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Introduction

Common Variable Immunodeficiency Disorders (CVID) are the most frequent

symptomatic Primary Immunodeficiency Disorder (PID) in both adults and children (1).

Patients with CVID present with late-onset antibody failure with variable degrees of cellular

immune dysfunction (2). Most patients with CVID experience recurrent and severe bacterial

infections, but also have a predisposition to autoimmunity and inflammatory disorders.

The clinical manifestations of CVID can vary over time. Patients can initially

experience recurrent infections in childhood but suffer autoimmune or inflammatory

disorders later in life. Conversely, some patients with CVID present with autoimmunity

and the diagnosis is made when immunoglobulins are measured before

immunosuppression. In other CVID patients where immunoglobulins are not measured

before treatment, severe infections can be precipitated by immunosuppression, unmasking

the disorder.
Genetics of CVID and CVID-like disorders

By definition, the precise genetic cause of CVID is unknown. In approximately 25% of

non-consanguineous individuals, a causative autosomal dominant mutation underlies the

PID (3). Families with autosomal dominant disorders frequently have variable penetrance

and expressivity. In consanguineous societies, the majority of patients with primary

antibody deficiencies have an underlying genetic defect, usually inherited as an
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autosomal recessive disorder. These patients typically present with

severe disease early in life (4).

All current definitions of CVID exclude those with an

underlying condition, which includes patients with causative

mutations (5–7). These patients are deemed to have CVID-like

disorders caused by a monogenic Inborn Error of Immunity

(IEI) (8).

CVID-like disorders are characterized by marked locus

heterogeneity (genocopy). Mutations in a large number of genes

can result in a remarkably similar phenotype of impaired antibody

production with variable degrees of cellular immune dysfunction

(9). With the advent of Next Generation Sequencing (NGS) and

more recently by second and third generation genome sequencing,

it has become feasible to investigate disorders with marked

locus heterogeneity.

In addition to causative mutations leading to an IEI, patients

with CVID frequently have genetic variants which appear to

predispose to, or enhance disease severity. The evidence these risk

alleles do not cause CVID is based on several observations. First, the

population prevalence of these alleles far exceeds that of CVID. The

American College of Medical Genetics (ACMG) has published

helpful information on the interpretations of genetic variants to

determine if these are pathogenic or benign (10). The first

consideration in the ACMG criteria is the frequency of the

variant in the population: If it far exceeds the disease prevalence,

it is unlikely to be causative.

Second, these variants do not segregate with disease in family

studies (11). The ACMG criteria place considerable emphasis on

family segregation studies. If these variants do not segregate with

extended family studies, this is strong evidence they cannot be

causative. It is important to note that CVID and CVID-like

disorders can present later in life and these family segregation

studies should include older family members as well as children.

Large multi-generational kindreds where variants do not segregate

with disease is strong evidence these are not pathogenic.

Last, the epistatic role of these variants was directly shown in a

family carrying mutations of both TNFSF13B/TACI (C104R,

c.310TC) variant and a nonsense mutation of TCF3 (T168fsX191)

(12). The proband who had both mutations was severely affected

clinically compared to other members of the same family. She had a

much higher CVID Disease Severity Score (CDSS) (13). Laboratory

studies reflected these clinical observations, as the digenic proband

had much lower in vitro antibody production, compared to other

members of the kindred bearing only one mutation.
Polygenic CVID-like disorders

The current Expert Committee on PIDs has deemed these

disorders to be monogenic IEIs, although the majority of patients

with PIDs do not have a causative pathogenic mutation (14). The

genetic basis for CVID (by definition), selective IgA deficiency and

Transient Hypogammaglobulinemia of Infancy (THI) are unknown.

These three conditions numerically comprise by far the majority

of PIDs.
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The current Expert Committee on PIDs does not recognize

polygenic causes of PIDs (8). With the advent of second and third

generation sequencing, it has become increasingly obvious that

many patients with CVID-like disorders have more than one

mutation, which may be contributing to their phenotype.

Polygenic PIDs could influence the phenotype of an individual in

several ways. If there is an epistatic effect between two genetic loci,

there may be synergistic, non-linear interactions between two or

more genes leading to a much more severe or much milder

phenotype. Positive epistasis occurs where the digenic phenotype is

much worse than in individuals bearing a single mutation. In

contrast, negative epistasis occurs, where the deleterious effects of

the two or more mutations are mitigated by one or both variants.

Quantitative epistasis typically occurs when gene products lie

on the same signaling pathway. One gene mutation usually has a

greater impact on the phenotype than the other. This is known as

the epistatic hub and is often a gene product with non-redundant

function such as a receptor or nuclear signaling factor (15).

Epistasis in laboratory animals can be explored by inducing

mutation by techniques such as gene editing and selective breeding.

In humans, epistasis can only be determined if there is a family

where the two or more mutations segregate with different family

members. Ideally there should be an individual with wild type

sequence of the genes as a control (15).

In other cases, the two mutations may lie on different signaling

pathways and may not have a synergistic interaction. Each mutation

contributes to the phenotype in an additive manner. A disease

severity score can help determine if there is an epistatic interaction

between the two mutations at a clinical level. Similarly, a test such as

in vitro antibody production can also determine if there is epistasis

at a biochemical level. The probability of epistasis can be assessed by

an epistasis score (15). Epistasis occurs when the genetic,

biochemical and clinical scores are congruent.

In another scenario, patients who have large deletions involving

many immune system genes present difficulties in determining

epistasis. Although the large deletion might be present in other

family members, the individual genes do not segregate. In this case,

the comparison is between a patient having the large deletion

involving many genes with other unrelated patients having a single

gene deletion. The interindividual phenotypic differences are likely to

be much greater than those of a single kindred, where two or more

genes segregate. This was seen in the CTLA4 Gene Complex Deletion

Syndrome (CDCGS) where large deletions of chromosome 2 results

in deletion of CTLA4, CD28 and ICOS (16, 17).

In these large deletions, the loss of CTLA4 causes

haploinsufficiency resulting in a CVID-like disorder with severe

autoimmunity associated with hypogammaglobulinemia. ICOS

deficiency is an autosomal recessive disorder also resulting in a

CVID-like disorder. CD28 deficiency is another autosomal recessive

condition leading to severe cutaneous HPV infection, which has been

termed the “Tree man syndrome” (18). Some patients with CGCDS

have deletion of SATB2 resulting in a severe neurodevelopmental

delay (Glass syndrome) and BMPR2 leading to pulmonary

hypertension (Figure 1) (17). There is thus substantial phenotypic

variability of the CGCDS depending on the deleted genes (16).
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In these kindreds, the heterozygous CTLA4mutation appears to

be the critical mutation resulting in severe autoimmunity. While it

is clear this is a polygenic CVID-like disorder, the role of the

heterozygous CD28 and ICOS deletions are uncertain. As noted

above, epistasis cannot be determined in large deletions, as these

mutations do not segregate in different family members.
Conclusion

In conclusion, it is apparent that an increasing number of PIDs/

IEIs are consequent to polygenic disorders. In polygenic disorders,

each variant should be curated to determine its contribution to the

phenotype. It is also apparent from the examples presented here

that not all cases of digenic or higher order polygenic disorders are

examples of epistasis. Given the increasing recognition of polygenic

PIDs/IEIs, there should be a separate category for these disorders in

the IUIS PID classification system.
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FIGURE 1

The CTLA4 Gene Cluster Deletion syndrome (CGCDS). The spectrum of phenotypic features vary from CTLA4 haploinsufficiency to Glass Syndrome
and Pulmonary hypertension, depending on deleted genes. The banded chromosome was generated by Microsoft co-pilot.
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