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Pertussis, also known as whooping cough, is a highly contagious acute 
respiratory infection primarily caused by Bordetella pertussis. Although this 
disease can occur at any age, infants and young children remain the most 
vulnerable to severe illness and mortality. Moreover, epidemiological trends 
indicate a notable shift in the incidence of pertussis over time, with an 
increasing number of reported cases in adolescents and adults. During the 
1950s, the widespread implementation of whole-cell pertussis (wP) vaccines 
significantly reduced the incidence and mortality associated with pertussis. 
Despite their effectiveness, the frequent adverse reactions linked to wP 
vaccines prompted a shift towards the utilization of acellular pertussis (aP) 
vaccines, which have a lower reactogenicity. However, over the past two 
decades, several countries with a high coverage of aP vaccines have 
experienced a notable rise in the incidence of pertussis, a phenomenon called 
pertussis resurgence. The causes of this resurgence are multifactorial and highly 
complex. Notably, the peak incidence of pertussis has shifted from the infant 
population to adolescents and adults, who now serve as the primary sources of 
infection in infants. Such a shift raises critical concerns regarding the current and 
future control of pertussis. The lack of comprehensive understanding of its 
pathogenesis is a significant contributing factor to this public health challenge. 
Although extensive research on the pathogenesis of pertussis has been 
conducted, it remains an issue without appropriate animal models that 
effectively replicate the symptomatology commonly observed in human cases. 
This review provides an overview of B. pertussis epidemiology and recent 
pathogenesis advances. It further analyzes the potential causes and 
contributing elements responsible for the resurgence of pertussis. Lastly, the 
review proposes evidence-based strategies aimed at enhancing public 
awareness and implementing effective measures to prevent the risk of 
unexpected outbreaks. 
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1 Introduction 

Pertussis, commonly known as whooping cough, is an acute 
respiratory infection that is highly contagious and mainly caused by 
the Gram-negative bacterium Bordetella pertussis. Characterized by 
severe and persistent coughing episodes lasting up to 2–3 months, 
this disease can lead to complications such as pulmonary 
hypertension, pneumonia, and cerebral hemorrhage, particularly 
in infants, resulting in high mortality (1, 2) Prior to the advent of 
vaccines, pertussis was a common cause of morbidity and mortality 
in children (3). The introduction of whole-cell pertussis (wP) 
vaccines in the 1950s led to a significant decline the global 
incidence and mortality (4). However, due to frequent adverse 
reactions linked to wP vaccines, they were eventually supplanted 
by acellular pertussis (aP) vaccines, which have a lower 
reactogenicity (5, 6). In the past two decades, there has been an 
upward trend in the global coverage of infants receiving three doses 
of the aP vaccine. By 2023, this coverage had risen to approximately 
84% (7). Despite achieving high vaccination coverage globally, the 
resurgence of pertussis has emerged as a global phenomenon, with 
documented occurrences in numerous countries worldwide (8, 9). 
For instance, in the United States, the annual number of reported 
cases increased from 4,000 in the 1980s to 48,277 in 2012, with an 
incidence rate exceeding 10 cases per 100,000 population, the 
highest level since the mid-1950s (10). Similarly, pertussis 
incidence has shown an upward trend in China, increasing from 
0.13 per 100,000 individuals in 2013 to 2.15 per 100,000 in 2019 
(11). Most epidemiological data regarding pertussis in China 
derived from a passive reporting system, the National Notifiable 
Infectious Disease Surveillance System, and under-reporting was 
considerable due to challenges related to diagnostic capabilities and 
the completeness of reporting processes. With the improvement of 
the reporting system, there has been an increase in the reporting of 
pertussis cases (11). In addition, the resurgence of pertussis in the 
United Kingdom has been observed, with incidence levels not 
documented since the 1980s (12). Research examining the 
epidemiology of pertussis in Asian nations indicates that the 
disease is circulating among adolescents and adults (13). 
Surveillance capacities for pertussis are insufficient in low- and 
middle-income countries (LMICs), but existing evidence suggests 
that these countries may also be experiencing a resurgence of the 
disease (14). The COVID-19 pandemic in 2020–2021 resulted in a 
significant decrease in the incidence of pertussis cases. However, a 
notable increase in reported cases was documented after the 
pandemic (15–17). Additionally, the epidemiology and 
transmission patterns of pertussis have undergone significant 
changes, with a rising incidence among adolescents and adults, 
who have increasingly been identified as primary reservoirs of 
infant infection. Moreover, infants, especially those who are too 
young to be vaccinated, often showing the most severe symptoms 
and even mortality (18). Therefore, pertussis remains a significant 
public health issue. Many hypotheses have been proposed to 
elucidate the resurgence of pertussis. This review provides a 
comprehensive analysis of the pathogenesis and epidemiology of 
pertussis as well as the causes of its resurgence and the response 
Frontiers in Immunology 02 
measures implemented. This information will enhance our 
understanding of pertussis so that more effective strategies can be 
developed to control its spread. 
2 Epidemiology trends 

2.1 Global epidemiology 

Pertussis has been documented since the Sui Dynasty in China 
(518–608 AD), where it was categorized as a pediatric disease and 
referred to as “hundred-day cough” (19). The first documented 
epidemic took place in Paris in 1578. Since then, localized infections 
and periodic outbreaks have been reported worldwide (20). By the 
19th century, pertussis was widely recognized as one of the deadliest 
diseases affecting humans, notably contributing to high rates of 
infant mortality (21, 22). According to the World Health 
Organization (WHO), over 3 million children died from pertussis 
annually worldwide before 1970 (23). In the United States alone, 
approximately 73,000 deaths were recorded between 1922 and 1931, 
with the majority occurring in infants (24). The introduction of wP 
vaccines in the 1950s and their widespread implementation, 
followed by the expansion of immunization programs in the 
1970s, contributed to a substantial decline in its global incidence 
and mortality (25). In the United States, the annual pertussis 
incidence declined sharply from 157 per 100,000 people in the 
early 1940s to fewer than 1 per 100,000 by 1973 (4). Similarly, 
Canada’s average incidence dropped from approximately 160 cases 
per 100,000 people between 1934 and 1943 to about 11 cases per 
100,000 between 1974 and 1983 (26). However, due to concerns 
over the reactogenicity of wP vaccines and parental fears regarding 
potential severe neurological complications or fatal outcomes, most 
industrialized countries transitioned to less reactogenic aP vaccines 
(6, 27). However, outbreaks of pertussis have continued to emerge 
in the era of aP vaccines. Periodic epidemics occur every 3–5 years, 
similar to those observed before widespread vaccination (28). 
Recent data from the WHO indicate that global coverage of three 
doses of the diphtheria, tetanus, and pertussis vaccine (DTP3) 
among 1-year-old children (%) has consistently surpassed 80% 
over the past decade (7). However, this aggregate figure conceals 
significant gaps in pertussis immunization. In 2023, the European 
Region achieved 95% DTP3 coverage, whereas the African region 
managed only 74% (Figure 1A) (7). Furthermore, approximately 
94% of children in high-income countries completed the DTP3 in 
2023. However, in LMICs, factors like limited income and 
challenges in accessing healthcare make it difficult to achieve high 
vaccination coverage (7, 14). Globally, reported cases experienced 
significant peaks around the years 2004 and 2012, followed by a 
trend of moderate declines. Notably, a sharp reduction in cases was 
recorded during the COVID-19 pandemic. However, by 2023, 
global case numbers rebounded markedly. Between 2012 and 
2014, both the European region and region of the Americas 
experienced notable peaks in case numbers. Following this period, 
there was a marginal decline; however, the overall incidence rates 
remained relatively elevated. By 2023, the European region saw a 
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substantial increase in cases, marking the highest levels recorded in 
nearly ten years. In contrast, the African and Eastern Mediterranean 
region exhibited comparatively low case numbers across the 
observed period. This phenomenon may be indicative of 
underreporting, which could be attributed to the limitations of 
surveillance infrastructure in these areas (Figure 1B) (8, 29). Data 
from various countries also indicate a significant increase in 
pertussis cases. In fact, the baseline incidence of pertussis in the 
United States rose between 2000 and 2016 (30). Furthermore, the 
resurgence of pertussis in the United Kingdom has been observed, 
with incidence levels not documented since the 1980s (12). 
Surveillance capacities for pertussis are insufficient in LMICs, but 
existing evidence suggests that these countries may also be 
experiencing a resurgence of the disease (14). In LMICs, there 
exists a significant deficit in the availability of accurate 
epidemiological data concerning pertussis. Research indicates that 
these regions should prioritize the implementation of polymerase 
chain reaction (PCR) testing for confirmation of pertussis due to its 
Frontiers in Immunology 03 
superior sensitivity, which is more likely to capture the actual 
burden of pertussis (14). Furthermore, there is a critical need for 
the establishment of a standardized monitoring system (31). 

From 2020 to 2021, a notable decrease in the incidence of global 
pertussis cases was observed, primarily attributed to the impact of 
the COVID-19 pandemic. This decline can be elucidated through 
two primary pandemic-related factors. First, the widespread 
implementation of nonpharmaceutical interventions, including 
social distancing measures and the mandatory use of face masks 
(32, 33). Second, the disruption of routine vaccination sessions has 
had a profound impact on pertussis vaccination coverage (34). 
Notably, in April 2020, there was a global reduction of 33% in the 
administration of DTP vaccine doses (35). This significant decline 
in vaccination coverage may play a critical role in the current 
pertussis outbreak (35). However, after the pandemic, pertussis 
cases began to rebound in several countries (15). In the United 
Kingdom, the incidence of pertussis exhibited a dramatic increase, 
escalating from 0.12 cases per 100,000 individuals in 2022 to 38 
FIGURE 1 

(A) Diphtheria tetanus toxoid and pertussis (DTP3) immunization coverage among 1-year-old children from 2003 to 2023 across the 6 WHO regions 
and globally (%). The x-axis represents the year, and the y-axis represents the immunization coverage rate for DTP3 among 1-year-old children (%). 
(B) Reported cases of pertussis from 2003 to 2023 across the 6 WHO regions and globally. The x-axis represents the year, and the y-axis represents 
the reported number of pertussis cases. Data were collected from the WHO website. 
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cases per 100,000 individuals by 2024. Similarly, Australia 
experienced a significant rise in pertussis incidence, which surged 
from 1.83 cases per 100,000 individuals in 2022 to an alarming 214 
cases per 100,000 individuals by 2024 (29). It has been suggested 
that the current situation may reflect a return to pre-pandemic 
pertussis patterns before the implementation of COVID-19 
restrictions. Conversely, others argue that the sharp rise in cases 
supports the hypothesis of a new pertussis epidemic (36). 

Accurately defining the global epidemiology of pertussis presents 
considerable challenges, particularly in contemporary contexts where 
its epidemiological landscape has evolved in complexity. Domenech de 
Cellès  and colleagues examined the  incidence  trends of pertussis from  
1980 to 2019 across 45 nations, utilizing data from the WHO. Their 
findings underscored significant heterogeneity in global pertussis 
incidence trends, revealing that this variability persists even in recent 
years within high-income countries that maintain robust vaccination 
coverage and adhere to multiple recommended booster schedules (37). 
The heterogeneity of the epidemiological dynamics of pertussis 
highlights its inherent complexity, which is shaped by various 
factors. One significant aspect is the variation in national reporting 
systems. Most countries where pertussis is recognized as a notifiable 
disease have established case-based national surveillance systems. 
However, the methods for monitoring and reporting have evolved. 
For example, in Japan, the National Center for Epidemiology of 
Infectious Diseases initiated pediatric sentinel surveillance for 
pertussis in 2017; and by 2018, it mandated laboratory confirmation 
for reports of the disease (38). Additionally, diagnostic methods and 
case definitions for pertussis vary across countries, including the 
clinical case definition of pertussis by the WHO, the requirement of 
laboratory confirmation, local case definitions, and the clinical 
diagnostic methods by physicians. These differences can affect the 
number of pertussis cases identified and reported (39). The variability 
in pertussis epidemiology is substantially driven by a range of factors. 
These include not only regional differences in historical and 
contemporary immunization strategies, but also variations in 
sociodemographic factors and patterns of social interactions. 
Moreover, the intricate interplay between the ecological conditions 
and the evolutionary developments of Bordetella pathogens further 
underpins the observed disparities (37). In summary, the worldwide 
epidemiological trends of pertussis result from a complex interplay of 
factors. These determinants include variations in disease surveillance 
systems, diagnostic methods, and immunization strategies, as well as 
differences in sociodemographic characteristics, patterns of social 
contact, and the impacts of the COVID-19 pandemic. A thorough 
understanding of these factors is essential for devising targeted, robust 
measures to effectively curb and prevent the global spread of pertussis. 

Accurately delineating the global burden of pertussis presents a 
significant challenge within the field of public health. Factors such as 
under-reporting and under-diagnosis exacerbate this issue, 
particularly in adolescent and adult populations. In these age 
groups, pertussis often presents with atypical symptoms or is 
asymptomatic, leading to significant under-recognition and under-
diagnosis (13). This phenomenon highlights the necessity for 
improved surveillance and diagnostic criteria to enhance the 
understanding and management of pertussis across all age groups. 
Frontiers in Immunology 04
In the realm of pertussis diagnosis, laboratory culture and PCR are 
widely regarded as the gold standard methodologies (40). However, its 
atypical presentation in adolescents and adults has prompted a 
consensus among experts that serological assays may be more 
appropriate for evaluating the prevalence and burden of both recent 
and historical infections. Epidemiological studies support this view, 
with seroepidemiological surveys estimating incidence rates 
substantially higher than those reported through clinical surveillance 
(41). Nevertheless, serological diagnostics present certain limitations. 
First, there is considerable variability among commercial enzyme-

linked immunosorbent assay kits due to differences in antigen 
composition and quality. Studies have shown that kits using mixed 
or unspecified antigens and lacking proper standardization yield 
inconsistent sensitivity and specificity (42). Moreover, the 
availability of reference antigens characterized by high purity 
remains a considerable challenge (43). Second, there is currently no 
globally recognized correlate of protection for pertussis, making 
interpretation of the results difficult (44). The European Union 
recommends the determination of specific antibodies against 
pertussis toxin (PT). However, there is no internationally accepted 
positive cut-off value. Reported diagnostic thresholds for anti-PT IgG 
vary, reflecting the absence of a uniform standard (45). These 
population-derived cut-off values necessitate continual reassessment 
in response to alterations in the vaccination schedule (45, 46). Finally, 
interpreting serology in recently vaccinated individuals is especially 
challenging. A high anti-PT IgG titer shortly after vaccination may not 
indicate infection at all, as current assays cannot distinguish vaccine-
induced antibodies from those due to natural infection (45, 46). For 
instance, a household investigation linked to the DTP clinical trial in 
Sweden consistently observed seropositivity even when culture tests 
yielded negative results (47). Consequently, a comprehensive 
assessment of pertussis’ global burden requires a multifaceted 
approach, integrating clinical symptoms, laboratory diagnostics, and 
epidemiological data to achieve more accurate estimations. 
2.2 Disease burden shifting from infants to 
older age groups 

Historically, pertussis was considered as a vaccine-preventable 
childhood disease. Before the advent of the pertussis vaccine, it was 
estimated that up to 80% of the population contracted pertussis 
during childhood, with adult cases being rare (24, 48). Reports 
indicated that only 1–2% of all pertussis cases occurred in 
individuals  aged  15  and  above  (49).  However,  recent  
epidemiological data indicate that a shift in the peak occurrence 
of the disease has transitioned from the infant population to older 
adolescents and adults (50). The evolving epidemiological landscape 
of pertussis is evidenced by case notification rates and 
seroprevalence data (51); however, the true burden of the disease 
among adolescents and adults remains uncertain due to under-
recognition and under-diagnosis (52). The observed transformation 
in the incidence of pertussis among adolescents and adults may be 
attributed to waning immunity against B. pertussis, advancements 
in diagnostics and a relative increase in their proportion with a 
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significant decrease in cases among infants following the vaccine’s 
introduction (52). Additionally, the transmission model has 
evolved; rather than infants primarily transmitting the disease to 
older individuals, adolescents and adults have increasingly emerged 
as the principal reservoirs and sources of transmission to infants 
(18, 39, 53). From 2000 to 2016, the proportion of pertussis among 
adolescents increased from 10% to 16% in the United States (30). 
Notably, 2004 was a peak year for pertussis outbreaks, during which 
adolescents represented 30% of all cases. Similarly, the 2010 
outbreak highlighted significant disease prevalence among 
children aged 7–11 years (54). Data from the European Centre 
for Disease Prevention and Control indicated that in 2014, the 
highest incidence of pertussis occurred in <1-year-olds (51.6 cases 
per 100–000 population), followed by children aged 10–14 years 
(24.4 per 100000 population) and15-19-year-olds (19.7 per 100000 
population) (55). More recently, during the 2023–2024 outbreak in 
Denmark, the incidence rate was the highest in the 3–4 months age 
group, recorded at 541.4 cases per 100,000 individuals, followed by 
the adolescent population, which had 405.4 cases per 100,000 
individuals, with the highest increase (16). Furthermore, the latest 
pertussis outbreak in Spain primarily affected children aged 10–14 
years, with 1,772.2 cases per 100,000 population (56). 

A study conducted between 2006 and 2013 in the United States 
revealed that over 66% of pertussis infections in infants could be 
traced back to close family members. Notably, siblings accounted 
for 35.5% of the cases, followed by mothers at 20.6% and fathers at 
10.0% (18). Additionally, surveillance data from Australia covering 
the period from 2008 to 2012 corroborated these findings, 
indicating that parents were responsible for 38.5% of pertussis 
infections in infants, while siblings constituted 35.4% (57). In fact, 
due to under-reporting and missed diagnoses, pertussis in 
adolescents and adults may be underestimated (39, 58). 
Therefore, pertussis prevention and control strategies should 
target all age groups, particularly adolescents and adults, to 
effectively reduce the risk of infection among infants. 

Pertussis in adolescents and adults is generally not associated 
with severe illness or mortality. Nevertheless, numerous studies 
have shown that this population is the primary reservoir and source 
of infant pertussis infection. Infants are at the greatest risk of 
experiencing severe complications and mortality following 
infection (18, 39). Adolescents and adults often exhibit atypical 
clinical symptoms that may go undetected, yet they continue to 
serve as vectors for bacterial transmission. This concealed reservoir 
poses a significant threat to public health, as it has the potential to 
facilitate the onset of disease outbreaks (59, 60). Moreover, the 
mortality from pertussis-related hospitalizations in adults is 
relatively high (61), and complications such as apnea, insomnia, 
pneumonia, weight loss, urinary incontinence, fainting, and rib 
fractures may also occur (52). The susceptibility of older adults, 
particularly those with respiratory or chronic conditions, to 
pertussis is notably elevated, resulting in a higher incidence of 
hospitalization and mortality compared to younger individuals (52). 
Furthermore, the rise in reported pertussis cases among adolescents 
and adults can be attributed to multiple factors, prominently 
including the waning immunity that develops over time following 
Frontiers in Immunology 05 
the primary childhood vaccination (52). In light of this trend, the 
Global Pertussis Initiative recommended the expansion of pertussis 
vaccination strategies to incorporate a booster dose of the tetanus 
toxoid–reduced diphtheria toxoid–acellular pertussis (Tdap)

vaccine for both adolescents and adults in 2006 (39). After the 
pertussis vaccine was introduced for adolescents in the United 
States in 2005, a marked reduction in pertussis incidence was 
observed in individuals between the ages of 11 and 18 years (62). 
Similarly, after the implementation of vaccination for high-school 
students in Australia in 2008–2009, a sustained reduction in 
adolescent pertussis cases was observed (63). Meanwhile, 
introducing Tdap for adults aged 25–39 years in France in 2008 
significantly reduced pertussis incidence among adults. Studies 
conducted in the Paris area show that the incidence of pertussis 
in adults declined from 884 cases per 100,000 in 1999–2000 to 145 
cases per 100,000 by 2008000ts (64). Notably, both periods 
coincided with national epidemic outbreaks (65). 
3 Pathogenic mechanisms 

Once B. pertussis is transmitted to humans through aerosolized 
particles, it colonizes the ciliated epithelial cells of the upper respiratory 
tract, causing inflammation, immune response activation, and host 
tissue damage (66). To efficiently colonize the respiratory tract and 
evade host  immune defenses,  B. pertussis secretes an array of virulence 
factors. These factors include various adhesins that facilitate 
attachment to host tissues and a repertoire of toxins that disrupt 
host cellular processes and immune function (66–68) (Table 1). 
Pertussis results from the coordinated interplay of these virulence 
factors. Adhesins such as filamentous hemagglutinin (FHA), pertactin 
(PRN), and fimbriae (FIM) play critical roles in facilitating the 
adhesion and sustained colonization of B. pertussis on epithelial cells, 
while toxins, such as PT and adenylate cyclase toxin (ACT), damage 
epithelial cells and modulate immune system activity, thereby 
promoting bacterial survival in the respiratory tract (68, 69). The 
expression of the genes responsible for these virulence factors is 
regulated by multiple systems, underlining the complexity of B. 
pertussis pathogenesis (68). 
3.1 Regulation of virulence factors in B. 
pertussis 

The Bordetella virulence gene two-component system (BvgAS) in 
B. pertussis serves as the central regulator of virulence gene expression, 
modulating the activation of these genes in response to specific 
environmental signals (70, 71). BvgS is a multi-domain histidine 
sensor kinase, while BvgA is a response regulator protein. BvgS is 
activated at 37°C; using ATP, it auto-phosphorylates a conserved 
histidine residue in the HK domain, transferring the phosphate 
group to the receiver domain of BvgA (72). The activated 
phosphorylated BvgA then binds to the promoter region’s cis-acting 
sequences to activate the expression of virulence-activated genes (vags). 
Simultaneously, BvgR, encoded by vag, lowers the c-di-GMP levels by 
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hydrolyzing it, which indirectly leads to the downregulation of 
virulence-repressed genes (vrgs) (71). This stage, known as the “Bvg+ 

phase” or “virulent phase,” is marked by the active expression of 
multiple virulence factors such as toxins and adhesins that are critical 
for B. pertussis to establish infection and exert pathogenic effects (73). 

When B. pertussis is cultured in the presence of chemical 
modulators, such as magnesium sulfate or niacin, BvgS remains 
in a non-phosphorylated state. Under these conditions, the 
expression of vags is repressed, while the expression of vrgs is 
markedly enhanced (74). This shift in gene expression suggests that 
vrgs may have a substantial role in the aerosol transmission of B. 
pertussis, potentially influencing its pathogenicity and transmission 
dynamics in host populations (74, 75). At this point, the bacteria 
exist in the “Bvg− or avirulent phase.” Studies suggest that the 
transition from the Bvg+ phase to the Bvg− phase within host cells 
may promote survival and persistence within macrophages, with 
the surviving bacteria contributing to disease transmission (76). The 
identification of an “intermediate phase,” referred to as the “Bvgi 
phase,” is a notable development in understanding the 
pathogenicity of B. pertussis (77). During this phase, specific 
adhesins such as FHA are expressed, while the production of 
Frontiers in Immunology 06
toxins is notably absent. This phase is likely instrumental in 
promoting the aerosol transmission of the pathogen (77). The 
BvgAS system facilitates the expression of virulence factors during 
the transitions between the Bvg+, Bvg−, and Bvgi phases, enabling B. 
pertussis to survive, persist, and spread in various ecological 
niches (76). 

It has been demonstrated that the virulence regulation of B. 
pertussis also involves several other systems (78). The regulator of 
intracellular signaling A and sensor kinase S two-component 
system (RisAS), an ortholog of the EnvZ-OmpR system, is 
involved in regulating responses to osmolarity, motility, and, in 
certain instances, virulence in various Gram-negative bacteria (79). 
A frameshift mutation in the RisAS alleles results in a truncated, 
nonfunctional RisS sensor kinase in B. pertussis. In this case, an 
alternative  sensor  kinase,  RisK,  is  responsible  for  the  
phosphorylation of the response regulator RisA (80). High levels 
of c-di-GMP and phosphorylated RisA induce the expression of 
vrgs while suppressing the expression of vags (81). Additionally, the 
pyruvate kinase-like regulator and sensor two-component system 
(PlrRS) is believed to be essential for the persistence of B. pertussis 
in the lower respiratory tract. The PlrS sensor kinase is vital for the 
TABLE 1 Major virulence factors of B. pertussis. 

Virulence factor 
[reference(s)] 

Structure Location Component Mechanism of action 
in pertussis 

Toxins 

Pertussis toxin (PT) (85) 117 kDa; 
AB5-type exotoxin 

Periplasm Component of acellular 
vaccines alone or 
in combination 

Ribosylates inhibitory G proteins and causes 
an increase in cyclic AMP 

Adenylate cyclase toxin 
(ACT) (101, 222) 

177 kDa; 
RTX toxin 

Extracytoplasmic Not a component of 
acellular vaccines 

Converts intracellular ATP to cyclic cAMP 
and affects superoxide generation, immune 
effector cell chemotaxis, phagocytosis, and 
bacterial killing 

Tracheal cytotoxin 
(102, 223) 

9.2 kDa; Disaccharide­
tetrapeptide monomer 
of peptidoglyca 

Extracellular space Not a component of 
acellular vaccines 

Damages ciliated cells, inhibits DNA 
synthesis and extrusion of ciliated cells 

Dermonecrotic toxin 
(104, 224) 

160 kDa; 
Heat-labile toxin; typical A­
B bacterial toxin 

Cytoplasm Not a component of 
acellular vaccines 

Activates host GTP-binding protein Rho 

Lipooligosaccharide (LOS) 
(225–227) 

Endotoxin Surface Not a component of 
acellular vaccines 

Causes a decrease in the number of 
neutrophils and causes coughing 

Type III secretion system 
(T3SS) (228) 

Needle-like structure Cell envelope Not a component of 
acellular vaccines 

Secretes effectors and translocons 

Adhesins 

Pertactin 
(PRN) (108, 109) 

69 kDa; 
Autotransporter protein 

Surface Component of three- and 
five-component 
acellular vaccines 

Binds to the ciliated tracheal epithelium and 
resists the clearance of neutrophils 

Fimbriae (FIM) (113, 
114, 229) 

Fim2: 22 kDa; 
Filamentous protein 

Surface projections Component of 
acellular vaccines 

Binds to tracheal epithelial cells, 
predominantly in trachea 

Fim3: 21.5 kDa; 
Filamentous protein 

Filamentous hemagglutinin 
(FHA) (115–117) 

240 kDa; 
Filamentous protein 

Cell wall Component of most 
acellular vaccines 

Binds to the ciliated tracheal epithelium and 
macrophage complement receptor 3 
receptors, and promotes phagocytosis 
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bacterial response to carbon dioxide, since it phosphorylates the 
response regulator PlrR (82). This phosphorylation event 
subsequently modulates the expression of genes essential for 
bacterial colonization within the lower respiratory tract. These 
genes may also encode proteins required for the sustained activity 
of the BvgAS system in the lower respiratory tract (82). In addition 
to the established two-component regulatory systems, sigma/anti­

sigma factors may also modulate the expression of specific virulence 
factors. For instance, BvgAS activates the extracellular sigma factor 
BtrS and is responsible for the type III secretion system (T3SS) 
expression; while BtrA, acting as an anti-sigma factor, inhibits the 
activity of BtrS (83, 84). An overview of the regulatory systems of 
virulence factors in B. pertussis is depicted in Figure 2. 
3.2 Major virulence factors of B. pertussis 

PT is a unique and critical virulence factor of B. pertussis (85). It 
is a multi-subunit AB5-type protein toxin comprising one active 
subunit (A) and five binding subunits. It is secreted through a type 
IV secretion system encoded by the ptl locus. The A subunit exhibits 
ADP-ribosyltransferase activity, facilitating the covalent transfer of 
an ADP-ribose moiety from the cosubstrate NAD+ onto alpha 
subunits of inhibitory G proteins (85). This modification disrupts 
the inhibitory effect of inhibitory G proteins on adenylate cyclase, 
Frontiers in Immunology 07 
leading to increased cyclic adenosine monophosphate (cAMP) 
production (85). PT causes a range of systemic and local 
symptoms associated with pertussis. In infants and young 
children, the clinical presentation of pertussis is frequently 
marked by a significant increase in circulating white blood cells 
(86), particularly lymphocytes (87), a phenomenon typically 
indicative of a poor prognosis and closely related to the 
occurrence of pulmonary hypertension (88). Studies have shown 
that PT induces leukocytosis through various mechanisms (89), 
including downregulation of leukocyte adhesion molecules such as 
lymphocyte function-associated antigen-1 (90) and  L-selectin
(87, 91), as well as the suppression of chemokine receptor 
signaling that affects leukocyte migration (92). Furthermore, PT 
contributes to hyperinsulinemia and histamine sensitivity (93), and 
it facilitates the colonization of the respiratory tract by B. pertussis 
(94). During the initial phase of infection, PT targets alveolar 
macrophages, promoting B. pertussis infection. It also inhibits the 
production of cytokines and chemokines by alveolar macrophages, 
thereby reducing the recruitment and influx of neutrophils into the 
airways. Such inhibition undermines the early innate immune 
responses, thus enhancing bacterial colonization and persistence 
within the respiratory tract (95, 96). In the later stages of infection, 
PT exacerbates the inflammatory response in the lungs (97). 

ACT, an immunogenic protein encoded by the CyaA gene, 
consists of an adenylate cyclase domain and a pore-forming repeats 
FIGURE 2 

Regulatory systems of virulence factors in B. pertussis. At a temperature of 37°C, the sensor kinase BvgS is activated and transfers the phosphate 
group to its cognate response regulator BvgA through autophosphorylation. Upon phosphorylation, BvgA is activated, leading to the induction of 
virulence-activated genes (vags). The protein BvgR, encoded by vag, is capable of hydrolyzing cyclic di-GMP (c-di-GMP) into GMP. The response 
regulator RisA, which is phosphorylated by the sensor kinase RisK, binds to c-di-GMP in its phosphorylated form, triggering the expression of 
virulence-repressed genes while simultaneously repressing the expression of vags. The sensor kinase PlrS responds to carbon dioxide by 
phosphorylating the response regulator PlrR, potentially regulating genes required for bacterial colonization in the lower respiratory tract. The 
precise interaction between the PlrSR system and the BvgAS system remains to be fully elucidated. Created in Biorender.com. 
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in toxin (RTX) domain (98). The adenylate cyclase domain becomes 
enzymatically active upon binding to calmodulin and subsequently 
catalyzes the conversion of ATP to cAMP within host cells, resulting 
in elevated intracellular cAMP levels (99). ACT interacts with 
neutrophils and macrophages through complement receptor 3, 
inhibiting their oxidative burst and phagocytosis, thereby 
facilitating B. pertussis infection (100, 101). Additionally, ACT 
induces macrophage apoptosis (99), enabling the bacteria to resist 
neutrophil-mediated clearance (67). 

Tracheal cytotoxin works synergistically with lipooligosaccharide 
(LOS) to damage ciliated airway epithelial cells by inducing the 
production of pro-inflammatory mediators and nitric oxide (102). 
Furthermore, tracheal cytotoxin suppresses the chemotaxis of 
neutrophils, thus impairing optimal immune responses (103). 
Dermonecrotic toxin activates Rho GTPases in target cells, leading to 
skin necrosis in experimental animals (104). 

LOS is a central glycolipid molecule on the outer membrane of 
B. pertussis. In  B. pertussis, LOS triggers toll-like receptor 4 (TLR4) 
signaling, inducing the release of the cytokine interleukin 8 (IL-8) 
and tumor necrosis factor-alpha. This immunological activation is 
associated with a reduction in neutrophil counts localized at the site 
of infection within a few hours following infection in murine 
models (105). Moreover, LOS plays a critical role in bacterial 
colonization in the respiratory tract and nasal cavity (106). 

T3SS apparatus is a sophisticated macromolecular injectisome 
that facilitates the direct translocation of effector proteins from the 
bacterial cytosol into the cytosolic compartment of host cells. T3SS 
is regulated by BvgAS. Although its role in pathogenesis remains 
unclear, its effector protein Bordetella type III effector A (BteA) has 
demonstrated potent cytotoxicity in vitro (107). 

PRN is a 69-kDa autotransporter protein localized on the 
surface of B. pertussis; it has been demonstrated to mediate 
adhesion to epithelial ciliated cells (108) and to resist neutrophil-
mediated clearance (109). In addition, PRN represents a primary 
target of the host antibody response and is a key component in the 
majority of aP vaccines. The widespread use of aP vaccines may 
have exerted a selective pressure on B. pertussis. Consequently, B. 
pertussis may have undergone evolutionary adaptations leading to 
the down-regulation of PRN expression or the generation of PRN 
variants that evade immune responses induced by vaccination 
(110). Studies suggest that the absence of PRN leads to increased 
immune activation and proinflammatory cytokine secretion (111). 
However, this increase in inflammation does not seem to result in 
more severe clinical manifestations (112). This phenomenon may 
be attributable to the bacteria’s ability to avoid immune responses 
induced by vaccines containing PRN, allowing the bacteria to 
circulate more efficiently in the population (112). 

FIM of B. pertussis are members of the type I pili family. This 
bacterium produces two major fimbrial proteins, Fim2 and Fim3 
(113), which play a critical role in facilitating initial bacterial 
interactions with airway epithelial cells. They also cooperate with 
FHA to suppress inflammation, thus promoting extended 
colonization of the respiratory tract (114). 

FHA, encoded by fhaB, is a major adhesin molecule of B. 
pertussis (115). It is initially synthesized as a ∼370 kDa precursor 
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protein (FhaB), which is processed into the mature ∼240 kDa FHA 
molecule by the serine protease subtilisin-like protease B1 (116). 
FHA is secreted through the two-partner secretion pathway (117) 
and plays a critical role in mediating bacterial adhesion to ciliated 
cells in the respiratory tract (118). 
3.3 Importance of animal models in B. 
pertussis pathogenesis research 

Developing suitable animal models has been challenging since B. 
pertussis is a strict human pathogen. Nevertheless, the availability of 
wild-type and transgenic strains has rendered them appealing as model 
organisms in disease research and vaccine development (75, 119). 
However, as B. pertussis is poorly infectious to murine hosts, the 
successful establishment of infection necessitates high numbers of B. 
pertussis directly to the lungs. In contrast, human infection typically 
begins with colonization and growth in the upper respiratory tract. 
Consequently, traditional mouse models may overlook the host’s 
mucosal defense mechanisms, which are crucial for understanding 
host-pathogen interactions related to transmission (120, 121). Recently, 
a newly developed mouse nasopharyngeal infection model has been 
shown to efficiently establish B. pertussis infection mimicking human 
disease, starting with colonizing the upper respiratory tract with low 
numbers of pathogens. The model may be helpful in the development 
of new and improved vaccines (121). Moreover, a recent baboon model 
has replicated various clinical manifestations of pertussis, including 
low-grade fever, paroxysmal cough, and lymphocytosis, while also 
illustrating that pertussis transmission can occur via contact and 
aerosolization pathways (122). Importantly, findings from studies 
employing non-human primate infection models have indicated that 
aP vaccination may prevent the development of disease symptoms. 
However, it does not prevent colonization or subsequent transmission 
(123). However, the use of non-human primate models presents ethical 
and cost challenges. 
4 Prevailing explanations for pertussis 
resurgence 

Pertussis is endemic worldwide. Despite achieving a high level of 
vaccination coverage, numerous regions globally, including those 
utilizing wP vaccines, have experienced a resurgence of pertussis 
(37). This trend has prompted discussions regarding the underlying 
factors contributing to this phenomenon. The reasons for pertussis 
resurgence are controversial and multifactorial (Figure 3). This part 
attempts to explain the resurgence of pertussis by examining the 
prevailing evidence and associated phenomena. Waning of immunity 
is one of the hypothesized contributing factors to pertussis resurgence 
(124). Moreover, pathogen mutation has also been observed (125). 
Some studies have highlighted the potential role of genotype and 
phenotypic alterations in circulating B. pertussis strains (126). Other 
factors, such as the increased incidence of other B. species and 
improvements in diagnostic capabilities, may also contribute to the 
resurgence of pertussis to some degree (127–129). 
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4.1 Waning immunity and different immune 
responses 

Immunity acquired through natural infection or pertussis 
vaccination is not lifelong, and immunity diminishes over time 
(130, 131). Studies demonstrate that immunity acquired from 
natural infection lasts longer than vaccination. However, the 
duration of protection following natural infection can vary among 
individuals, with more than 10% losing immunity within 10 years, 
while others may remain protected for over 30 years (132). The 
duration of protection provided by wP vaccines is similar to or 
slightly lower than that from natural infection (133). In contrast, the 
immunity provided by aP vaccines seems to exhibit a more limited 
duration of protection. A case-control study in Canada showed that 
the immunity of people who received the aP vaccine was 
significantly waning, with the vaccine effectiveness declining to 
41% after more than 8 years after the last vaccination dose (134). A 
recent retrospective cohort study concluded no evidence of waning 
vaccine effectiveness for up to 4 years after five doses of the aP 
vaccine among 5–9 years old children (135). However, the study 
design can influence the estimation of the pertussis vaccine’s 
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effectiveness, given variations in the control groups (136). Several 
studies have established data-based pertussis transmission 
dynamics models to investigate further the duration of protection 
conferred by aP vaccines. One such model estimated that the 
duration of protection could be as low as 5 years (137). In 
contrast, other modelling studies have suggested that aP vaccine-
induced immunity may persist for several decades on average (138, 
139). An explanation for the disparities in the estimated efficacy of 
aP vaccines lies in the intricacies associated with these vaccines and 
their interactions with concurrent immunizations. Research has 
indicated that the Bacillus Calmette-Guérin vaccination may 
enhance the protective efficacy against pertussis afforded by 
diphtheria, tetanus, and acellular pertussis vaccine (140). 

The immune response elicited by aP vaccines differs from that 
induced by natural infection and wP vaccination (141, 142) 
(Figure 4). Specifically, natural infection and wP vaccination 
induce the rapid proliferation of the CD4+ tissue-resident 
memory (TRM) T cells in respiratory tissues, which secrete 
interferon gamma and IL-17. This ability is crucial for the 
establishment of long-term immunity and effective bacterial 
clearance (143, 144). Regarding systemic immunity, natural 
FIGURE 3 

The main causes of pertussis resurgence, including waning immunity, the application of aP vaccines, the misdiagnoses of other Bordetella species, 
the improvement of diagnostic tools, and others. Created in Biorender.com. 
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infection and wP vaccination primarily induce T helper 1 (Th1) and 
Th17 cell-mediated immunity, leading to the secretion of interferon 
gamma and IL-17, respectively (123, 145). In contrast, aP vaccines 
are primarily linked to the induction of a Th2-biased immune 
response, which results in the elevated production of cytokines such 
as IL-4, IL-9, and transforming growth factor beta. This response is 
associated with the reduced production of IgG antibodies, which are 
crucial for neutralization and opsonization (123, 146). Animal 
models suggest that Th1 and Th17 cells play an important 
protective role in clearing B. pertussis and preventing reinfection, 
whereas the Th2 response has a shorter duration and limited 
protective effects. While it may prevent disease, it is less effective 
in reducing bacterial colonization (123, 147). This immune 
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discrepancy persists even after multiple booster doses of aP 
vaccines (148, 149). The protective efficacy of acellular vaccines 
remains a topic of considerable debate. Recent studies employing 
non-human primate infection models have indicated that aP 
vaccination may prevent the development of disease symptoms 
but does not prevent colonization or subsequent transmission 
(123). It is important to interpret these findings with caution, as 
they are only derived from animal models of transmission. In 
contrast, much available epidemiological evidence indicates that 
aP vaccination may effectively block infection and transmission, 
forming herd immunity (150). The current epidemiological studies 
of pertussis present several limitations that warrant consideration. 
These include the incomplete detection of pertussis cases, the 
FIGURE 4 

Differential immune responses to natural infection and immunization with whole-cell and acellular vaccines. (A) Natural infection elicits a cellular 
immune response dominated by T helper (Th) 1 and Th17 cells, while also inducing a Th2 cell-mediated immune response. Upon reinfection, CD4+ 

tissue-resident memory cells are activated, secreting interleukin (IL)-17A, which recruits neutrophils to the nasal mucosa. (B) The cellular immune 
response triggered by the whole-cell vaccines closely resembles that induced by natural infection; however, it does not predominantly involve Th2 
cells. (C) The acellular vaccines predominantly induce a Th2 cell-mediated immune response, which is significantly different from the immune 
responses elicited by whole-cell vaccines and natural infection. Created in Biorender.com. 
frontiersin.org 

https://www.biorender.com
https://doi.org/10.3389/fimmu.2025.1618883
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Sheng et al. 10.3389/fimmu.2025.1618883 
absence of a serological marker of immunity, and heterogeneity in 
diagnostic methods of surveillance (37). Additional rigorous 
epidemiological studies are needed to elucidate and clarify the 
dispute. Extending the human challenge model to individuals 
who have received aP vaccination will be crucial for enhancing 
our understanding of post-aP infections and reconciling 
discrepancies between findings from animal models and the 
epidemiological evidence in humans (37). 

The debate surrounding aP vaccines underscores the 
complexity of pertussis resurgence (123, 150), which is likely 
attributable to a confluence of factors. Implementing aP vaccines 
appears to be an important factor in the resurgence of pertussis, but 
additional contributory elements also need to be considered 
and explored. 
4.2 Pathogen evolution 

B. pertussis has been evolving and is characterized by gene 
rearrangements and losses (151). Research indicates that such 
evolutionary dynamics have persisted throughout both the wP 
vaccination era and the aP vaccination era. Increasing evidence 
suggests that pathogen may adapt in response to vaccine-induced 
immunity, potentially undermining the effectiveness of aP vaccines 
(37). While the role of pathogen evolution in relation to the 
resurgence of pertussis remains to be fully elucidated, it remains 
worth exploring the phenomenon in the context of the pertussis 
resurgence (152). 

Early serotyping systems primarily classified B. pertussis strains 
based on the presence of the heat-labile agglutinogen FIM (153, 
154). Before widespread vaccination, many countries reported 
isolates of FIM2 and FIM2/3 (155, 156). However, after the 
implementation of wP vaccines, there was a significant shift in 
the serotype of isolates from FIM2 and FIM2/3 to FIM3. This 
change may have been due to the early vaccines lacking the FIM3 
serotype (155). In the era of aP vaccines, studies have demonstrated 
that genes encoding antigens included in aP vaccines evolve at a 
markedly faster rate than genes encoding other nonvaccine surface 
antigens (157). Among these, the rise and widespread occurrence of 
PRN-deficient strains in countries employing vaccines containing 
PRN have been widely discussed (158, 159). Antibodies against 
PRN, induced by aP vaccination, mediate the elimination of B. 
pertussis (160, 161). Research indicates that the emergence of PRN-
deficient strains results from selective pressure induced by aP 
vaccination (162). Subsequent studies indicate a correlation 
between the duration of administration of aP vaccines containing 
PRN and the observed frequency of PRN-deficient isolates within 
circulating populations (163). For instance, Japan exhibited an 
initial higher prevalence of PRN-deficient strains (164), although 
this has dramatically declined with the shift towards vaccines that 
do not include PRN (165). Similarly, surveillance studies indicate 
that in Denmark, where the vaccine used contains only PT, the 
isolation rate of PRN-deficient strains is very low (166). Besides the 
loss of the PRN gene, various PRN gene mutations have been 
identified, with the most common being the insertion of IS481, 
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leading to PRN deficiency (167). It is hypothesized that the 
differential selection of PRN may stem from potential functional 
redundancy, longer-lasting antibody functionality against it, and its 
location near the surface membrane, which enhances effective 
complement fixation (9). Moreover, studies suggest that PRN-
deficient strains may possess a selective advantage over PRN-

expressing strains in populations vaccinated with aP vaccines (162). 
PT is a critical factor in the pathogenesis of pertussis, and its 

expression is governed by its promoter (ptxP), which includes two 
main alleles: ptxP1 and ptxP3. The global prevalence of ptxP3 
strains supplanting ptxP1 strains has emerged as a significant 
phenomenon observed across various countries (168, 169). Strains 
with the ptxP3 allele are more toxic than those with the ptxP1 allele 
because they promote more PT secretion, increasing the virulence 
of B. pertussis (125, 168). Nevertheless, a definitive conclusion 
remains unclear due to the limited sample size in the study and 
subsequent investigations have failed to offer confirmed 
evidence (37). 

Moreover, macrolide resistance in B. pertussis has become a 
concern in recent years. Macrolides, such as erythromycin, are 
conventionally regarded as first line antibiotics for the treatment of 
pertussis, and early treatment can mitigate severe disease (170). 
Macrolide resistance has been increasingly reported in China (171). 
A pertinent study conducted in northern China reported that the 
proportion of highly virulent, macrolide-resistant strains increased 
dramatically from 42.9% during 2019–2021 to 100% in 2022–2023; 
the spread of these strains may be an important factor in the recent 
resurgence of pertussis epidemics in China (172). The primary 
resistance mechanism is a point mutation at position 2047 
(A2047G) in domain V of the 23S rRNA gene of B. pertussis 
(171). In addition, the emergence of macrolide-resistant  B. 
pertussis strains in  Europe is equally  concerning  (173). In 
contrast, in the 2024 pertussis outbreak in Slovenia, no B. 
pertussis isolates were found resistant to macrolides (174). The 
emergence of macrolide-resistant B. pertussis strains presents a 
substantial challenge to the effective treatment of pertussis. While 
the widespread resistance in a particular region is a recent 
phenomenon, the long-term implications of this resistance on B. 
pertussis biology remain unclear. Surveillance of this issue is crucial 
during this period of uncertainty. 

The evolutionary transformation of B. pertussis raises significant 
concerns; however, the precise implications for the recurrence of 
pertussis are still not fully understood. This uncertainty arises from 
the observation that, in certain countries where non-vaccine alleles 
have become prevalent, aP vaccines continue to demonstrate efficacy 
(152). Sustained genomic and epidemiological surveillance will be 
essential for tracking these evolutionary trajectories and refining 
evidence-based vaccination strategies. 
4.3 Other contributing factors 

In addition to B. pertussis, other Bordetella species, including 
Bordetella parapertussis and Bordetella holmesii, also have been 
implicated in pertussis-like syndromes in humans (66). Recently, 
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these non-B. pertussis species have been detected in humans with 
increasing frequency. Some experts have posited that the 
misidentification of non-B. pertussis species as pertussis may have 
played a significant role in the epidemics (127, 175). During a 
pertussis outbreak in Ohio in 2010, 32% of patients diagnosed with 
B. pertussis infection were found to have B. holmesii infection (176). 
This misdiagnosis occurs because the IS481 sequence, which is 
commonly used in standard PCR for diagnosis, is present in the 
genomes of both B. pertussis and B. holmesii (177); consequently, 
the prevalence of these non-B. pertussis species increases, and 
misdiagnosis of pertussis due to diagnostic limitations and 
insufficient laboratory expertise in identifying other Bordetella 
species may contribute to the resurgence of pertussis. Recent 
advancements in diagnostic methodologies have led to multiplex 
quantitative polymerase chain reaction kits for the detection of 
Bordetella. These kits enable the identification of IS481 for B. 
pertussis, pIS1001 for B. parapertussis, and hIS1001 for B. 
holmesii (178). Such innovations are poised to enhance the ability 
to quantify and analyze trends in the incidence of B. pertussis, B. 
parapertussis, and B. holmesii (178). Furthermore, improvements in 
disease awareness and diagnostic tools (128), as well as insufficient 
vaccine coverage in certain regions (129), may be potential factors 
contributing to pertussis outbreaks. 
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5 Strategies to address pertussis 
resurgence 

A growing body of evidence supports a multifaceted response to 
the global resurgence of pertussis. Vaccination remains the most 
cost-effective preventive measure. Although vaccine-induced 
immunity wanes over time, timely immunization substantially 
reduces the incidence of severe disease and pertussis-related 
mortality, especially among infants. Consequently, every country 
—particularly LMICs—should prioritize achieving and sustaining 
high vaccination coverage. Beyond maintaining coverage, effective 
countermeasures include optimizing vaccination strategies, 
developing next-generation vaccines, and strengthening genomic 
and epidemiological surveillance. A summary of these strategies is 
depicted in Figure 5. 
5.1 Optimization of vaccination strategies 

Newborns whose systems are not yet fully developed and who 
have not reached the age for vaccination are at a high risk for 
pertussis, especially showing the most severe symptoms and even 
mortality (28). To address this public health issue, many countries 
FIGURE 5 

The key strategies to combat pertussis resurgence. Created in Biorender.com. 
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have implemented the Tdap vaccination strategy for pregnant 
women (179). This strategy causes the mother to produce high 
levels of antibodies, which are transferred to the fetus via the 
placenta. It provides passive protection during the newborn’s early 
life before they receive their vaccinations (180). This approach has 
been shown to significantly decrease the incidence of pertussis among 
infants in their first two months of life (181, 182). However, the 
optimal timing for maternal Tdap vaccination remains a subject of 
debate. Data collected in the United States suggest that vaccination in 
the late stages of pregnancy may be more effective than vaccination in 
the early or mid-pregnancy stages (183). However, another study 
indicates that vaccination in the second trimester significantly 
increases neonatal antibody levels, possibly due to a longer interval 
between vaccination and delivery (184). In the United Kingdom, it is 
recommended to administer the vaccine between 16 and 32 weeks of 
pregnancy, while the vaccination window in the United States is 
between 27 and 36 weeks of gestation (185). Although the timing of 
maternal vaccination varies internationally, all evaluated strategies 
have demonstrated significant effectiveness in reducing B. pertussis 
infections in infants. Epidemiological estimates suggest that 
laboratory-confirmed pertussis cases in unvaccinated neonates have 
decreased by 70–95% in both the United Kingdom and the United 
States (186, 187). Notably, some studies suggest that maternal 
antibodies may influence the infant’s initial immune response. 
Indeed, infants born to vaccinated mothers mount a weaker 
immune response to the primary pertussis vaccine than those born 
to unvaccinated mothers (188). However, epidemiological data 
indicate that the risk of pertussis after the initial vaccination does 
not increase for infants born to vaccinated mothers (186, 189). 
Moreover, a recent modeling study showed that maternal 
vaccination is highly beneficial in the long term (190). Based on 
the current evidence, maternal immunity appears to be cost-effective 
preventive strategy, offering effective protection during the critical 
window before infants can be vaccinated. 

As previously mentioned, the protective effect of aP vaccines 
wanes over time, making adolescents and adults potential sources of 
pertussis transmission, particularly to infants who have not 
completed their full vaccination schedule (191). Therefore, several 
countries have incorporated adolescent pertussis booster 
immunizations into their national immunization programs. In the 
United States, introducing Tdap vaccination for adolescents in 2005 
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resulted in a substantial reduction in pertussis cases among those 
aged 11–18 years old (62). In addition to adolescent immunization 
efforts, certain countries advocate for routine booster vaccinations in 
the adult population at intervals of approximately ten years (192). 
Existing epidemiological evidence indicates that the protective effect 
of Tdap boosters is initially high but gradually wanes in adolescents 
and adults (193, 194). Moreover, the immune response to booster 
depends on the host’s vaccination history, especially the type of 
vaccine used for primary immunization. Individuals who received the 
wP vaccine for primary immunization generate stronger antibody 
and memory B cell responses following booster administration (195). 
Booster vaccination in these age groups helps reduce their disease 
burden and the risk of direct transmission to susceptible individuals, 
particularly unvaccinated infants. 
5.2 Development of novel vaccines 

As discussed above, given the debate over the duration and 
effectiveness of aP vaccine-derived protection, developing novel, 
highly effective pertussis vaccines has become a critical research 
focus for controlling this disease. Research teams are advancing 
vaccine improvement strategies from multiple perspectives, such as 
the development of low-reactogenic wP vaccines, optimization of the 
immunogenicity of existing aP vaccines, and innovative exploration 
of novel vaccine formats including outer membrane vesicle (OMV) 
vaccines and live-attenuated pertussis vaccines (Table 2). 

LOS, a key component of wP vaccines, exhibits endotoxin 
activity and is considered one of the major factors contributing to 
adverse reactions associated with wP vaccination (196). Some 
research aims to reduce or modify LOS to mitigate endotoxin 
activity and, consequently, reduce reactogenicity (197). 

While aP vaccines exhibit good safety profiles, they contain a 
limited number of antigens, typically 1–5 purified antigens, which 
results in a narrow pertussis-specific immune  response (198). This 
limitation may also contribute to immune pressure (162). Therefore, 
incorporating additional antigen components could effectively 
enhance the current immune protection and reduce the impact of 
immune selection pressure. For example, supplementation of aP 
vaccines with ACT at optimal doses has been demonstrated to 
elicit anti-ACT antibody production, facilitate a shift from a Th2­
TABLE 2 Comparison of the next-generation pertussis vaccines. 

Vaccine type 
[reference(s)] 

Key features Immune 
response 

Current status Main challenges 

Low-reactogenic wP 
vaccines (196, 197) 

Broad antigen profile; modified to 
reduce LOS toxicity 

Th1/Th17 Animal studies and 
early-phase clinical trials 

Balance between reduced reactogenicity and 
maintained efficacy 

Improved aP vaccines 
(201, 207) 

Includes novel antigens/adjuvants 
for broader immune response 

Th1/Th17 Animal studies and 
completed Phase II/ 
III trial 

Higher production cost 

Pertussis OMV-based 
vaccines (211, 212) 

Naturally contains multiple 
antigens and adjuvant properties 

Th1/Th17/Th2 Animal studies Endotoxin level and different antigen patterns 
resulting from OMV isolation techniques 

Live-attenuated pertussis 
vaccines (BPZE1) (219) 

Intranasal live vaccine; mimics 
natural infection 

Th1/Th17/mucosal IgA Completed phase 
IIb trial 

Applicability to infants and young children; 
public acceptance 
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dominated response to a mixed Th1/Th2 response, and enhance 
protective immunity (199). PT, another major virulence factor of B. 
pertussis, is included in all current aP vaccines in its chemically 
detoxified form. However, chemical detoxification reduces the ability 
of the full toxin to bind to target cells and weakens key activities, 
including antigen presentation and cytokine secretion by antigen-
presenting cells, thereby diminishing its adjuvanticity (200). 
Conversely, genetically detoxified PT is safe and retains the 
complete quaternary structure and cell-binding ability of the full 
toxin, preserving its adjuvanticity (200). It has been shown that 
genetically detoxified PT induces better and more durable immune 
responses compared to vaccines containing chemically detoxified 
PT (201). 

Currently, the efficacy of aP vaccines with aluminum as the 
adjuvant is insufficient, as their mechanism primarily induces a 
Th2/Th17-biased immune response. However, effective clearance of 
B. pertussis requires the establishment of a robust Th1/Th17 
immune response and the formation of long-lasting immune 
memory. This difference in mechanisms may lead to a limited 
protection duration with the current aP vaccines (202). Therefore, 
novel adjuvant systems that can effectively stimulate a potent Th1/ 
Th17 immune response are needed. 

TLRs are transmembrane pattern recognition receptors 
predominantly expressed on innate immune cells. TLR agonists can 
link innate immune responses with adaptive immunity, making them 
helpful in enhancing and accelerating early immunity induced by aP 
vaccines (203). Cytosine–guanine (CpG) motif-containing 
oligodeoxynucleotides can activate TLR9 signaling, leading to a 
robust Th1 response in both murine and human systems (204, 
205). Importantly, experimental aP vaccines formulated with CpG 
have been shown to induce Th1 and Th17 responses as well as IgG2 
antibody responses in mice, offering significant protection against 
pulmonary infection (202). Likewise, the presence of SMIP-7.10, a 
synthetic TLR7 agonist, in aP vaccines with alum as the adjuvant has 
been demonstrated to enhance the Th1 and Th17 immune responses 
specific to  B. pertussis, thus improving the vaccine’s efficacy against an 
aerosolized pertussis attack (206). Compared to alum-adjuvanted aP 
vaccines, an aP vaccine formulated with LP1569, a TLR2 agonist, has 
revealed enhanced protection against lung and tracheal infections in 
mice, along with a strong Th1 and Th17 response specific to  FHA  
(207). The investigation revealed that c-di-GMP, used as a mucosal 
adjuvant in ap vaccines, elicited enhanced antigen-specific antibody 
production and pronounced robust Th1 and Th17 immune 
responses. Additionally, this adjuvant facilitated more efficient 
bacterial clearance within the respiratory tract (208). 

Outer membrane vesicles (OMVs) are spherical structures 
derived from Gram-negative bacteria’s cell membranes; they 
comprise outer membrane proteins, nucleic acids, and other 
substances (209). Due to their strong immunogenicity, OMVs 
have been developed in pertussis vaccines. Pertussis OMV 
vaccines present multiple bacterial antigens from natural 
structures, inducing comprehensive immune responses while 
avoiding the risk of excessive inflammation that is present with 
wP vaccines (209). In murine models, parenteral administration of 
pertussis OMV vaccines elicits Th1/Th17/Th2 responses in CD4+ 
Frontiers in Immunology 14 
TRM cells, providing stronger protection than aP vaccines and 
comparable protection to wP vaccines, while demonstrating an 
improved  safety  profi le  (210–212).  Furthermore,  the  
coadministration of pertussis OMVs with diphtheria-tetanus 
toxoids in murine models elicits long-lasting immune protection 
for up to 9 months and provides better resistance to PRN-deficient 
strains (213). 

Locht et al. genetically engineered a live attenuated B. pertussis 
strain, BPZE1, which has the dermonecrotic toxin gene deleted, the 
amount of tracheal cytotoxin reduced to background levels, and 
complete inactivation of PT. In mouse models, BPZE1 effectively 
colonized the respiratory tract with low pathogenicity; and after a 
single intranasal dose, it induced better protection than aP vaccines 
(198). Additionally, mouse studies have shown that BPZE1 induces 
both antibody production and Th1/Th17 responses, generating long-
term protective immunity against B. pertussis (214, 215). Moreover, 
local secretory immunoglobulin A and IL-17 induced by BPZE1 have 
been shown to protect the nasal and lung tissues of murine models 
from infection (216). BPZE1 is currently undergoing clinical 
development and has completed two Phase I trials. The findings 
indicate that the vaccine is safe and immunogenic in adults (217, 
218). A subsequent phase IIb trial suggests that the vaccine induces 
robust and sustained pertussis-specific mucosal immunoglobulin A 
responses (219). BPZE1 has been evaluated for safety and 
immunogenicity in school-age children between 6 and 17 years of 
age in a phase IIb trial [ClinicalTrials.gov Identifier: NCT05116241]. 
Furthermore, BPZE1 has exhibited a favorable safety profile across 
multiple preclinical and clinical studies. Preclinical studies utilizing 
murine models have demonstrated that BPZE1 does not induce 
weight reduction, lung pathology or mortality (220). In a juvenile 
baboon model, BPZE1 was also found to be safe (221). Clinical trials 
conducted to date have not revealed any concerning safety signals 
associated with BPZE1 (217, 219). However, the forthcoming Phase 
III trials, alongside subsequent post-marketing surveillance, will be 
critical for validating both the safety and immunogenicity of BPZE1 
in broader populations. 
6 Conclusion 

Despite comprehensive infant vaccination coverage in numerous 
countries, pertussis continues to pose a substantial public health 
challenge globally. Since the 1980s, even amid increasing vaccination 
rates, the incidence of pertussis has been on the rise, with a notable 
shift in the peak of incidence from infants to adolescents and adults, 
who have emerged as primary reservoirs of infection for the 
vulnerable infant population. Under-recognition, inadequate 
diagnosis, and systemic under-reporting have led to a significant 
underestimation of the true incidence of pertussis. 

Global findings reveal considerable variability in disease trends 
across different nations, underscoring the complexity of the 
epidemiology of pertussis. The resurgence of pertussis may be 
associated with the widespread use of aP vaccines, pathogen 
evolution, and the increased incidence of other B. species. In 
response to this concerning trend, several countries have enacted 
frontiersin.org 

https://doi.org/10.3389/fimmu.2025.1618883
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http:ClinicalTrials.gov
http:SMIP-7.10


Sheng et al. 10.3389/fimmu.2025.1618883 

 

interventions such as vaccination of pregnant women and 
embarking on the development of new vaccines. These initiatives 
have yielded some positive outcomes. 

However, changing vaccination strategies is only a temporary 
measure, and it is essential to improve the efficacy of current 
pertussis vaccines and develop new vaccines to prevent and 
control B. pertussis infections. Inducing durable Th1- and Th17­
polarized CD4+ TRM cells is critical in next-generation vaccine 
development. The recently developed vaccines have demonstrated 
the potential to enhance cellular immunity in preclinical models or 
early-phase clinical trials. Nevertheless, the path to market approval 
remains challenging. Vaccine development requires time, 
significant  financial  investment,  and  human  resources.  
Furthermore, current protective efficacy assessments are mostly 
confined to preclinical models, and comprehensive safety profiles 
have yet to be fully characterized. Consequently, establishing these 
vaccines’ efficacy and safety profiles through rigorous clinical trials 
presents a significant challenge that must be overcome to achieve 
successful market authorization. Currently, pertussis vaccines are 
combined with tetanus and diphtheria vaccines, and no standalone 
pertussis vaccine is being utilized widely. Therefore, it is crucial to 
ascertain that this change does not affect immunity to tetanus and 
diphtheria in the short and long term. However, a potentially more 
effective long-term goal should be to replace the aP vaccines in the 
existing pediatric vaccine combinations with an easily administered 
nasal pertussis vaccine. Such a vaccine could facilitate the 
promotion of TRM cells, thereby providing sustained protective 
immunity at both the nasal mucosa and pulmonary levels. 

In addition, several unresolved scientific questions  and
academic controversies regarding pertussis require further 
investigation. The absence of appropriate animal models has 
resulted in a gap in the comprehensive understanding of the 
pathogenesis of pertussis. Recent advancements, including the 
murine nasopharyngeal infection model and the baboon infection 
model, provide crucial insights into infectious disease mechanisms; 
however, there are ethical and cost challenges. Moreover, the 
emergence of PRN-deficient strains in multiple countries has 
sparked considerable debate over their potential impact on 
disease severity. While current evidence does not definitively 
associate PRN-deficient strains with more severe clinical 
outcomes, their increasing prevalence and potential fitness 
advantages in the immunity induced by aP vaccination require a 
more in-depth investigation. Another unresolved issue concerns the 
optimal timing of maternal immunization. Although various 
recommendations exist, further high-quality evidence is needed to 
determine the most effective pregnancy vaccination period. 
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