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Identification of a stromal 
immunosuppressive barrier 
orchestrated by SPP1+/C1QC+ 

macrophages and 
CD8+ exhausted T cells 
driving gastric cancer 
immunotherapy resistance 
Guichuang Ma1† , Xiaohan Liu1† , Qinrui Jiang1† , Shaowei Li1, 
Qijing Wu1, Bishan Liang1, Fei Sun1, Chunhui Gu1, 
Wangjun Liao1,2, Zhihua Zhang1, Min Shi1* and Qiong Huang1* 

1Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 
Guangdong, China, 2Cancer Center, The Sixth Affiliated Hospital, School of Medicine, South China 
University of Technology, Foshan, China 
Purpose: The heterogeneity of immune cells is a critical manifestation of gastric 
cancer (GC) heterogeneity and significantly contributes to immune therapy 
resistance. Although previous studies have focused on the roles of specific 
myeloid cells and exhausted CD8+ T cells in immune resistance, the immune 
cell interaction network and its spatiotemporal distribution in GC immune 
resistance remain underexplored. 

Methods: This study integrated multiple GC single-cell RNA sequencing, spatial 
transcriptomics, bulk-RNA sequencing, and single-cell immunotherapy datasets 
of our cohort (NFHGC Cohort). Methods such as single-cell subpopulation 
identification,  transcriptomic  analysis,  spatial  colocal ization,  cell  
communication network analysis and tissue immunofluorescence of gastric 
cancer were employed to investigate immune cell interactions and their 
molecular mechanisms in immune resistance. 

Results: By leveraging a comprehensive approach that integrates single-cell RNA 
sequencing, spatial transcriptomics, and bulk RNA-seq profiles, we identified 20 
immune subsets with potential prognostic and therapeutic implications. Our 
findings suggest a stromal immunosuppressive network orchestrated by 
Macro_SPP1/C1QC macrophages and CD8_Tex_C1 T cells, which may form a 
barrier impeding antitumor immunity. Macrophage-derived MIF signaling 
appears to drive immunosuppression via the MIF-CD74/CXCR4/CD44 axis. 
Based on these observations, we developed a preliminary TME classification 
system using a gene signature derived from barrier-associated immune cell 
markers and unsupervised clustering. 
01 frontiersin.org 

https://www.frontiersin.org/articles/10.3389/fimmu.2025.1618591/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1618591/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1618591/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1618591/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1618591/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1618591/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1618591/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1618591/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1618591/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2025.1618591&domain=pdf&date_stamp=2025-07-16
mailto:huangqiongyes@163.com
mailto:nfyyshimin@163.com
https://doi.org/10.3389/fimmu.2025.1618591
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2025.1618591
https://www.frontiersin.org/journals/immunology


Ma et al. 10.3389/fimmu.2025.1618591 

 

Frontiers in Immunology 
Conclusions: Our study identified a potential stromal immunosuppressive barrier 
in gastric cancer, driven by Macro_SPP1/C1QC macrophages and CD8_Tex_C1 T 
cells, which may contribute to immune dysfunction and therapy resistance. 
Molecular subtyping based on this barrier ’s presence could  inform
personalized immune therapy strategies. 
KEYWORDS 

gastric cancer, immune microenvironment, immunotherapy resistance, macrophages, 
exhausted CD8 + T cells, cellular interaction network 
1 Introduction 

Over the past few years, immune checkpoint inhibitors (ICIs) 
have achieved remarkable advancements in the treatment of gastric 
cancer (GC) (1, 2). However, the substantial spatiotemporal 
heterogeneity of gastric cancer (GC) often leads to a contradictory 
clinical outcome, where a high objective response rate (ORR) does 
not translate into prolonged overall survival (OS). Nearly 50% of 
patients develop primary or acquired resistance (3, 4). 

TIME (Tumor Immune Microenvironment) is a multifaceted 
ecosystem, where immune cells assume both “anti-tumor” and “pro-
tumor” roles through intricate intercellular interactions (5). In GC 
immunosuppressive cells (5), such as myeloid-derived suppressor cells 
(MDSCs) (6), regulatory T cells (Tregs), and exhausted T cells, facilitate 
immune resistance through the secretion of inhibitory factors (7, 8) and  
the expression of immune checkpoint molecules. Tumor cells, along 
with microenvironmental factors, collectively facilitate the 
accumulation of these immunosuppressive cells within the GC 
TIME. In addition, a study has shown that the remodeling of the 
immune niche, exemplified by the formation of fibroblast activation 
protein–positive cancer-associated fibroblasts (CAFs) and exhausted T 
cells, or SPP1+ TAMs (SPP1+ Tumor-Associated Macrophages) and 
THBS2+ CAFs, also contributes to immune resistance (9). 

Given the critical role of TIME in immune resistance, our team 
previously developed the TMEscore (10, 11) evaluation system, 
successfully predicting the efficacy of GC immunotherapy by 
integrating immune cell infiltration characteristics and validating it 
through a Phase I clinical trial. However, bulk-RNA data as published in 
this previous study alone are insufficient to enable a deeper exploration 
of immune cell interactions and niche dynamics. In this study, we 
integrate multiple single-cell RNA sequencing (scRNA-seq), spatial 
transcriptomics (ST) and bulk-RNA sequencing datasets, to 
systematically map the heterogeneity of immune cells in GC. We 
identify an immunosuppressive barrier composed of three types of 
dysfunctional immune cell cluster (Macro_SPP1, Macro_C1QC and 
CD8_Tex_C1). Based on this discovery, we propose a barrier-associated 
immune classification for GC. Our results might offer a foundation for 
delving deeper into the immune resistance mechanisms in gastric 
cancer (GC) and for devising more impactful therapeutic strategies. 
02 
2 Methods 

2.1 Acquisition of data 

We sourced raw single-cell RNA sequencing data for gastric 
cancer cohorts from the GEO database (accession number 
GSE183904, including 29 samples of tumor tissue), bulk 
transcriptomic data (TCGA-STAD, including 323 tumor samples) 
along with clinical and survival information for stomach 
adenocarcinoma from the UCSC Xena database, and spatial 
transcriptomic data from the GEO database (GSE251950, 
including 3 tumor samples). Additionally, we retrieved melanoma 
patient data treated with immune checkpoint blockade from GEO 
(GSE100797, including 25 samples) and the KIM cohort dataset 
(12) (PRJEB25780, including 45 samples) from the TIDE website. 
All mRNA expression values were formatted in TPM, and analyses 
were conducted using R (version 4.2.0). 
2.2 Patients and samples 

We collected single-cell RNA sequencing (scRNA-seq) data 
from fresh tumor samples of 8 gastric cancer patients prior to 
immune checkpoint blockade (ICB) treatment at Nanfang Hospital 
(Guangzhou, China). Among the eight patients included in the 
analysis, F116 and F171 were identified as having progressive 
disease (PD), F153, F154, and F159 were identified as having 
stable disease (SD), and F128, F160, and F172 were identified as 
having partial response (PR). Here, PD and SD patients were 
considered non-responders to immunotherapy, while PR patients 
were considered responders. The determination of PD, SD, and 
PR was based on the Response Evaluation Criteria in Solid Tumors 
(RECIST 1.1) criteria (13). Written consent was obtained from 
all participants, and detailed clinical information is documented 
in Supplementary Table S1. Gastric cancer tissues used for 
immunofluorescence experiments were obtained from tumor 
biopsy samples of four patients with progressive disease (PD) 
and four patients with partial response (PR) who had 
received immunotherapy. 
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2.3 Single-cell data quality control and 
preprocessing 

The CellRanger pipeline (version 4.0.0) developed by 10× 
Genomics was employed to process the raw sequencing data. This 
included alignment, quantification, basic filtering, and quality 
control to generate the initial gene expression matrix based on 
the human reference genome GRCh38. Subsequently, the R package 
Seurat (version 4.4.0) was utilized for downstream quality control 
and analysis. Datasets were preprocessed individually for each 
sample and then combined per donor to facilitate further 
analysis. During quality control, cells with a library size ≤2,000 
UMIs or a mitochondrial transcript ratio ≥5% were excluded. Genes 
detected in fewer than 3 cells were marked as undetected. We 
merged the individual Seurat objects from each patient into a larger 
Seurat object and performed normalization, scaling, and 
preprocessing for PCA analysis. To assess batch effects, we first 
visualized data using a DimPlot. To correct for inter-sample 
variation, we applied the RunHarmony function from the R 
package Harmony. 

The number of principal components (PCs) was determined by 
the JackStraw procedure using the JackStraw and ScoreJackStraw 
functions. Cell clustering was conducted with the FindNeighbors 
and FindClusters functions from Seurat, setting the resolution at 
0.6. In the dataset GSE183904, a total of 115,134 cells were retained 
for further analysis, while the NFHGC cohort dataset retained 
11,396 cells for further analysis. 
2.4 Cell type annotation 

Initial cell type annotations were performed using markers collected 
from published studies (14). For T cells,”CD3D”and”CD8A”were used 
for CD8+T cells, while “CD4” was used for CD4+T cells. For B cells, 
“CD19”, “CD79A”, “IGHG1”, and  “MZB1” were used. Myeloid cells 
were distinguished using “CD68” and “CD14”; stromal cells were 
marked by “PECAM1”, “VWF”, “COL1A1”, and  “ACTA2”; epithelial  
cells were marked by “EPCAM” and “KRT8”. To refine cell type 
annotations, the FindAllMarkers function was used to identify gene 
markers for each cell subtype, with criteria of adjusted P value ≤0.05 and 
average log fold change (avgLogFC) ≥0.15. The top 30 genes for each 
cell type were selected as representative markers, and the marker genes 
for the cell subpopulations are listed in Supplementary Tables 2, 3. 
2.5 Spatial data processing and cell type 
deconvolution 

Public spatial transcriptome datasets (GSE251950) were 
downloaded from GEO. For analysis, spots with fewer than 200 
detected genes were filtered out, and genes with fewer than 10 read 
counts or expressed in fewer than 3 spots were removed. PCA was 
applied to reduce dimensionality on the log-transformed gene-barcode 
matrices of the top variable genes. Clustering was performed with a 
resolution of 0.8 to generate the final spot cluster results (15, 16). 
Frontiers in Immunology 03 
Spatial deconvolution was performed using the RCTD 
algorithm from the R package spacexr-2.0.0 (17). For each spatial 
slice, matrices of raw counts and spatial coordinates were used to 
construct the Spatial RNA object. Integrated fibroblast cell raw 
counts and annotations served as the scRNA-seq reference with 
default parameters. The reference and Spatial RNA objects were 
then processed through the RCTD main function in full mode. For a 
certain cell type of each spot, the top score among cell types 
extracted from RCTD will be defined as the cell type. The 
AddModuleScore function was adapted to further identify the 
abundance and location of each detailed immune cell subtypes, 
using gene sets extracted from single-cell data as described above. 
2.6 Spatial cell community analysis 

The MISTy algorithm in the mistyR package (version 1.2.1) was 
utilized to evaluate the significance of the abundance of each 
primary cell type relative to other major cell types. Geneset scores 
from the AddModuleScore function and spatial coordinates were 
input  to  estimate  cell-type-specific relationships. The

Plot_interaction_communities function was used to visualize the 
final outputs with a cutoff value of 0.2. 
2.7 Single-cell RNA CellChat analysis of 
cell–cell communication 

To analyze single-cell level cell–cell communication, the R 
package CellChat (version 1.6.1) was used. Ligand-receptor 
interactions were constructed using the human dataset from 
CellChatDB. Communication probabilities were calculated with the 
computeCommunProb function, and interactions involving fewer 
than 5 cells were excluded. Aggregated cell communication patterns 
were then used to select signals between immune cells and other 
tumor microenvironment (TME) cells based on spatial co-location. 
2.8 Single-cell functional score 

We separately collected the functional gene sets of B cells, T cells, 
and macrophages from previously published manuscripts (18–20), 
and used the AUCell method to score them. For each gene set, after 
calculating, the scores were integrated into the metadata of the cell 
Seurat. The functional gene sets are listed in Supplementary Table 4. 
2.9 Single-cell RNA cell trajectory analysis 

The Monocle2 package (version 2.18.0) was used to infer cell 
trajectories for CD8+ T cells. “Dispersion” genes were identified 
using the estimate Size Factors and estimate Dispersions functions 
and used to order cells. The trajectory was constructed using the 
DDRTree method for dimensionality reduction and plotted in 
three-dimensional space. 
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2.10 Network motif analysis 

The CellChat interaction strength matrix among immune cells 
was extracted as an adjacency matrix, excluding weak interactions 
with weights less than 0.0001. The root node was determined as the 
node with the highest weighted outdegree. To identify immune cell 
interaction patterns, 2-node, 3-node, and 4-node motifs were 
sequentially detected using the “IGLADFindSubisomorphisms” 
function from the IgraphM package in Mathematica. The 
“IGRewire” function was used to detect sub-motifs by generating 
50,000 degree-preserving random networks. The sum strength 
weight was calculated to determine the interaction significance of 
each motif. 
2.11 Bulk transcriptomes analysis 

To compare cell abundance between responder (R) and non-
responder (NR) patients to ICB therapy, the ssGSEA method in the 
GSVA package was used to calculate cell type scores. The TimiGP 
package was used to distinguish ICB (Immune Checkpoint 
Blockade) response status. Gene sets were selected as described 
above, and the TimiPreProcess function was used to prepare the 
data. The TimiCellPair, TimiBG, and TimiCellNetwork functions 
were used to estimate the FS score contributing to ICB treatment. 
For sub-clusteRing of immune conditions among gastric cancer 
patients, immune cell scores, epithelial cell scores, and stromal cell 
scores were initially estimated and then further clustered using the 
k-means method from the “me_cluster” function in the IOBR 
2.0 package. 
2.12 Identification of barrier-associated 
immune classification via bulk 
transcriptomes analysis 

The identification of the barrier-associated immune 
classification was calculated with the help of the IOBR package. 
We then used the extracted single-cell gene set to perform ssGSEA 
(single-sample gene set enrichment analysis) scoring for each 
TCGA sample. After that, we use the tme-cluster function for 
clustering, and the method is set as “ward.D2”. In order to obtain 
the best clustering effect, we set the minimum number of clusters to 
2 and the maximum to 10. We use the function sig_heatmap 
for visualization. 
2.13 Survival analysis 

Clinical survival information for TCGA-STAD was obtained 
from the UCSC Xena database. To assess the correlation between 
immune cells and patient survival, gene set expression values were 
extracted from the single-cell dataset, and the top 30 genes were 
used to calculate immune cell scores. The optimal cut-off values for 
immune cell score levels, based on ssGSEA scores, were determined 
Frontiers in Immunology 04
using the Surv_cutpoint function from the R survminer package 
with the Kaplan-Meier method. Patients were then divided into 
high and low infiltration groups, and Kaplan–Meier survival curves 
were fitted and visualized using the survfit and ggsurvplot functions 
to assess the impact of infiltration levels on survival outcomes. 
2.14 Development of nomogram for ICB 
response 

In the bulk ICB treatment cohort, the cell abundance score from 
ssGSEA were incorporated into the analyses for the response of ICB 
treatment. The relationship between immune cell infiltration and 
treatment response was assessed using the lrm fitting function, with 
variables having P < 0.05 selected for subsequent analyses. 
2.15 TF target network prediction 

The input data consisted of immune cell Seurat objects, and TF-
gene relationships were extracted using the the get_collectri 
function. TF enrichment scores were inferred using the run_ulm 
function (21). 
2.16 Drug prediction 

To predict relevant drugs targeting specific cells, the drug2cell 
module was implemented using single-cell data in the Python 
environment (22). Input data was the public gastric cancer 
dataset, and the celltype label are observations to calculate 
potential drugs. 
2.17 Immunofluorescence 

Multiple immunofluorescence experiments were performed 
according to the manufacturer’s instructions using a Quadruple 
Fluorescence IHC Mouse/Rabbit Kit (Immunoway, RS0037). Paraffin-
embedded patient tissues were sectioned at a thickness of 4 mm, 
dewaxed, and subjected to antigen retrieval in EDTA buffer (pH 8.0) 
for 15 minutes using a microwave oven. All sections were subjected to 
four rounds of staining. The primary antibodies used were as follows: 
anti-CD8A (1:200, CST); anti-CD206 (1:200, Proteintech); anti-SPP1 
(1:200, Proteintech); anti-C1QBP (1:200, Proteintech); anti-PD1 (1:200, 
Proteintech); anti-TIM3 (1:200, Proteintech); and anti-MIF (1:200, 
Proteintech). Finally, images were captured using a fluorescence 
microscope and a confocal laser microscope (Nikon). Fluorescence 
intensity was quantified using ImageJ software. 
2.18 Statistical analyses 

Comparisons between two groups were made using Student’s t-
test, whereas one-way ANOVA was applied for comparisons 
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involving more than two groups. Survival rates were assessed using 
the Kaplan–Meier method. Statistical significance was set at 
P < 0.05. 
3 Results 

3.1 Single-cell transcriptomics reveal the 
heterogeneity of immune cells in gastric 
cancer 

To thoroughly investigate the heterogeneity of the immune 
microenvironment in gastric cancer, we integrated multiple datasets 
for comprehensive analysis (Figure 1A). First, for the gastric cancer 
samples in the GSE183904 dataset, we identified three major 
immune cell types: NK/T cells, myeloid cells, and B cells 
(Supplementary Figures S1A, B). By referring to cell markers 
reported in the literature, we further classified these cell types 
into multiple subpopulations (Figures 1B, C) and displayed the 
proportions of each subpopulation using pie charts (Figure 1D). 
Among T cells, we identified 10 subpopulations (Figures 1B, C), 
including NK cells, CD4+T cells (Treg, CCR6_Th17, and 
ADSL_Tn)  (23),  and  CD8+T cells  (naive  CD8+T  cells  
[CD8_Tnaive], tissue-resident memory CD8+T cells [CD8_Trm], 
terminally differentiated memory CD8+T cells [Temra], effector 
CD8+T cells [CD8_Teff], and two exhausted subpopulations 
[CD8_Tex_C1 and CD8_Tex_C2]). B cells were divided into five 
groups (Figures 1B, C): naive B cells (Bnaive), stress-related B cells 
(B_Stress), two types of plasma cells (PC and PC_C02), and 
regulatory B cells (Breg). Notably, B_Stress cells highly expressed 
stress-related genes such as NR4A2 and EGR, while Bregs exhibited 
high expression of immune checkpoint molecules. Myeloid cell 
subpopulat ions  included  Mono_FCN1,  Macro_C1QC,  
Macro_SPP1, Macro_INHBA, and cDC2 (Figures 1B, C). 

Next, using ssGSEA analysis, we summarized the functional 
characteristics of each immune subpopulation (Figure 1E), with 
most results consistent with previous literature, thereby validating 
the reliability of our clustering. Specifically, among T cells, 
CD8_Tex_C1, CD4_Treg, and CD8_Tex_C2 exhibited high 
exhaustion scores and the lowest levels of cytotoxicity and 
activation; in contrast, CD8_Teff cells showed the strongest 
adhesion capacity. In B cells, Bnaive cells demonstrated the 
highest proliferation and HLA antigen-presenting ability, while 
B_Stress, PC, and Breg cells exhibited high stress scores, 
suggesting their potential involvement in complex stress 
responses within the gastric cancer immune microenvironment. 
Among myeloid cells, Macro_C1QC and Macro_SPP1 displayed 
strong M2 macrophage features and expressed numerous immune 
checkpoint molecules, indicative of immunosuppressive properties. 
Interestingly, these two cell types also exhibited robust 
phagocytic functions. 

In the Nanfang Hospital gastric cancer immunotherapy cohort 
(NFHGC cohort), we further identified multiple functional 
subpopulations of NK/T cells, B cells, and myeloid cells 
(Figure 1F) and found that their immune phenotypes and 
Frontiers in Immunology 05 
functional characteristics were highly consistent with those in the 
GSE183904 dataset, presenting similar patterns (Supplementary 
Figures S1C, D, H; S1E–G). 
3.2 Immune cell subpopulations associated 
with the efficacy of immune therapy in 
gastric cancer 

To investigate the association between immune cell 
subpopulations and the efficacy of immune therapy in gastric 
cancer, we conducted deconvolution-based cell enrichment scoring 
in the bulk-transcriptome cohort receiving immune therapy (KIM 
cohort). The analysis revealed significant enrichment of ADSL_Tn, 
CD8_Trm, cDC2, Mono_FCN1, and Temra cell subpopulations in 
the immune therapy responder group (R). In contrast, in the non-
responder group (NR), immune-suppressive subpopulations such as 
B_Stress, Bregs, CD4_Treg, CD8_Tex_C1, CD8_Tex_C2, 
Macro_C1QC, and Macro_SPP1 were more abundant (Figure 2A). 
Consistent results were also noted in the melanoma cohort 
(Supplementary Figure S2A). Additionally, in the NFHGC single-
cell cohort, the proportions of CD8_Tex_C1, CD8_Tex_C2, B_Stress, 
and Macro_C1QC subpopulations were higher in patients from the 
NR group, especially in those with PD-L1 expression (Figure 2B). 

To further elucidate the prognostic value of these cell 
subpopulations in gastric cancer survival, we conducted survival 
analyses in the TCGA-STAD cohort. The results indicated that high 
enrichment of CD8_Tex_C1, CD8_Tex_C2, Macro_C1QC, 
Macro_SPP1, NK, CD4_Treg, and B_Stress subpopulations— 
which were more abundant in the NR group—was associated 
with poor prognosis (Figure 2C). In contrast, enrichment of 
CD8_Tnaive, CD8_Teff, and cDC2 cells was associated with 
better prognosis (Figure 2D). 

In summary, we identified two distinct groups of immune cell 
subpopulations in the gastric cancer immune microenvironment 
that are associated with opposite outcomes in immune therapy 
response and clinical prognosis. Enrichment of CD8_Tex_C1, 
CD8_Tex_C2, Macro_C1QC, Macro_SPP1, NK, CD4_Treg, and 
B_Stress cells is associated with immune resistance and represents a 
‘pro-tumor’ faction. In contrast, enrichment of CD8_Tnaive, 
CD8_Teff, and cDC2 cells is indicative of better treatment 
response and constitutes an ‘anti-tumor’ faction. The dynamic 
changes of these two groups of cells can serve as potential 
predictive biomarkers for the efficacy and prognosis of 
immune therapy. 
3.3 Hierarchical interactions of immune 
cells in gastric cancer 

Immune cells do not exist in isolation but form complex 
networks through interactions to regulate immune responses. 
Analysis of cell communication revealed intricate signaling 
interactions between immune cells of different clusters, with 
cellular crosstalk potentially driving both anti-tumor and pro-
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tumor effects simultaneously. Based on the upstream-downstream 
relationships in the communication strength matrix and immune 
cell functions, we defined three functional modules: pro-tumor 
(M1), anti-tumor (M2), and anti-promoting interaction (M3) 
modules (Supplementary Figures S2A–C). 
Frontiers in Immunology 06
To further elucidate the interaction network and hierarchical 
structure of  immune cells, we used the  igraphM function in

Mathematica, extracting communication strengths from 
CellChat as an adjacency matrix to construct a directed cellular 
network (24). Within the defined M1 to M3 modules, we selected 
FIGURE 1 

Identification of immune cells in gastric cancer. (A) Schematic overview of the study design. (B) UMAP visualization of subclusters of NK/T cells, B cells, 
and myeloid cells from the GSE183904 dataset. (C) Heatmap highlighting gene markers of immune cell subclusters. (D) Donut chart depicting the 
proportions of immune cell subclusters. (E) Violin plots displaying signature scores of immune cell functions. (F) UMAP visualization of subclusters of NK/ 
T cells, B cells, and myeloid cells from the Nanfang Hospital Gastric Cancer Immunotherapy Cohort (NFHGC Cohort, n=8 patients). 
 frontiersin.org 

https://doi.org/10.3389/fimmu.2025.1618591
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ma et al. 10.3389/fimmu.2025.1618591 
FIGURE 2 

Association of immune cells with patient clinical outcomes. (A) Box plots showing differences in immune cell deconvolution scores between 
immunotherapy responders (R) and non-responders (NR) in the KIM cohort. Asterisks (*) indicate statistical significance (P < 0.05), whereas “ns” 
denotes non-significance. (B) The bar chart illustrates differences in immune cell proportions among patients with distinct immunotherapy 
outcomes (PD, SD, PR) in the NFHGC Cohort. (C, D) Survival analysis in TCGA-STAD based on immune cell marker gene deconvolution scores. 
Patients were stratified into high- and low-score groups for survival analysis. (C) Immune cell types associated with poor prognosis. (D) Immune cell 
types associated with favorable prognosis. (A) P value < 0.05 was considered statistically significant. **P < 0.01, ***P < 0.001, and ****P < 0.0001. 
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the cells with the strongest signaling output as root nodes 
(Figures 3A–C). In the anti-tumor M2 module, cDC2 was 
positioned at the most upstream level, capable of activating 
Macro_INHBA, Mono_FCN1, and various T cells, while 
CD8_Teff and Trm were downstream recipients of regulatory 
signals (Figure 3B). This process aligns with the immune cycle 
of DC activation of T cells exerting anti-tumor effects. In the 
pro-tumor M1 module, SPP1/C1QC+ macrophages were at the 
top, primarily mediating varying degrees of CD8+T cell

exhaustion, highlighting the central role of macrophage-T cell 
interactions in immune dysfunction (Figure 3A). In the 
anti-promoting interaction M3 module, cDC2 was again at the 
most upstream level, interacting with CD8_Tex_C1 cells and 
SPP1/C1QC+macrophages. This is associated with excessive 
antigen presentation and stimulation-mediated functional 
exhaustion, further revealing the mutual “Tug-of-War” between 
anti-tumor and pro-tumor immune functions (Figure 3C). 

To further clarify the cellular relationships in the pro-tumor 
(M1) module contributing to immune therapy resistance, we 
identified the most common immune dysfunction interaction 
motifs, finding that motifs composed of three cells were dominant 
(Supplementary Figures S2E, F). By quantifying the strength of 
these motifs, we found that Macro_SPP1 and Macro_C1QC, as 
upstream cells in immune dysfunction, directly transmitted 
regulatory signals to Treg, CD8_Tex_C1, and CD8_Tex_C2. 
CD8_Tex_C2, as the most downstream and terminally exhausted 
cell, was also regulated by Treg and CD8_Tex_C1 (Figure 3D). 

Subsequently, we used the TimiGP (25) algorithm to quantify 
the “favorability score” (FS) of key cells in immune therapy 
(Figure 3E). The results showed that CD8_Tex_C1, CD8_Tex_C2, 
Bregs, B_stress, Macro_C1QC, and Macro_SPP1 had negative FS 
values, indicating that these cells might have detrimental effects on 
immune therapy. Further analyses using nomograms in the KIM 
cohort (Figure 3F) and the melanoma cohort (Supplementary 
Figure S2G) confirmed the significant role of the “Macro_SPP1-

Macro_C1QC-CD8_Tex_C1” triad in immune resistance. 
3.4 Spatial localization features of anti-
tumor M2 and pro-tumor M1 module cells 

To further investigate the spatial localization characteristics of 
anti-tumor M2 and pro-tumor M1 module cells, we selected three 
gastric cancer spatial transcriptome sections (GC1, GC2, and GC3) 
from the public dataset GSE251950 (26) (Figures 4A–C). Through 
unbiased clustering and spot feature analysis, the sections were 
divided into tumor cell areas, normal epithelial areas, stromal cell 
areas, and immune areas (Figures 4A–C), and the subpopulations of 
cells in each module were identified. The analysis revealed spatial 
heterogeneity of M1 and M2 module cells, with Macro_C1QC, 
Macro_SPP1, and CD8_Tex_C1 predominantly enriched in the 
stromal area, while CD8_Tex_C2 exhibited higher abundance in the 
tumor area. In contrast, cDC2, Trm, and Teff cells in the M2 
module did not show distinct spatial distribution patterns, which 
may be related to their tissue-resident characteristics. 
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Beyond immune cell communication, tumor epithelial cells and 
fibroblasts are also crucial in interacting with immune cells. To 
further investigate the spatial interactions between M1 module 
immune dysfunction cells and other microenvironmental cells, we 
identified six epithelial cell subpopulations (27, 28) (Epi01-06, 
Supplementary Figures S4A, C, S7A–D) and six stromal cell 
subpopulations (apCAFs, ecmCAFs, mCAFs, MKI67_CAFs, 
PI16_CAFs, vCAFs, Supplementary Figures S4B, D, S7A–D) in

the GSE183904 and NFHGC single-cell cohorts. In addition, we 
analyzed the expression differences of the THY1 gene across various 
cell subpopulations in the GSE183904 dataset and the NFHGC 
cohort. Interestingly, THY1, traditionally recognized as a pan-T cell 
marker in mice and reported in the literature to encode CD90 and 
be expressed in fibroblasts (29–31), showed a distinct cell-type-
specific expression pattern in both the GSE183904 and NFHGC 
datasets—being enriched in fibroblasts and cancer-associated 
fibroblasts (CAFs), but minimally expressed in T cell clusters 
(Supplementary Figures S7E, F). This context-dependent 
distribution suggests a stromal-associated role for THY1 within 
the tumor microenvironment. Subsequently, we extracted the top 
30 feature genes of these cells and used MISTy (32) (Multiview 
Intercellular Spatial modeling framework) to analyze the spatial 
proximity between immune, stromal, and epithelial cells 
(Figures 4D, F, H). The results showed high spatial proximity 
between Epi02 and Epi04 with CD8_Tex_C2, as well as 
significant spatial adjacency between Macro_SPP1, Macro_C1QC, 
CD8_Tex_C1, and mCAFs (Supplementary Figures S4H–J). 
Further cell community network analysis yielded similar findings 
(Figures 3E, G, I). 

Additionally, single-cell communication analysis (Supplementary 
Figure S4E) revealed that the communication between mCAFs and 
Macro_SPP1, Macro_C1QC, CD8_Tex_C1, as well as between 
Epi_C04 and CD8_Tex_C2, was the most intense. Moreover, these 
communications were significantly upregulated in patients with poor 
immune therapy response (NR) (Supplementary Figures S4F, G). 

In summary, we propose a stromal-localized immunosuppressive 
network coordinated by Macro_SPP1/C1QC macrophages and 
CD8_Tex_C1 exhausted T cells. This network forms a peripheral 
barrier that impedes antitumor immunity, primarily distributed 
outside the tumor core and infiltrating the stromal area dominated 
by mCAFs. Within the tumor core, which is mainly composed of 
Epi_C02 and Epi_C04 cells, CD8+ T cells are present. These CD8+ T 
cells likely migrate from the peripheral stromal area, where they are 
influenced by signals from Macro_SPP1/C1QC macrophages, leading 
to the attenuation of their antitumor functions. Upon entering the 
tumor core, antigens from Epi_C02 and Epi_C04 cells may further 
induce the transition of CD8_Tex_C1 cells to a terminally exhausted 
CD8_Tex_C2 state. 
3.5 MIF signaling plays a critical regulatory 
role in the immunosuppressive network 

To elucidate the specific molecular mechanisms of cell-cell 
interactions within the immune interacting network, we first 
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FIGURE 3 

Network analysis of immune cell communication hierarchies. (A–C) Hierarchical network structures based on ligand-receptor communication 
strength among immune cells. The root node was defined as the node with the highest weighted outdegree. (A) Hierarchical structure of pro-
tumoral immune cell modules. (B) Hierarchical structure of anti-tumoral immune cell modules. (C) Hierarchical structure of coordinated immune 
cell modules. Module classification was determined based on immune cell function and their impact on clinical outcomes. (D) The top four scoring 
three-cell motif subgraphs. Arrow thickness indicates the strength of cell communication, and the total score represents the sum of communication 
strength scores within the three-cell motifs. (E) Bar plot displaying Favorability Scores of cell subtypes for ICIs treatment response in the KIM cohort. 
Higher Favorability Scores indicate better immunotherapy response. (F) Nomogram illustrating the predictive ability of immune cells for 
immunotherapy response in the KIM cohort. Higher Predicted Values indicate better immunotherapy response. 
Frontiers in Immunology 09 frontiersin.org 

https://doi.org/10.3389/fimmu.2025.1618591
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ma et al. 10.3389/fimmu.2025.1618591 
FIGURE 4 

Spatial transcriptomics reveal a stromal immunosuppressive barrier. (A–C) Spatial architecture and relationships in three spatial transcriptomic 
sections (GC1, GC2, and GC3) from the dataset GSE251950. (D) Abundance of immune cells, epithelial cells, and CAFs based on signature scores in 
the spatial data of GC1. (E) Spatial cell network community plot of the GC1 section. For example, the green cluster represents continuous 
interactions among CD8_Tex_C2, Epi_C04, and Epi_C02. (F) Abundance of immune cells, epithelial cells, and CAFs based on signature scores in the 
spatial data of GC2. (G) Spatial cell network community plot of the GC2 section. (H) Abundance of immune cells, epithelial cells, and CAFs based on 
signature scores in the spatial data of GC3. (I) Spatial cell network community plot of the GC3 section. 
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identified the major ligand-receptor communications in the 
GSE183904 cohort (Figures 5A–C). Subsequently, we compared 
the ligand-receptor communications between immune therapy 
responders (R) and non-responders (NR) in the NFHGC cohort 
(Figures 5D–F). The results showed that in the NR group, signaling 
from Macro_SPP1 to CD8_Tex_C1-including MIF-CD74/CXCR4/ 
CD44, LGALS9-CD45, HLA-CD8, and CXCL16-CXCR6-was 
significantly enhanced. In contrast, the signal intensity changes 
between the two types of macrophages (Macro_SPP1 and 
Macro_C1QC) were not significant. Additionally, autocrine 
MIF and CD99 in CD8_Tex_C1 were significantly upregulated in 
the NR group. Further analysis revealed that, within the tumor, the 
LGALS9-CD44 signaling pathway from Macro_SPP1 macrophages 
to CD8_Tex_C2 T cells was upregulated in the non-responder (NR) 
group. Thus, within the immune interaction network, MIF, 
LGALS9, and CXCL16 signaling pathways appear to be the 
primary drivers promoting the functional decline of CD8_Tex_C1 
cells. Furthermore, the transition of CD8_Tex_C1 cells to the 
CD8_Tex_C2 state, mediated by MIF and LGALS9 signaling, 
could  potential ly  faci l i tate  the  emergence  of  immune  
resistance. (Figure 5G). 

To elucidate the molecular mechanisms underlying the transition 
from CD8_Tex_C1 to CD8_Tex_C2, as well as the differences 
between these two cell populations, we conducted cell trajectory 
analysis. (Supplementary Figure S5A). The results indicated that both 
CD8_Tex_C1 and CD8_Tex_C2 originate from CD8_Tnaive, with a 
high degree of overlap in their differentiation trajectories. 
CD8_Tex_C2 tends to progress towards a terminal exhaustion 
state, consistent with the evolutionary trajectory of T cell 
exhaustion reported in the literature (33) (Supplementary Figure 
S5E). Subsequently, we comprehensively compared the differences in 
upstream transcription factors, immune checkpoint molecule 
expression, and KEGG pathway enrichment between the two cell 
populations (Supplementary Figures S5B, C, Supplementary Table 
S4). The transcription factors associated with CD8_Tex_C1 include 
TEAD1, KLF13, IRF6, NFKBIB, and RUNX1, while CD8_Tex_C2 is 
primarily regulated by E2F4, E2F1, and TFDP1. Regarding immune 
checkpoint molecules, CD8_Tex_C1 mainly expresses VSIR, 
TNFRSF9, and PDCD1, whereas CD8_Tex_C2 predominantly 
expresses TNFSF14, ICOS, and CTLA4. Functional pathway 
analysis showed that CD8_Tex_C1 is enriched in apoptosis and 
TNF signaling pathways, while CD8_Tex_C2 is enriched in multiple 
metabolism-related pathways, including glycolysis (Supplementary 
Table S5). These differences provide potential targets for precisely 
targeting different types of CD8+T cell exhaustion. 

To verify the existence of a stromal-localized immunosuppressive 
network coordinated by Macro_SPP1/C1QC macrophages and 
CD8_Tex_C1 exhausted T cells in gastric cancer tissues, and to 
investigate the correlation between MIF expression and 
immunotherapy efficacy, we performed tissue immunofluorescence 
staining on gastric cancer biopsy specimens. In the tumor periphery of 
PD patients undergoing gastric cancer immunotherapy, higher 
expression levels of PD-1, SPP1, and C1Q were observed, while the 
abundance of CD8+ T cells showed no significant differences. This 
suggests that CD8+ T cells in the tumor periphery of PD patients 
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predominantly exhibit an exhausted phenotype (Figures 6A, B). 
Additionally, CD206, a marker for M2-type macrophages, was also 
found to be highly expressed in PD patients (Figures 6C, D). Compared 
to PR patients, we further identified higher expression of the MIF 
molecule in PD patients, along with elevated levels of immune 
checkpoint molecules (PD-1 and TIM3) (Figures 6E, F). 
3.6 Gastric cancer immune subtyping and 
precision therapy strategies exploring 

To explore the clinical significance and targeted therapeutic 
strategies of the immunosuppressive barrier, we evaluated the 
abundance of barrier-associated immune cells and their 
surrounding epithelial and stromal cells in the TCGA and ACRG 
gastric cancer transcriptome cohorts. We then performed 
unsupervised clustering to subtype patients based on immune 
profiles (Figure 7A; Supplementary Figure S7A, Supplementary 
Tables S6, 7). The results demonstrated that the gastric cancer 
microenvironment could be categorized into four distinct immune 
interaction patterns through analysis of the TCGA-STAD cohort: 
the “Immune Barrier Dominant” type (TME 1), the “Immune 
Barrier with CD8+ T Cell Exhaustion” type (TME 2), the “CD8+ 

T Cell Exhaustion Dominant” type (TME 4), and the “Immune 
Desert” type (TME 3). In the “Immunosuppressive Barrier 
Dominant” type, the microenvironment is primarily characterized 
by the existence of an immunosuppressive barrier, with limited 
CD8+ T cell  infiltration. In contrast, the “Immunosuppressive 
Barrier with CD8+ T Cell Exhaustion” type features the presence 
of an immunosuppressive barrier along with some degree of CD8+ 

T cell Exhaustion. 
Survival  analysis  revealed  that  patients  with  the  “ 

Immunosuppressive Barrier with CD8+ T Cell Exhaustion “ and 
“Immunosuppressive Barrier Dominant” types had the worst 
prognosis, while those with the”CD8+ T Cell Exhaustion 
Dominant” had the best prognosis (Figure 7B; Supplementary 
Figure S6B). Further analysis of the TMEscore—a gastric cancer 
immune efficacy prediction score developed by our team—showed 
that patients with the “ CD8+ T Cell Exhaustion Dominant “ type 
had higher TMEscores, indicating better immune therapy 
responses, whereas those with the “Immunosuppressive Barrier 
with CD8+ T Cell Exhaustion “ had the lowest TMEscores, 
suggesting immune resistance (Figure 7C; Supplementary Figure 
S6C). In the TCGA dataset, clinical feature (34, 35) analysis showed 
that patients with genomically stable (GS) gastric cancer had the 
highest proportion of the “Immunosuppressive Barrier with CD8+ 

T Cell Exhaustion” type and were associated with poorer prognosis 
(Figures 7D, E). These results indicate that different stages or 
molecular  subtypes  of  gastric  cancer  exhibit  distinct  
“Immunosuppressive Barrier with CD8+ T Cell Exhaustion” 
subtypes in the tumor microenvironment, corresponding to 
differential therapeutic efficacy and survival outcomes. 

Given the immunosuppressive barrier - associated characteristics 
of gastric cancer, the development of personalized immune 
combination therapy strategies is of vital importance. CD8_Tex_C1 
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RE 5 FIGU

Identification of immune cell communication signals mediating ICIs non-response. (A–C) Ligand-receptor pair dot plots among immune cells in the 
GSE183904 dataset. The arrow (−>) indicates the direction of signaling from a sender cell subcluster to a receiver. (D–F) Ligand-receptor pair dot 
plots among immune cells in the NFHGC cohort. The arrow (−>) indicates the direction of signaling from a sender cell subcluster to a receiver. R 
denotes immunotherapy responders, and NR denotes non-responders. P < 0.05 indicates statistical significance. (G) Schematic illustration of 
communication mechanisms among immune cells in the immunosuppressive barrier. The barrier comprises Macrophage_SPP1, Macrophage_C1QC, 
and CD8_TEX_C1, while CD8_Tex_C2 is derived from CD8_Tex_C1 during infiltration into the tumor core, undergoing functional exhaustion and 
numerical decline. On the barrier, Macrophage_SPP1 and Macrophage_C1QC cells signal to CD8 cells via MIF, LGALS9 and CXCL16, mediating ICIs 
non-response in gastric cancer. 
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cells mainly express PD - 1 as the immune checkpoint molecule, 
whereas CD8_Tex_C2 is distinguished by CTLA - 4 expression 
(Supplementary Figure S5C). To further explore this, we utilized 
the Drug2cell tool to classify the gastric cancer microenvironment 
into two groups based on the presence or absence of an 
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immunosuppressive barrier. The barrier - associated group was 
marked by the presence of Macro_SPP1, Macro_C1QC, 
CD8_Tex_C1, and mCAFs cells. In contrast, the non - barrier 
group was characterized by CD8_Tex_C2, Epi_C02, and Epi_C04 
cells. Subsequently, we predicted potential therapeutic drugs 
FIGURE 6 

Multiplex immunofluorescence staining reveals an immune barrier structure in the tumor periphery of PD gastric cancer patients. (A) Multiplex 
immunofluorescence staining indicates that in the tumor periphery of PD gastric cancer patients, there is higher expression of PD1, SPP1, and C1Q. 
(B) Quantitative analysis of fluorescence intensity for CD8, PD1, SPP1, and C1Q. Asterisks (*) indicate statistical significance, whereas “ns” denotes 
non-significance. (C) In the tumor periphery of PD gastric cancer patients, higher expression levels of SPP1, C1Q, and MIF are observed. 
(D) Quantitative analysis of fluorescence intensity for CD206, C1Q, SPP1, and MIF. Asterisks (*) indicate statistical significance, whereas “ns” denotes 
non-significance. (E) Tumor tissues from PD gastric cancer patients exhibit higher expression of immune checkpoint molecules PD1 and TIM3, as 
well as elevated expression of MIF. (F) Quantitative analysis of fluorescence intensity for CD208, PD1, TIM3, and MIF. Asterisks (*) indicate statistical 
significance, whereas “ns” denotes non-significance. **P < 0.01, and ***P < 0.001. 
frontiersin.org 

https://doi.org/10.3389/fimmu.2025.1618591
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ma et al. 10.3389/fimmu.2025.1618591 
FIGURE 7 

Gastric cancer patient subtyping based on barrier-associated features. (A) In TCGA-STAD, gastric cancer patients were subtyped into four tumor 
immune microenvironment (TME) clusters based on barrier-associated features. TME1 represents the “Immune Barrier Dominant” type; TME2, the 
“Immune Barrier with CD8+ T Cell Exhaustion” type; TME3, the “Immune Desert” type; and TME4, the “CD8+ T Cell Exhaustion Dominant” type. 
(B) Kaplan-Meier survival curves for the four TME subtypes. Asterisks (*) indicate statistical significance (P < 0.05), whereas “ns” denotes non-
significance. Only TME1 and TME4 subtypes showed statistical significance in this analysis. (C) Box plots showing TMEScores for patients with 
different barrier-associated types. Higher TMEScores indicate a more favorable immune microenvironment and potential responsiveness to ICIs. 
(D, E) Bar charts displaying the distribution of the four barrier-associated types across different clinical stages and TCGA molecular subtypes. 
(F) Bubble plot summarizing potential targeted therapies for barrier-associated types cell types, predicted using the drug2cell tool. The Non-Barrier 
subtype involves cells such as CD8_Tex_C2, Epi_C04, and Epi_C02; the With-Barrier subtype involves cells including Macro_SPP1, Macro_C1QC, 
mCAF, and CD8_Tex_C2. A higher Mean expression in group indicates that the expression of genes in the cell marker genes that match these drug 
target genes is higher. A larger Fraction of cells in group suggests that the proportion of cell types targeted by a specific drug is greater. **P < 0.01, 
and ****P < 0.0001. 
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associated with the barrier-related subtypes (Figure 7F), which 
included agents in the anti-tumor (e.g., Catumaxomab, 
Carfilzomib), antiviral (e.g., Ritonavir, Ibalizumab), and immune-

modulating (e.g., Abatacept, Belatacept) categories. Among these 
predicted drugs, some may have the potential to target both the 
Non-Barrier and With-Barrier subtypes, such as Ataluren. However, 
these drug predictions were made using the drug2cell tool, which 
matches cell gene signatures with drug target genes. The actual 
efficacy of these drugs requires further validation through in vitro 
and in vivo experiments. 
4 Discussion 

The tumor immune microenvironment (TIME), comprising 
diverse immune cells, has intricate interactions that significantly 
impact the progression and immune resistance of gastric cancer (36). 
(GC). In this study, we integrated single-cell sequencing, spatial 
transcriptomics, and bulk RNA sequencing data to conduct a 
comprehensive analysis of 20 immune cell subtypes.  These subtypes  
were classified into three functional modules: anti-tumor (M1), 
pro-tumor (M2), and anti-promoting interaction (M3). Further 
analysis suggested the presence of an immunosuppressive barrier in 
gastric cancer, which may contribute to immune dysfunction. This 
barrier appears to involve interactions among Macro_SPP1, 
Macro_C1QC, and CD8_Tex_C1 cells within the stromal area. 

Based on single-cell sequencing, this study elucidated the 
dynamic interactions of immune cells in the gastric cancer TIME. 
In the T/NK cell compartment, CD8_Tex_C1/C2 cells were 
enriched in patients with progressive disease (PD) and were 
associated with poor prognosis (33). In contrast, CD8_Teff cells 
maintained anti-tumor activity by secreting IFN-g and TNF-a, 
showing a positive correlation with immune therapy response (37, 
38). In the B cell compartment, B_Stress cells mediated immune 
evasion through the NR4A family and heat shock proteins, while 
Bregs shaped an immunosuppressive microenvironment via TGF-b 
(39). Among myeloid cells, Macro_C1QC and Macro_SPP1 (with 
M2-like features) dominated immune dysfunction and were closely 
related to T cell exhaustion and poor prognosis (40). 

Analysis of the immune cell interaction network showed that 
the anti-tumor module (M1) was driven by cDC2 cells for antigen 
presentation, while the pro-tumor module (M2) consisted of a core 
motif formed by Macro_SPP1, Macro_C1QC, and CD8_Tex_C1 
cells, which dominated immune dysfunction and were regulated by 
the interaction module (M3). This network structure recapitulated 
the tumor immune cycle of “antigen presentation-effector killing-
terminal exhaustion” and revealed that TAMs-T cell interactions 
may be a key node in immune resistance, providing a new direction 
for TIME remodeling (41–43). 

The Macro_C1QC and Macro_SPP1 cell subpopulations 
exhibited significant functional heterogeneity and collaboratively 
shaped an immunosuppressive microenvironment. Previous studies 
have shown that Macro_C1QC inhibits CD8+ T cell function 
through C1q complement signaling and lipid metabolism 
reprogramming mediated by FABP5  (44), while Macro_SPP1 
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exacerbates T cell exhaustion and promotes tumor metastasis via 
SPP1-CD44, hypoxia-HIF-1a axis, and MIF signaling (45, 46). 
Additionally, THBS2+ CAFs (Thrombospondin-2+ CAFs) can 
promote the conversion of Macro_C1QC to Macro_SPP1 through 
the C3/C3AR1 axis, indicating dynamic transformation potential 
between the two and shared dysregulation of cholesterol 
metabolism (Ch25h/25HC pathway) (47). This study further 
revealed that both Macro_C1QC and Macro_SPP1 highly 
expressed APOE and mediated immune therapy resistance 
through MIF-CD74/CXCR4 signaling. Moreover, similar to the 
TIB structure in liver cancer (46), these two subpopulations were 
found to form an immunosuppressive barrier in conjunction with 
cancer-associated fibroblasts (CAFs). This barrier not only 
physically impedes the infiltration of CD8+ T cells into the tumor, 
but also intensifies their exhaustion via immunosuppressive 
signaling. Consequently, this dual mechanism enhances tumor 
immune evasion and contributes to the development of resistance 
to immunotherapy in gastric cancer. 

In addition, our study identified the differentiation trajectories 
of the CD8_Tex_C1/C2 subpopulations and their potential for 
immunotherapy. CD8_Tex_C1 cells partially retained cytotoxicity 
(GZMB/GZMK) and simultaneously expressed exhaustion-related 
genes such as PDCD1, acting as precursors to exhaustion (48). In 
contrast, CD8_Tex_C2 cells exhibited terminal exhaustion features, 
with attenuated effector functions and high expression of immune 
checkpoints. These two subpopulations were mediated by distinct 
transcriptional regulatory networks (Tex_C1: TEAD1/KLF13; 
Tex_C2: E2F family), and their spatial distribution showed an 
evolutionary trend from the tumor periphery stroma (Tex_C1) to 
the tumor core (Tex_C2), revealing the coupling between 
exhaustion and T cell migration (49). Based on these findings, we 
speculate that the CD8_Tex_C2 cells within the tumor may 
originate from the migration and transformation of CD8_Tex_C1 
cells from the peripheral stroma, undergoing functional alterations 
in the process. Additionally, we found differences in the immune 
checkpoint profiles of the Tex_C1/C2 subpopulations (Tex_C1 
enriched for VSIR/TNFRSF9, Tex_C2 enriched for TNFSF14/ 
CTLA4), suggesting their specific exhaustion pathways and 
providing new strategies for targeting differentiation trajectories 
and reversing immune resistance. 

In terms of the specific molecular mechanisms, we observed 
that in patients who did not respond to immunotherapy (NR 
group), the signaling network axes within the barrier-associated 
immune cells, which include MIF-CD74/CXCR4/CD44, LGALS9-
CD45, HLA-CD8 and CXCL16-CXCR6, was significantly activated. 
Previous studies have shown that the MIF signaling axis shapes an 
immunosuppressive TIME through the ERK1/2, AMPK, and AKT 
pathways and enhances tumor tolerance to oxidative stress (50–52). 
MIF inhibitors (such as IPG1576) can reduce MDSC differentiation 
(53), while the LGALS9-CD45/SPP1-CD44 axis promotes 
Macro_C1QC infiltration and CD8+T cell exhaustion (45), and 
the CXCL16-CXCR6 axis drives T cell functional failure and gastric 
cancer metastasis (54). In the NFHGC cohort, HLA-CD8 signaling 
was upregulated in CD8_Tex_C1 cells within the NR group, and in 
CD8_Tex_C2 cells in both NR and R groups. This signaling axis 
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represents a fundamental component of MHC-I antigen 
presentation and CD8+ T cell recognition. However, the 
functional relevance of its upregulation remains unclear. Given 
the presence of concurrent immunosuppressive signals such as MIF 
and LGALS9, it is possible that this interaction reflects persistent 
antigen exposure or dysfunctional immune engagement, rather 
than effective cytotoxic activation. Therefore, targeting these 
signaling pathways, such as inhibiting MIF isomerase activity or 
blocking the CXCL16-CXCR6 axis, may enhance immunotherapy 
responses and optimize the clinical efficacy of PD-1/PD-L1 
combination therapies. 

Finally, leveraging the barrier-associated features, we 
categorized patients into four distinct groups: the “Immune 
Barrier Dominant” type (characterized by immunosuppression 
and poor prognosis), the “CD8+ T Cell Exhaustion Dominant” 
type (marked by better immune infiltration and potential sensitivity 
to immune checkpoint blockade [ICB]), the “Immune Barrier with 
CD8+ T Cell Exhaustion” type, and the “Immune Desert” type. This 
classification system offers an alternative approach that may help to 
overcome some of the spatial resolution limitations encountered 
with the previously developed TMEScore tool by our team (10). 
TCGA molecular subtype analysis indicated that patients with the 
GS subtype had a higher proportion of those exhibiting an 
immunosuppressive barrier, which may explain their poor 
prognosis (55, 56), while the MP subtype corresponded to the “ 
Immune Barrier Dominant” type and the EP subtype was consistent 
with the “ CD8+ T Cell Exhaustion Dominant” type, suggesting the 
potential for chemotherapy combined with immunotherapy (57). 
EBV+/MSI+ patients were enriched in the “CD8+ T Cell Exhaustion 
Dominant” type, indicating that EBV+ patients could consider 
combination with LAG3 inhibitors, and MSI+ patients are 
suitable for PD-1 monotherapy (58–60). Additionally, for 
different T cell exhaustion subpopulations (CD8_Tex_C1/C2), 
tailored PD-1/LAG3 or CTLA-4/OX40 targeting strategies are 
needed. Metformin (61–65), which regulates metabolism, reverses 
exhaustion, and reshapes macrophage polarization, shows potential 
for cross-subtype intervention of the both barrier-associated and 
non-barrier gastric patients. 

While th is s tudy  has uncovered  the ro le of the

immunosuppressive barrier in immune resistance in gastric cancer, 
further in vitro and in vivo experiments are necessary to facilitate 
clinical translation. Additionally, the dynamic evolution of the 
immune system under therapeutic pressure, particularly the state 
transitions and proportion changes of immune cells, was not fully 
elucidated in this study. In this study, we applied a stringent quality 
control workflow—including cell filtering, mitochondrial gene 
thresholding, and batch correction algorithms—to reduce technical 
variation and enable robust integration of samples across patients. 
Nonetheless, residual batch effects and gene dropout remain intrinsic 
limitations of current single-cell technologies (66, 67). Moreover, the 
limited sample size of spatial transcriptomics and the absence of 
matched single-cell sequencing data before and after immunotherapy 
constrained the in-depth exploration of the underlying mechanisms. 
Frontiers in Immunology 16 
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Our study has identified a potential stromal immunosuppressive 
barrier in gastric cancer, characterized by the presence of 
Macro_SPP1/C1QC macrophages and CD8_Tex_C1 T cells. This 
barrier may contribute to immune dysfunction and therapy 
resistance. Molecular subtyping based on the presence of this barrier 
could inform personalized immune therapy strategies. Additionally, 
we found that macrophage-derived MIF signaling appears to drive 
immunosuppression via the MIF-CD74/CXCR4/CD44 axis. 
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CAFs Cancer-Associated Fibroblast Cells 
CD8_Teff CD8+ Effector T Cells 
CD8_Tex CD8+ Exhausted T Cells 
CTLs Cytotoxic T Lymphocytes 
DCs Dendritic Cells 
FS Favorability Score 
GEO The Gene Expression Omnibus 
GS Genomically Stable 
ICI Immune Checkpoint Inhibitor 
IC Immune Checkpoint Blockade 
GC Gastric Cancer 
Macro_C1QC C1QC+ Macrophages 
Macro_SPP1 SPP1+Macrophages 
MIF Macrophage Migration Inhibitory Factor 
MDSCs Myeloid-Derived Suppressor Cells 
ogy 19 
Mono_FCN1 FCN1+ Monocytes 
NFHGC Cohort Nanfang Hospital Gastric Cancer Cohort 
NR Non-Responders 
OS Overall Survival 
ORR Objective Response Rate 
PC Plasma Cells 
R Responders 
STAD Stomach Adenocarcinoma 
ST Spatial Transcriptomics 
TIDE Tumor Immune Dysfunction and Exclusion 
TIME Tumor Immune Microenvironment 
TME Tumor Microenvironment 
TAMs Tumor-Associated Macrophages 
TaNK Tumor-Associated NK Cells 
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