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Introduction: Psoriasis is a chronic immune-mediated inflammatory skin disease 
with a significant global burden. Current risk assessment lacks integration of 
proteomic data with genetic and clinical factors. This study aimed to develop a 
plasma proteomics-based risk score (ProtRS) to improve psoriasis prediction. 

Methods: Using data from 53,065 UK Biobank (UKB) participants (1,122 psoriasis 
cases; 51,943 controls), we integrated 2,923 plasma proteins, polygenic risk 
score (PRS), and seven clinical risk factors. The Least Absolute Shrinkage and 
Selection Operator (LASSO) algorithm with 10-fold cross-validation identified 
stable proteins for ProtRS construction. Population Attributable Fractions (PAFs) 
for risk factors were calculated. 

Results: LASSO regression identified 26 highly stable proteins forming ProtRS­
26. ProtRS-26 significantly outperformed PRS and clinical risk factors alone. 
Combining ProtRS-26 with PRS and clinical factors further improved prediction. 
Key proteins were enriched in pro-inflammatory pathways and skin-derived. PAF 
analysis identified hypertension and obesity as major modifiable risk factors. 

Discussion: Plasma proteomics significantly enhances psoriasis risk prediction 
compared to genetic and clinical factors alone. ProtRS-26 provides a robust tool 
for early screening and personalized prevention. 
KEYWORDS 

psoriasis, plasma proteomics, LASSO, protein risk score model, population 
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Introduction 

Psoriasis is a chronic, painful, and disabling non-communicable 
disease mediated by the immune system that manifests as red 
papules and plaques, usually covered with white or silvery scales 
(1, 2). Patients may develop chronic inflammatory arthritis and are 
at increased risk for further cardiovascular and metabolic disease, 
which can reduce quality of life (3–5). The Global Burden of Disease 
Study (GBD) database has been established as one of the key 
research priorities for the global burden by the World Health 
Organization (WHO) after the publication of data for 2021 
showing a global prevalence of up to 42,983,446 (6). 

Proteins are direct performers of biological functions and are 
involved in key processes such as cell signaling, metabolic 
regulation, and immune responses (7). It has been shown that 
there is a close correlation between plasma proteins and the risk of a 
variety of diseases, and protein expression levels can reflect the 
pathological state of an organism in real time (8). The pathogenesis 
of psoriasis involves the interaction of genetic, immune and 
Frontiers in Immunology 02 
environmental factors, and there is a lack of reliable protein 
biomarkers to predict disease risk. 

Here, we explored the potential of plasma proteomics profiles in 
predicting the risk of psoriasis (Figure 1). We used 2,923 plasma 
protein measurements, PRS, and 7 clinical risk factors of 53,065 
participants from UKB as model features. Modeling the risk of 
individual outcomes was obtained for 26 proteins by incorporating 
the proteins into the least absolute shrinkage and selection operator 
(LASSO) regression model and repeating it 10 times to enhance 
stability. Finally, the predictive power of ProtRS was compared with 
clinical risk factors and PRS to broadly explore the proteomic 
landscape of psoriasis. 

Methods 

UK biobank 

UK Biobank (UKB) is a large-scale biomedical database and 
research platform designed to improve the prevention, diagnosis 
FIGURE 1 

The overall design of the current study. We developed the ProtRS-26 model to effectively predict the risk of psoriasis based on proteomics data 
from UKB using an advanced Lasso computational strategy. The data included protein expression profiles, PRS and seven clinical risk factors for 
53,065 participants. Ten repetitions of Lasso regression analysis were used to screen the characterized proteins to construct the ProtRS-26 model. 
The predictive effect of the model was finally assessed with AUC, functional enrichment of proteins, and PAF. 
frontiersin.org 

https://doi.org/10.3389/fimmu.2025.1618805
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wei et al. 10.3389/fimmu.2025.1618805 
and treatment of disease. Over 500,000 UK volunteers were 
collected, with data types including genetics, lifestyle, health 
records, imaging data and biological samples (9). All participants 
provided written consent and more detailed information is available 
at https://biobank.ndph.ox.ac.uk. The present research was 
approved by the UK Biobank Research and Access Committee, 
approved application number 89695. The primary outcome was the 
occurrence of psoriasis, defined based on International 
Classification of Diseases, Ninth and Tenth Revision, and self-
reported disease. The study covered a total of 53,065 participants, 
including 1,122 with psoriasis and 51,943 as control. 
Proteomics data 

Plasma-based proteomics data were obtained from a subset of 
UKB participants with 2,923 plasma proteins obtained by Olink 
proteomics assays, data processing and quality control (8). Average 
interpolation was used to supplement missing values in the 
proteomics data. 
Clinical risk factors 

By summarizing previous studies, we obtained seven clinical risk 
factors associated with psoriasis, including body mass index (BMI), 
drinking, hypertension, non-insulin dependent diabetes mellitus 
(NIDDM), smoking, total cholesterol, and triglycerides (10–16). All 
of this clinical risk information was obtained from UKB and also 
covered age and sex. BMI was obtained according to field code 21001; 
alcohol intake frequency according to field code 20117; tobacco 
smoking when collecting according to field code 1239; total 
cholesterol according to field code 23400; and triglycerides 
according to field code 30870 (Supplementary Table S1). 
Polygenic risk score 

Polygenic risk score (PRS) is a tool used to quantify an 
individual’s risk of developing a disease or expressing a trait based 
on genetic variation. PRS is widely used in the study and prediction of 
complex diseases by integrating small effects at multiple loci to 
comprehensively assess individual genetic risk. UKB has published 
and systematically assessed a standard PRS set of 28 diseases and 8 
quantitative traits, with a field code of 26269 for psoriasis. 
Protein risk score 

The LASSO regression model was used to reduce the number of 
features (17). The featured proteins included in the model were 
finalized by 10-fold cross-validation and selecting the minimum 
regulation parameter l for optimal model performance. Protein risk 
score (ProtRS) was calculated as: 
Frontiers in Immunology 03 
     
n 

ProtRS  =  Expi x coefio 
i = 1 

where Exp is the protein expression, coef is the coefficient, and n 
is the number of features. To identify proteins with a measure of 
psoriasis risk, we repeated the LASSO regression 10 times to 
increase model stability. This was achieved through the R 
package glmnet. 
Tissue type deconvolution 

Deconvolution of tissue types uses the single-sample Gene Set 
Enrichment Analysis (ssGSEA) method. The featured proteins in 
the 63 tissue types were obtained from the study by Erik 
Malmström et al (18). The correlation between protein expression 
levels and tissue type was used to represent the tissue origin of 
the protein. 
Assess model performance 

In this study, we utilized logistic regression models to assess the 
performance of ProtRS, PRS, and clinical risk factors, while age and 
sex were used as covariates for model comparison. To validate the 
models, 70% of the samples were randomly selected as the train set, 
and the remaining 30% of the samples were used as the test set. All 
models were evaluated by measuring discriminative ability through 
the area under curve (AUC), and efficacy was assessed by odd ratio 
(OR) and 95% confidence intervals (CI). The DeLong test is used to 
analyze performance differences between models and is 
implemented through the R package pROC. 
Population attributable fraction 

Population Attributable Fraction (PAF) is used to measure the 
proportion of a given population in which the burden of disease 
could be reduced if an exposure factor (e.g., a risk factor, behavioral, 
or environmental factor) were eliminated. The PAF is an important 
metric for assessing the potential for public health interventions in 
epidemiology (19). For binary risk factors, the proportion of the 
population exposed to the risk factor is calculated to determine the 
proportion exposed, and the ratio of disease risk for the exposed 
group to the non-exposed group is calculated to determine the 
relative risk. For continuous risk factors, the relationship between 
risk factor levels and disease risk was established to determine the 
relative risk function, and the overall contribution of risk factors to 
the burden of disease was calculated by integration. Although the 
PAF is a hypothetical structure, determining the relevance of 
specific risk factors to disease and targeting different risk factors 
for health interventions plays an important role in life health. The R 
package graphPAF provides support for calculating the PAF for 
clinical risk factors (20). 
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Statistical analysis 

All statistical analyses were performed using R software (version 
4.4.1) and plots were done with R package ggplot2. Hypothesis tests 
were 2-sided. 
Results 

Psoriasis study population 

This study used 53,065 participants from the available blood 
proteomics data of UKB, including 1,122 psoriasis patients and 
51,943 control participants. We selected seven clinical risk factors 
strongly associated with psoriasis from a list of selected clinical risk 
factors, including BMI, drinking, hypertension, NIDDM, smoking, 
Frontiers in Immunology 04
total cholesterol, and triglycerides. Baseline information on the data 
used was shown in Supplementary Table S1 and Supplementary 
Figure S1. 
Construction of protein risk score 

For the proteomic features of psoriasis, we screened using the 
machine learning algorithm LASSO regression, which yielded 185 
proteins (Figure 2A). Protein interaction analysis yielded 14 
proteins with more than 15 nodes (TP53, TNF, SDC1, POMC, 
IL7, IL22, IL17A, IL10RA, FGF2, FCGR2A, CXCL9, CXCL13, 
CSF3, and CD8A), which may have the potential to serve as a 
therapeutic target for psoriasis (Figure 2B). The clustering results 
suggested that CD8A, NPY, and TP53 may be interacting 
(Supplementary Figures S2A-C) and were associated with 
FIGURE 2 

Composition and predictive value of ProtRS-185. (A) Construction of Lasso based model to calculate the ProtRS-185. (B) Network map showing the 
interactions between the 185 proteins. (C, D) Violin plots showing the differences between ProtRS-185 in psoriasis and control participants in the 
train and test sets. ***P-value< 0.001. 
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chemokines (Supplementary Figure S2D). Furthermore, 60 of these 
proteins were mainly involved in cytokines related to pro-
inflammatory inflammation and interacted with high strength 
(Supplementary Figure S3). Functional enrichment analysis 
revealed that 185 proteins were significantly associated with the 
humoral immune response and the regulation of multiple cytokines 
(Supplementary Figure S4). As an immune-mediated inflammatory 
skin disease, psoriasis was regulated by cytokines and their 
receptors through a complex signaling network. ProtRS-185 was 
composed of a weighted sum of 185 proteins. In the training and 
test sets, ProtRS-185 was significantly different between control and 
psoriasis, with ProtRS-185 being higher in psoriasis (Figures 2C, D). 
In addition, we constructed predictive models based on clinical risk 
factors, PRS, and ProtRS-185 using logistic regression and validated 
them on the test set. ProtRS-185 (OR: 2.922 [2.676, 3.197]; OR: 
2.997 [2.661, 3.388]) was statistically significantly associated with 
psoriasis when the model included ProtRS-185 and age+sex/clinical 
risk factors (Supplementary Table S2). 
Assess the risk of psoriasis 

To ensure the robustness of ProtRS, we performed 10 
resampling LASSO regressions. The results revealed 104 proteins 
occurring 5 times and 26 proteins occurring 10 times (Figure 3A, 
Supplementary Tables S3, S4). The 26 proteins were significantly 
enriched for receptor-ligand interactions and neuropeptide­
associated functions (Figure 3B), as well as being dominated by 
the pro-inflammatory axis IL36G-IL22-IL19 (Supplementary Figure 
S5), with 20 proteins having significantly different expression levels 
in psoriatic and control samples (Supplementary Figure S6). Based 
on the results of tissue deconvolution of the psoriasis samples by 
ssGSEA, 16 of the 26 proteins were probably derived from skin 
tissues with their expression levels significantly correlated with skin 
(Supplementary Figure S7). Next, we constructed ProtRS with these 
26 proteins. In the train and test sets, ProtRS-26 was significantly 
different between control and psoriasis, with ProtRS-26 being 
higher in psoriasis (Figures 3C, D). In addition, ProtRS-26 was 
found to differ in age, sex, and 7 clinical risk factors (Supplementary 
Figures S8, S9). We evaluated the predictive ability of ProtRS-26, 
ProtRS-185, clinical risk factors, and PRS (Figure 3E). The risk of 
developing psoriasis was not accurately assessed using only PRS 
(AUC: 0.5385) or clinical risk factors and PRS (AUC: 0.5596). In 
contrast, ProtPS-185 (AUC: 0.7754) and ProtRS-26 (AUC: 0.7809) 
improved model accuracy by 23% and 24%, respectively. After 
adding PRS and clinical risk factors as covariates, the AUC could 
reach 0.7986 (Supplementary Table S5). To measure the value of 
ProtPS-26 as a risk assessment model, we performed DeLong test 
on the receiver operating characteristic (ROC) curves of ProtPS-26 
after adding clinical risk factors and/or PRS. The results revealed 
that the addition of ProtPS-26 greatly enhanced the prediction 
accuracy (Figures 3F-H). Overall, ProtRS had better prediction 
performance compared with clinical risk factors and/or PRS, even 
with the best prediction effect under the combined effect of clinical 
risk factors, PRS and ProtRS. 
Frontiers in Immunology 05 
Mechanism of psoriasis-related proteins 

Next, the mechanism of the partial protein from ProtPS-26 in 
psoriasis was described (Figure 4). When the skin is subjected to 
damage such as from ultraviolet rays, keratinocytes express IL-36G 
(21). Tanel Traks et al. identified the pathogenic role of IL-36, 
primarily derived from keratinocytes, in the development of 
psoriasis (22). IL-36G, after cleavage and activation, binds to 
target cell receptors, stimulates the production of antimicrobial 
peptides (DEFB4A - DEFB4B) in target cells and down-regulates 
the expression of CDSN (23–25). Meanwhile, keratinocytes 
expressed SERPNA1/3, which promoted IL-36G activation. 
Activated IL-36G prompted the expression of IL-17, which 
further contributed to the activation of T cells and the production 
of pro-inflammatory factors (26). These pro-inflammatory factors 
enhance IL-36G expression on the one hand and inhibit 
keratinocyte proliferation on the other hand through a positive 
feedback mechanism (27). In addition, IL-36G upregulates the 
expression of CCN1 and S100A7A, leading to the production of 
excessive pro-inflammatory factors by the cells, including IL-1, IL­
6, IL-8, IL-36, and TNF, which promotes psoriasis (28, 29). Finally, 
keratinocytes upregulate the expression of TNFRSF17, which 
further activates B cells and allows overexpression of KIF20B and 
RRM2 (30). Notably, RRM2 was identified as the most significant 
differentially expressed gene between the psoriasis and control 
groups and is critical in cell proliferation (31). 
Estimate population attributable fraction of 
psoriasis 

Hypertension and obesity were the greatest risk factors for 
psoriasis, with 16.89% and 15.23% of cases attributed to them, 
respectively (Figure 5A). Following this, compared to females, males 
were at a higher risk of developing psoriasis. The level of 
triglycerides in the blood also contributed to the development of 
psoriasis, with 10.14% of the population likely to develop the disease 
as a result. Some lifestyle habits also increased the risk of psoriasis, 
such as frequency of drinking and smoking. Intervention at 50% of 
the most dangerous exposure level may have similar effects on PRS, 
ProtRS-104, and ProtRS-26, but much greater effects on ProRS-185 
(Figure 5B). Targeting 185 proteins to return them to normal levels 
was likely to reduce the risk of disease. 
Discussion 

Proteins are central performers of inflammatory and immune 
responses and have significant advantages as biomarkers in 
psoriasis research. In this study, we developed a risk score model 
for psoriasis based on UKB plasma proteomics. The predictive 
accuracy of psoriasis disease risk can be significantly improved by 
modeling 26 proteins with LASSO regression compared to clinical 
risk factors and PRS. Our findings highlight the value of plasma 
proteomics in enhancing the accuracy of psoriasis risk prediction 
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and provide new insights into the molecular mechanisms 
underlying this complex immune-mediated disease. 

In this study, LASSO regression was selected as the primary 
model for biomarker selection and risk score construction, guided 
by the study’s translational objectives and the nature of proteomic 
data. Plasma proteomics, as a high-dimensional omics dataset, often 
Frontiers in Immunology 06
suffer from multicollinearity and overfitting, which LASSO 
addresses by applying L1 regularization to shrink non­
contributing variables to zero (32). This is a crucial advantage 
when prioritizing clinically interpretable features over purely 
predictive accuracy. Furthermore, LASSO’s linear framework

provides direct biological interpretability. Each protein’s 
FIGURE 3 

Constructing ProtRS-26 model and analyzing the prediction accuracy. (A) Venn diagram showing shared proteins between Lasso regression analyses 
by 10 resamplings. This intersection led to the identification of 26 proteins strongly associated with psoriasis. (B) Functional enrichment plot showing 
the impact of the 26 proteins in 5 pathways. (C, D) Violin plots showing the difference of ProtRS-26 in psoriasis and control participants in the train 
and test sets. (E) Bar plot showing the AUC of the 11 psoriasis risk score models. (F) ROC plot comparing the performance between the ProtRS-26 
+PRS model and the PRS model. (G) ROC plot comparing the performance between the ProtRS-26+Clinical risk factor model and the Clinical risk 
factor model. (H) ROC plot comparing the performance between the ProtRS-26+PRS+Clinical risk factor model and the PRS+Clinical risk factor 
model. ****P-value< 0.0001. 
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coefficient quantitatively reflects its weighted contribution to the 
risk score, aligning with our goal to identify actionable diagnostic 
candidates. Importantly, the diagnostic performance of our LASSO 
model suggests that a linear approach to processing of proteomic 
data provides more significant discriminatory power for psoriasis 
compared to clinical risk factors. 

The 26 proteins identified in our study are enriched for 
receptor-ligand interactions and neuropeptide-associated 
functions, reflecting the intricate interplay between immune and 
neural signaling in psoriasis. Previous studies have demonstrated 
that the upregulation of RRM2 and CCN1 exacerbates the 
formation of psoriatic lesions and inflammatory responses by 
promoting keratinocyte proliferation and the release of 
inflammatory factors (31, 33). IL-22 has been confirmed to be 
highly expressed in psoriatic lesions, leading to epidermal 
hyperplasia and abnormal differentiation (34). A study by Pang-
Yen Tseng et al. indicates that GPR15L expression is significantly 
upregulated in psoriasis and that it has potential as a biomarker of 
disease activity. GPR15L is mainly secreted by inflammatory 
keratinocytes, which are highly expressive of differentiation 
markers and inflammatory factors, suggesting that it plays a key 
role  in  the  epidermal  proliferation  and  inflammatory  
microenvironment of psoriasis. In addition, GPR15L can activate 
Frontiers in Immunology 07 
sensory neurons thereby inducing itching, and scratching disrupts 
the skin barrier leading to increased inflammation (35). GAL-1, 2, 
and 12 of the GAL family have been shown to be potentially 
associated with metabolic complications of psoriasis, and could 
potentially be considered as predictors of metabolic disorders 
leading to renal impairment in psoriasis (36). Increased KIR2DL2 
copy number is involved in psoriasis pathogenesis by disrupting 
immune tolerance and promoting aberrant activation of NK cells or 
CD8+ T cells. This new finding by Richard Ahn et al. provides a 
new direction for precise typing and targeted therapy of psoriasis 
(37). Currently, AGRP, CRIP2, DPP10, FUT3, FUT5, GASK1A, 
GJA8, GPR37, KIF20B, and MSMB among the 26 plasma proteins 
have not been found to play a role in psoriasis. This provides a 
research direction for better understanding the pathological 
mechanisms of psoriasis at the proteomic level. 

Our results demonstrate that ProtRS-26 and ProtRS-185 
significantly improved the accuracy of psoriasis risk prediction 
compared to PRS and clinical risk factors alone. The AUC for 
ProtRS-26 (0.7809) and ProtRS-185 (0.7754) was substantially 
higher than that of PRS (0.5385) or clinical risk factors combined 
with PRS (0.5596). This improvement in predictive performance 
highlights the added value of incorporating plasma proteomics into 
risk assessment models. Furthermore, the combination of ProtRS-
FIGURE 4 

The mechanism diagram of 26 proteins in the pathogenesis of psoriasis. The blue proteins represent the 26 proteins that have been screened out. 
The red arrows signify promotion, the green arrows signify inhibition, and the red dotted lines denote positive feedback. CCN1, CCN family member 
1; CDSN, Corneodesmosin; DEFB4A, Beta-defensin 4A; DEFB4B, Beta-defensin 4B; IL19, Interleukin-19; IL36g, Interleukin-36 gamma; KIF20B, 
Kinesin-like protein; KLK13, Kallikrein-13; RRM2, Ribonucleoside-diphosphate reductase subunit M2; TNFRSF17, Tumor necrosis factor receptor 
superfamily member 17. Mechanism diagram created by BioRender (www.biorender.com), with permission. 
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26 with PRS and clinical risk factors achieved the highest AUC 
(0.7986), suggesting that integrating genetic, clinical, and proteomic 
data provides a more comprehensive approach to psoriasis 
risk prediction. 

The PAF analysis identified hypertension and obesity as the 
most significant modifiable risk factors for psoriasis, accounting for 
16.89% and 15.23% of cases, respectively. These findings align with 
previous studies linking metabolic syndrome and cardiovascular 
risk factors to psoriasis. The higher risk observed in males and the 
contribution of elevated triglyceride levels further emphasize the 
importance of addressing lifestyle factors (e.g., smoking, alcohol 
consumption) in psoriasis prevention and management. Targeting 
these risk factors, along with the 185 proteins identified in our 
study, could significantly reduce the disease burden. 

While our study provides valuable insights, several limitations 
should be acknowledged. Firstly, the UKB cohort primarily consists 
of individuals of European ancestry, limiting the generalizability of 
our findings to other populations. Furthermore, while rigorous 
internal cross-validation was employed to mitigate overfitting, our 
model has not yet been tested on an independent external cohort 
from a distinct data source. It is also important to note that, 
currently accessible large-scale datasets integrating both 
proteomic profiles and comprehensive clinical risk factors remain 
scarce beyond the UKB. Future studies should validate our results in 
Frontiers in Immunology 08
more diverse cohorts. Secondly, the cross-sectional design of our 
analysis precludes causal inferences. Longitudinal studies are 
needed to establish the temporal relationship between plasma 
protein levels and psoriasis development. Finally, while our 
machine learning approach identifies robust protein features, 
experimental validation is lacking. Their biological relevance and 
clinical applicability need to be confirmed in independent patient 
cohorts. Although resource and time constraints precluded these 
experiments in the current scope, we emphasize that targeted wet-
lab validation is a critical next step to translate our findings into 
actionable insights. 
Conclusion 

In this study, the machine learning algorithm LASSO was used 
to screen proteins significantly associated with psoriasis and to 
construct ProtRS. The results demonstrated that plasma protein-
based ProtRS-26 was effective in predicting the risk of psoriasis 
disease compared to clinical risk factors and PRS. Notably, the 
combination of ProtRS-26, PRS and clinical risk factors provided 
greater improvement in prediction when combined. This has an 
important guidance in psoriasis prevention, early screening and 
personalized medicine. 
FIGURE 5 

PAF for risk factors of psoriasis. (A) PAF of risk factors with age, sex, and clinical risk factors for psoriasis. (B) PAF of risk factors with continuous 
variables for psoriasis. 
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