score of different cell types in tumor and normal samples. (B-D) The expression patterns of JUN
(B), NFKB1 (C), and SP1 (D) in these candidate key cells in tumor and normal samples. ns represents P > 0.05, * represents P < 0.05, ** represents P <
0.01, *** represents P < 0.001, **** represents P < 0.0001.
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chemotherapy resistance (54, 55). Abnormal activation of

telomerase reverse transcriptase (TERT) in cancer cells enables

them to escape cellular senescence and thereby acquire unlimited

proliferation ability. JUN may indirectly promote the expression of

TERT, activate telomerase activity, compensate for telomere
Frontiers in Immunology 14
shortening during cell division, maintain chromosomal stability,

and assist in the unlimited proliferation of cancer cells (56, 57).

NFKB1 encoded a key component of the NF-kB transcription factor

complex, which was critical in the occurrence and development of

various diseases including cancer (58). Moreover, NFKB1 is
FIGURE 8

Heterogeneity of mesenchymal cells. (a) Mesenchymal cells can be further divided into three cell subtypes. (b) The expression of these subtypes in
tumor and normal tissues. (c) The specificity of marker genes across these 3 subtypes. (d-f) The expression levels of JUN (d), NFKB1 (e) and SP1 (f) in
these subtypes. *:p<0.05; **:p<0.01; ***:p<0.001; ns:p>0.05
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involved in regulating the self-renewal, differentiation and

treatment resistance of cancer stem cells (59). In addition, studies

have shown that NFKB1 has a subunit specific role in the DNA

damage response (60). This suggests that NFKB1 may indirectly

affect the stability of telomeres by influencing the DNA damage

repair pathway. SP1 has also been found to be related to the

characteristics of cancer stem cells. For example, in triple-negative

breast cancer (TNBC), SGCE promotes BC stemness by facilitating

the transcription of FGF-BP1 by SP1 (61). Furthermore, Liu et al.

found that SP1 mediated the inhibition of TERT after the

overexpression of LKB1, thereby affecting the progression of lung

adenocarcinoma. That is to say, SP1 might also affect TERT through

a similar mechanism in BC and thereby influence the maintenance

mechanism of telomeres. In conclusion, JUN, NFKB1 and SP1 may

jointly maintain the characteristics of cancer stem cells by

regulating the stemness maintenance and telomerase activity of

cancer stem cells, thus influencing the progression, treatment

resistance and recurrence of BC.

Moreover, JUN, SP1 and NFKB1 play multiple roles in the

regulation of the immune microenvironment of BC. JUN, as a kernel

factor of the AP-1 family, promotes the invasion of tumor cells by

activating Matrix Metalloproteinases and at the same time down-

regulates the expression of MHC-I class molecules to evade the

recognition of cytotoxic T cells; the secretion of IL-6/IL-8 induced by

it can also recruit immunosuppressive myeloid cells and inhibit T cell

function (62–64). SP1 regulates the GC-rich region of the PD-L1

promoter, enhances its transcriptional level, and mediates tumor
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immune escape (65, 66). Meanwhile, it can promote the expression

of chemokine CCL2, recruit immunosuppressive macrophages, and

affect the immune microenvironment (67). NFKB1 can continuously

activate the NF-kB pathway. The CXCL12/CXCR4 axis NFBK1

regulates can also promote the infiltration of regulatory T cells

(Tregs) and inhibit anti-tumor immunity (68–70). They three jointly

reshape the immune microenvironment through the transcriptional

regulatory network and weaken the body’s anti-tumor immune

response, which may become a potential mechanism for drug

resistance to immunotherapy in breast cancer.

Immune infiltration analysis revealed a significant increase in the

abundance of activated B cells and NK cells in BC tumor samples

compared to normal tissue (P < 0.05). This elevated infiltration suggests

that the immune system is activated within the BC microenvironment,

potentially reflecting the body’s attempt to combat tumor progression.

B cells are important components of adaptive immunity and can

mediate the tumor cells killing by generating antibodies (71). B cells can

also act as antigen-presenting cells (APC), presenting tumor antigens to

T cells and activating the anti-tumor immune response of T cells (72).

Multiple studies have shown that B-cell infiltration is associated with a

favorable prognosis in cancer patients (73, 74). A higher level of

activated B cell infiltration may indicate a stronger anti-tumor

immune response and better clinical outcomes. NK cells are

important components of the innate immune system, capable

of recognizing and killing tumor cells without prior sensitization

(75, 76). Moreover, studies have shown that activated NK cells may

play a significant role in early tumor control (77), thereby improving
FIGURE 9

Communication relationships between mesenchymal cell subtypes and other cell types. (A) The distribution and quantity of different cell types in
tumor and normal tissues. (B) The interaction numbers between these cell types in tumor and normal tissues. (C) The weight of interactions
between these cell types in tumor and normal tissues.
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the survival rate of patients. In conclusion, B cells and NK cells exert

immune effects respectively by mediating antibody killing, antigen

presentation and direct killing of tumor cells. Their activation degree

and the infiltration level are significantly associated with the prognosis

of cancer patients.

Furthermore, significant differences in the expression of immune

checkpoints—specifically CD200, CD274 (PD-L1), TIGIT, TNFRSF25,
Frontiers in Immunology 16
and TNFSF15—were observed between tumor and normal samples.

All five immune checkpoints showed elevated expression in tumor

samples (P < 0.05), suggesting their activation within the tumor

microenvironment, which likely aids tumor cells in evading immune

surveillance. CD200 functions as an immunosuppressive molecule

through its receptor CD200R, and its upregulation in BC may

facilitate immune escape and contribute to tumor progression and
FIGURE 10

Ligand-receptor interactions among these cell types under control and BC conditions.
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metastasis. PD-L1, a key immune checkpoint, interacts with PD-1 on T

cells when expressed on tumor cells, leading to T cell inhibition. High

PD-L1 levels in BC are associated with poor prognosis, and blocking

PD-L1/PD-1 interactions has emerged as an effective treatment for

various BC subtypes. The elevated expression of these immune

checkpoints highlights their potential as therapeutic targets in BC.
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Inhibiting these checkpoints could restore immune surveillance and

enhance the efficacy of immune-based therapies (78). This immune

analysis highlights the complex interplay between immune cells and

the tumor microenvironment in BC. The increased infiltration of

activated B cells and NK cells suggests an active immune response,

while the upregulation of specific immune checkpoints points to
FIGURE 11

Pseudo-time trajectory inference of mesenchymal cells. (A) The trajectory plot illustrated the differentiation of mesenchymal cells over time. During
the differentiation process, mesenchymal cells were divided into four distinct stages. Darker colors represented earlier time points in the
differentiation timeline. (B) The trajectory was categorized into 9 stages. (C, D) The trajectory of mesenchymal cells in normal and tumor tissues
respectively (C) and synthetically (D). (E) The distribution of 3 mesenchymal cell subtypes along the differentiation trajectory.
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mechanisms of immune evasion. Understanding these dynamics is

essential for developing novel immunotherapeutic strategies aimed at

boosting anti-tumor immunity while counteracting immune

suppression. Future research should focus on elucidating the roles of

these immune components and their interactions in BC, as well as

exploring combination therapies that could synergistically improve

treatment outcomes.

This study explored the lncRNA-miRNA-mRNA regulatory

network in BC, revealing interactions between non-coding RNAs

and key biomarkers (79, 80). For instance, XIST was predicted to

regulate JUN through hsa-miR-139-5p, and may also influence SP1

via several miRNAs, including hsa-miR-199a-3p, hsa-miR-7-5p,

hsa-miR-324-5p, and hsa-miR-299-5p. These interactions suggest

complex regulatory mechanisms in which non-coding RNAs play

pivotal roles in modulating the expression of these biomarkers.

Given that this network was constructed based on differential

expression analysis and database predictions, the reliability of

these regulatory relationships is notably high. Previous research

has demonstrated that the loss of OPA interacting protein 5 can

inhibit BC proliferation via the hsa-miR-139-5p/NOTCH1 axis

(81), and hsa-miR-7-5p has also been implicated in BC

progression (82). Our findings further support the potential of

targeting these non-coding RNA interactions for therapeutic

intervention in BC. Specifically, the results suggest that XIST and

the identified miRNAs (e.g., hsa-miR-139-5p and hsa-miR-7-5p)

could jointly regulate SP1 and JUN, thereby influencing key cellular

processes such as proliferation, apoptosis, and metastasis, which

contribute to BC development. This highlights the potential co-

regulatory roles of non-coding RNAs within the tumor

microenvironment and their importance in BC progression.

Additionally, the study identified several drug candidates targeting

these biomarkers, with Bardoxolone (83), Andrographolide (84), and

Terameprocol (85, 86) emerging as potentially effective agents in BC

treatment. These drugs target critical pathways involved in oxidative

stress, apoptosis, and transcriptional regulation, positioning them as

promising candidates for further investigation. However, additional

in vivo and in vitro studies, along with large-scale clinical trials, are

necessary to validate their efficacy and safety in BC.
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This study further identified three mesenchymal cell subtypes—

MSC1, MSC2, and MSC3—each displaying distinct expression

patterns of BC biomarkers. JUN was significantly downregulated in

MSC1 and MSC2, while NFKB1 was downregulated in MSC2 and

MSC3. However, SP1 did not show significant expression differences

across these subtypes. The downregulation of JUN and NFKB1 in

mesenchymal subtypes may impair their ability to maintain tumor-

suppressive functions, highlighting their potential role in driving BC

progression. In addition, studies have shown that the MSC1 subtype

may have pro-inflammatory properties and play a specific role in

immune regulation (87). For example, MSCS activated by Toll-like

receptor 4 ligand lipopolysaccharide may present the MSC1

phenotype and express pro-inflammatory cytokines such as IL-6

and IL-8 (87, 88). The MSC2 subtype may have immunosuppressive

and tissue repair functions (87, 89). It is mainly produced in an anti-

inflammatory environment and is characterized by high expression of

immunosuppressive molecules such as IDO, PGE2 and TGF-b,
which can inhibit the activity of immune cells and alleviate the

inflammatory response (87, 89, 90). However, there are relatively few

studies on the MSC3 subtype, and its specific functions remain to be

further clarified. The heterogeneity of these mesenchymal subtypes

was further explored through communication and pseudo-time

analysis. Notably, MSC1 and MSC2 were more abundant in tumor

tissues, suggesting that these subtypes may play an active role in

tumor progression. The reduced interactions between these

mesenchymal subtypes, along with enhanced communication with

immune cells such as B cells and myeloid cells under BC conditions,

suggest that the tumor microenvironment alters mesenchymal cell

functionality. These changes may contribute to immune suppression,

tumor cell survival, and sustained tumor growth (91, 92).

Pseudo-time analysis also revealed that mesenchymal cells undergo

continuous differentiation across nine distinct stages, emphasizing their

developmental plasticity. This trajectory analysis indicated that BC

significantly increases the number of mesenchymal cells at all stages

of development, further underscoring their critical role in tumor

development. MSC1, in particular, was the most prominent subtype

across all stages, potentially due to its central role in mesenchymal cell

function and its influence on surrounding cell types within the tumor
FIGURE 12

Expression level of biomarkers’ mRNA. (A-C) Expression levels of JUN (A), NFKB1 (B), and SP1 (C) in patients with BC by RT-qPCR. ns represents P >
0.05, * represents P < 0.05, ** represents P < 0.01. ns means 'not significant', and it represents p>0.05.
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microenvironment (92, 93). Overall, mesenchymal cells appear to

contribute to several aspects of BC pathogenesis, including the

establishment of the tumor microenvironment, invasion, metastasis,

and resistance to treatment. Their ability to interact with immune cells

and modulate the ECM suggests that targeting these cells could disrupt

cancer-supportive processes. Additionally, targeting epithelial-

mesenchymal transition (EMT) and mesenchymal-epithelial transition

(MET) pathways in mesenchymal cells may offer new therapeutic

strategies to inhibit tumor metastasis and progression in BC.

In summary, this study identified JUN, NFKB1, and SP1 as

important biomarkers associated with stem cells and telomere

maintenance mechanisms in BC, highlighting their critical roles in

tumor progression, alterations in the immune microenvironment,

and potential therapeutic targets. Additionally, the exploration of

mesenchymal cell heterogeneity and their dynamic communication

with other cell types provides valuable insights into the complexity of

the tumor microenvironment. However, the study has certain

limitations, particularly the small sample size used for validation,

which may restrict the generalizability of the results. To address this,

we will actively expand the sample sources, collaborate with multiple

centers, and incorporate more clinical samples for analysis and

validation in the future. Meanwhile, future research should focus

on integrating bioinformatic predictions with experimental validation

to establish direct evidence for the involvement of JUN, SP1, and

NFKB1 in telomere maintenance and stemness regulation.
5 Conclusions

In conclusion, this study provides valuable insights into the roles

of mesenchymal and luminal cells in BC, while also underscoring the

need for further research to validate and expand these findings.

Addressing the limitations of the current study will be critical for

enhancing our understanding of the underlying mechanisms and

improving treatment outcomes for patients with BC.
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SCRGs Stem Cell-Related Genes
Frontiers in Immunol
TMMRGs Telomere Maintenance Mechanism-Related Genes
BC Breast Cancer
RNA-seq RNA Sequencing
scRNA-seq Single-Cell RNA Sequencing
DEGs Differentially Expressed Genes
PPI Protein-Protein Interaction
MCODE Molecular Complex Detection
LASSO Least Absolute Shrinkage and Selection Operator
GO Gene Ontology
KEGG Kyoto Encyclopedia of Genes and Genomes
GSEA Gene Set Enrichment Analysis
ssGSEA Single-Sample Gene Set Enrichment Analysis
TCGA The Cancer Genome Atlas
GEO Gene Expression Omnibus
RT-qPCR Reverse Transcr ip t ion Quant i ta t ive Po lymerase

Chain Reaction
ECM Extracellular Matrix
NK cells Natural Killer cells
MSC Mesenchymal Stem Cells
EMT Epithelial-Mesenchymal Transition
MET Mesenchymal-Epithelial Transition
PCA Principal Component Analysis
UMAP Uniform Manifold Approximation and Projection
FPKM Fragments Per Kilobase of transcript per Million

mapped reads
BP Biological Process
CC Cellular Component
MF Molecular Function
ogy 22
lncRNA Long Non-Coding RNA
miRNA MicroRNA
mRNA Messenger RNA
DGIdb Drug Gene Interaction Database
TLS Tertiary Lymphoid Structures
IFN Interferon
TNF Tumor Necrosis Factor
PD-L1 Programmed Death-Ligand 1
PD-1 Programmed Cell Death Protein 1
TIGIT T cell Immunoreceptor with Ig and ITIM domains
TNFRSF25 Tumor Necrosis Factor Receptor Superfamily Member 25
TNFSF15 Tumor Necrosis Factor Superfamily Member 15
CD200 Cluster of Differentiation 200
CD274 Cluster of Differentiation 274
Nrf2 Nuclear factor erythroid 2–related factor 2
RhoA Ras homolog family member A
S1P Sphingosine-1-phosphate
SRP Signal Recognition Particle
NF-kB Nuclear Factor kappa-light-chain-enhancer of activated

B cells
STAT3 Signal Transducer and Activator of Transcription 3
TP53 Tumor Protein p53
TMM Telomere maintenance mechanisms
TERT Telomerase reverse transcriptase
TNBC Triple-negative breast cancer
MDSCs Myeloid-derived suppressor cells
HCC Hepatocellular carcinoma
MHC-1 Major Histocompatibility Complex Class I
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