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Objective: To explore the association between signal transducer and activator of

transcription 3 (STAT3) expression, tumor immune microenvironment, and

overall survival (OS) in breast cancer, and to develop a non-invasive radiomics

model for early risk stratification using dynamic contrast-enhanced magnetic

resonance imaging (DCE-MRI).

Methods: Data from 1,008 patients with breast cancer in The Cancer Genome

Atlas were analyzed to evaluate the prognostic significance of STAT3 expression

using Kaplan-Meier survival analysis and Cox regression models. Functional

enrichment and immune cell infiltration analyses were performed to assess

tumor immune microenvironment characteristics. Additionally, DCE-MRI data

from 101 patients in The Cancer Imaging Archive were used to extract radiomic

features from early- and delayed-phase images. A STAT3 predictive model was

developed using six machine learning algorithms. Model performance was

assessed using receiver operating characteristic (ROC) and related diagnostic

statistical indicators.

Results: Low STAT3 expression was significantly associated with poorer OS

(hazard ratio [HR] = 1.927, p < 0.001). GSEA revealed that high STAT3

expression enhanced epithelial apoptosis and TNF-a/NFkB signaling while

suppressing pro-tumorigenic pathways, which was associated with an

immunosuppressive microenvironment, whereas low STAT3 correlated with T-

cell exhaustion. DIA confirmed elevated STAT3 in tumor versus normal tissue (p <

0.05). The logistic regression-derived radiomics model for STAT3 expression

prediction exhibited consistent discriminative performance, with area under

curve (AUC) values of 0.861 (95% CI: 0.749 - 0.947) in the development cohort

and 0.742 (95% CI: 0.588 - 0.884) in the validation cohort. High radiomics-

derived scores were positively correlated with elevated STAT3 expression, longer

OS (p = 0.034), and immune-related gene signatures indicative of a heightened

immune response.
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Conclusion: Radiomics analysis of DCE-MRI images in this study offered a non-

invasive method for predicting STAT3 expression and characterization of the

tumor immune microenvironment. This approach can offer valuable insights into

breast cancer prognosis and support the development of personalized therapies.
KEYWORDS

breast cancer, immune microenvironment, prognosis, STAT3, machine learning
1 Introduction

Breast cancer remains the most prevalent malignancy and

leading cause of cancer-related mortality among women

worldwide (1). Although significant progress has been made in

primary treatments (surgery, chemotherapy, and radiotherapy),

10%–20% of early-stage patients still experience recurrence and

metastasis within five years (2). This underscores the critical need

for more precise prognostic tools to enable early intervention and

personalized therapy. While current prognostic markers including

TNM staging, molecular subtypes, and treatment modalities (3–5)

could provide valuable information, they are limited by subjectivity,

poor reproducibility, and the invasive nature of tissue sampling,

which may not fully represent tumor heterogeneity, highlighting the

necessity for objective, non-invasive methods to enhance the

accuracy of prognostic assessments (6).

Signal transducer and activator of transcription 3 (STAT3) is a

key transcription factor that plays a dual role in immune regulation

and tumor progression, making it a compelling target for cancer

research (7, 8). Unlike immune checkpoint markers such as PD-L1,

which primarily modulate T-cell activity, STAT3 drives oncogenic

processes directly by promoting tumor cell survival, proliferation,

and metastasis (9, 10). Its activation upregulates key mediators like

cyclin D1, c-myc, and Bcl-2, enabling breast cancer progression,

while also enhancing metastatic potential through matrix

metalloproteinases (MMPs) (11–13). Given its central role in both

immune evasion and tumor aggressiveness, STAT3 inhibition offers

a broader therapeutic strategy compared to pathway-specific targets

like PD-L1 (14). This study focuses on STAT3 to elucidate its

tumor-intrinsic mechanisms and explore its potential as a

multifaceted therapeutic target in breast cancer.

Radiomics provides a powerful framework for non-invasively

linking imaging phenotypes to molecular characteristics (15).

Dynamic contrast-enhanced magnetic resonance imaging (DCE-

MRI), known for its superior soft tissue resolution, provides

detailed and quantifiable data, making it increasingly valuable in

breast cancer diagnosis and treatment. The integration of radiomics

with DCE-MRI images has emerged as a transformative strategy for

the non-invasive diagnosis and prognosis of breast cancer, aiding in

tumor identification, characterization, staging, and treatment

planning. This approach advances personalized medicine by

quantifying tumor heterogeneity, offering tailored therapies, and
02
prognostic insights However, current radiomics research primarily

focuses on macroscopic tumor features, with limited investigation

of underlying molecular mechanisms.

While radiogenomic correlations have been well characterized

in malignancies such as lung adenocarcinoma (16), hepatocellular

carcinoma (17), head and neck squamous cell carcinoma (18),

glioma (19), gastrointestinal tumor (20), and pancreatic cancer

(21), no study has been reported in breast cancer regarding non-

invasive biomarkers for STAT3 pathway activation and its clinical

implications. To address this gap, we aimed to develop a non-

invasive radiomics approach using DCE-MRI to predict STAT3

expression and assess tumor immune status. Our approach

integrates bioinformatics with machine learning (ML), employing

six distinct classifiers to construct predictive models from early- and

delayed-phase MRI radiomic features. By systematically optimizing

model performance, we aim to establish a robust, imaging-based

tool for prognostic stratification and personalized therapeutic

decision-making in breast cancer.
2 Materials and methods

2.1 Study sample

The study incorporated multi-modal data from established

public repositories. From The Cancer Genome Atlas Breast

Invasive Carcinoma collection (TCGA-BRCA) (22), we obtained

RNA-seq and clinical data for 1,070 breast cancer patients, applying

stringent quality controls that excluded: (a) 20 samples with

inadequate sequencing quality; (b) 30 patients with OS <30 days,

to reduce non-cancer-related mortality bias; and (c) 12 male

patients, resulting in a final cohort of 1,008 cases with complete

molecular and clinical profiles. To establish a robust normal tissue

reference, 80 female breast samples from GTEx (23) were acquired

and integrated after batch effect correction using the “limma”

package (Additional file 1).

For radiogenomic analysis, DCE-MRI data from The Cancer

Imaging Archive (TCIA) database (24) were analyzed. TCGA and

TCIA breast cancer cohorts were matched using patient IDs and

DICOM metadata to ensure consistent patient populations.

Exclusion criteria included: (a) missing gene expression data (n =

5); (b) incomplete MRI sequences (n = 16); (c) prior treatments (n =
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4); and (d) suboptimal image quality, including SNR < 20 dB,

presence of motion artifact or incomplete image coverage (n = 7),

yielding 101 patients with matched imaging-genomic data. All

molecular profiles (including tumor/normal samples) were

accessed via Xena (25), while immune-related gene sets were

sourced from ImmPORT (26) (Additional file 2). The integrated

study design is summarized in Figure 1A, and the follow-up

research process is shown in Figure 1B. As this research utilized

exclusively de-identified, publicly available data, institutional review

board approval was waived.
2.2 Digital image analysis of STAT3
expression

STAT3 expression was quantified using standardized IHC with

a validated anti-STAT3 antibody on FFPE tumor sections, following

established protocols with appropriate controls. Digital image

analysis was performed using QuPath, with tumor and stromal

compartments annotated by pathologists. Expression levels were

assessed through integrated and average optical density

measurements. Methodological rigor was ensured through

technical reproducibility testing, molecular correlation with

transcriptomic data, and clinically relevant threshold

determination. Complete detai ls are provided in the

Methods section.
2.3 Association between STAT3 expression
and prognostic outcomes in patients

We employed the minimum p-value method to establish the

optimal STAT3 expression cutoff, stratifying patients into low (n =

431) and high (n = 577) expression groups. Survival outcomes were

compared using Kaplan-Meier analysis (“survminer” package) with

log-rank testing (95% CIs). A 10-year landmark analysis was

implemented as it represents a clinically meaningful timeframe

for breast cancer outcomes while maintaining adequate statistical

power, capturing both early immunoediting and late immune

escape phases relevant to STAT3 biology.
2.4 Assessment of clinical prognostic
factors through cox regression and
subgroup analyses

Prognostic analyses were conducted using a two-stage

approach: (1) univariate Cox regression (“survival” package)

identified significant clinical risk factors, which were then (2)

incorporated into multivariate models adjusting for potential

confounders. Subgroup analyses evaluated STAT3-prognosis

associations across key clinical strata including: age, gender,

menopausal status, prior malignancy history, clinical stage at

diagnosis, surgical procedures for breast carcinoma and axillary
Frontiers in Immunology 03
lymph nodes, tumor histological type, pathological TNM stage, and

radiation therapy administration.
2.5 Functional analysis by Gene Set
Enrichment Analysis

Gene Set Enrichment Analysis (GSEA) was performed to

investigate pathway associations with STAT3 expression in breast

cancer. We conducted differential pathway analysis comparing high

versus low STAT3 expression groups, examining Hallmark, Kyoto

Encyclopedia of Genes and Genomes (KEGG), and Gene Ontology

(GO) terms. The corresponding gene sets for Hallmark, KEGG, and

GO pathways were obtained from the GSEA database for this

analysis. Significance of enriched pathways was determined using

a nominal p-value < 0.05 and an FDR-adjusted q-value threshold of

< 0.25 to account for multiple testing. Pathways meeting these

criteria were considered statistically significant.
2.6 Immune microenvironment and
treatment predictions in breast cancer

To explore the TIME, RNA-seq data from all patients were

analyzed using the CIBERSORTx database (27) to evaluate immune

cell infiltration. Spearman correlation analysis was used to examine

the association between STAT3 expression levels and immune cell

infiltration in breast cancer, providing insights into the immune

landscape and its potential implications for treatment predictions.
2.7 Construction and evaluation of the
radiomic model

An experienced radiologist performed semi-automated 3D

tumor segmentation using 3D Slicer on early- and delayed-phase

MRI from 101 patients, generating paired volumes of interest

(VOIs) per case. Inter-reader consistency was assessed in a 30-

case subset by a senior radiologist.

Image preprocessing (bias field correction, resampling) was

performed using PyRadiomics (v3.01) and SimpleITK (v2.2.0).

Radiomic features (first-order, morphological, texture, and high-

order statistics) were extracted from segmented VOIs. To mitigate

batch effects, ComBat harmonization (Batch=6) was applied using

scanner model information from DICOM metadata, followed by Z-

score normalization. Subsequently, patients were divided into

development/validation sets (6: 4) by STAT3 expression, balanced via

Chi-square/Fisher’s tests. Features were screened in the development

cohort, retaining only features with ICC > 0.70. Following redundancy

reduction (r > 0.90), LASSO regression with 50% discount cross-

validation selected optimal features.

The predictive models were developed using six ML algorithms

(LR, SVM, KNN, RF, DT, XGBoost) to generate radiomics scores via

SPSS (v26). To prevent overfitting with limited samples, we optimized
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the scikit-learn framework and hyperparameters via grid search

(detailed in Additional file 3). Model discrimination was assessed

through receiver operating characteristic (ROC) analysis with area

under curve (AUC). The Youden index-derived cutoff optimized Rad-

score classification, followed by comprehensive evaluation using

sensitivity, specificity, positive predictive value (PPV), negative
Frontiers in Immunology 04
predictive value (NPV), and F1-score. The best-performing model in

the validation cohort was selected for clinical application. The optimal

model identified in the validation cohort was further subjected to

bootstrap resampling (n = 1,000 iterations) to evaluate its robustness.

Additional validation included Hosmer-Lemeshow testing, calibration

curves, and decision curve analysis (DCA) to assess clinical utility
FIGURE 1

Study workflow. (A) Patient enrollment flow chart; (B) Schematic diagram of the workflow of an imaging histology study.
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2.8 Integrated analysis of radiomics, STAT3
expression, survival, and immune
correlations

Our radiomics model was employed to calculate RAD-scores

for patients stratified by STAT3 expression levels (high vs low)

across development and validation cohorts. Using the Youden

index, we established RAD-score thresholds to categorize patients

into high-RAD and low-RAD groups. Survival outcomes were then

analyzed through Kaplan-Meier curves generated with the

“survminer” package, with statistical significance assessed via log-

rank testing. To investigate potential immune correlates, we

performed Spearman correlation analysis between RAD-scores

and immune-related genes from the ImmPORT database.
2.9 Statistical analyses

For comparative analyses, categorical variables were evaluated

using Chi-square or Fisher’s exact test, while continuous variables

were analyzed with t-tests (normal distribution) or Mann-Whitney

U-tests (non-normal distribution). STAT3 expression thresholds

were determined using the minimum p-value method. RAD-score

cutoffs were established based on imaging histology scores

corresponding to the Youden index.

A p-value ≤ 0.05 was considered statistically significant. All

statistical analyses were performed using SPSS (v26), and R (v4.3.2).

Figures were generated with GraphPad Prism (v8.0.0).
3 Results

3.1 Baseline characteristics of patients

This study analyzed a cohort of 1,008 breast cancer patients

from TCGA along with 80 normal breast tissue samples from GTEx

for comparative analysis. We determined the optimal STAT3

expression cutoff value to be 5.089 by using the minimum p-value

method, which stratified patients into low-expression (n = 431,

≤ 5.089) and high-expression (n = 577, > 5.089) groups. Baseline

clinical characteristics are presented in Table 1, revealing

statistically significant differences between groups for breast

carcinoma surgical procedure (p = 0.015) and tumor histological

type (p = 0.007), while other clinical indicators showed no

significant variation. Comparative analysis of the combined GTEx

and TCGA datasets demonstrated significantly lower STAT3

expression in tumor tissues compared to normal breast specimens

(p < 0.001, Figure 2A).
3.2 STAT3 expression levels and ten-year
survival

K-M analysis revealed significantly better survival outcomes in

the high STAT3 expression group compared to the low-expression
Frontiers in Immunology 05
cohort (p = 0.004, Figure 2B). Landmark analysis demonstrated this

survival advantage was particularly pronounced within the first 10

years (p = 0.001), though the difference attenuated beyond this

timeframe (p = 0.383, Figure 2C). Cox regression analyses

confirmed STAT3’s independent prognostic value, with low

expression associated with worse overall survival in both

univariate (Hazard ratio [HR] = 1.596, 95% CI: 1.160–2.196, p =

0.004, Figure 3A) and multivariate models (adjusted HR = 1.927,

95% CI: 1.369–2.712, p < 0.001, Figure 3B). Subgroup analyses

identified particularly strong protective associations in non-

metastatic patients (HR = 0.525, 95% CI: 0.351–0.786, p = 0.002)

and those receiving radiotherapy (HR = 0.633, 95% CI: 0.433–0.925,

p = 0.018) (Additional file 4).
3.3 GSEA analysis of STAT3 expression and
functional pathways

To elucidate the biological mechanisms underlying the survival

advantage observed in patients with high STAT3 expression, we

performed GSEA to identify differentially regulated pathways. High

STAT3 expression was positively associated with epithelial

apoptotic processes (Figure 4A), suggesting enhanced tumor

suppression through regulated cell death, and with TNF-a
signaling via NFkB (Figure 4B), indicating robust anti-tumor

immunity. The folate biosynthesis pathway (Figure 4C) was also

enriched, potentially linking metabolic factors to improved

prognosis. Conversely, low STAT3 expression correlated with

pro-tumorigenic pathways including mRNA 3’-UTR binding

(Figure 4D) and epithelial-mesenchymal transition (Figure 4E),

consistent with increased metastatic potential. Notably, T-cell

receptor signaling enrichment in low-STAT3 tumors (Figure 4F)

may reflect T-cell exhaustion, suggesting compromised

immune surveillance.
3.4 STAT3 expression and immune reaction
in patients with breast cancer

Consistent with STAT3’s established immunomodulatory

functions (7, 28, 29), we systematically evaluated its association

with tumor immune infiltration patterns. Correlation analyses

revealed a complex relationship between STAT3 expression and

immune cell profiles. Elevated STAT3 levels demonstrated

significant negative correlations with cytotoxic immune effectors,

including CD8+ T lymphocytes and natural killer (NK) cells,

suggesting impairment of antitumor immunity in high-STAT3

tumors. Conversely, STAT3 expression showed positive

correlations with immunosuppressive populations, particularly

monocytes, M2-polarized macrophages, and tumor-associated

neutrophils. Mechanistically, these findings suggest STAT3

promotes an immunosuppressive niche through recruitment of

regu la tory mye lo id ce l l s and subsequent re l ease of

immunosuppressive mediators, establishing a self-perpetuating

inhibitory microenvironment (Figure 4G).
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TABLE 1 Baseline table of STAT3 gene high and low expression groups in breast cancer.

Variables Total High expression Low expression P-value

(n = 1008) (n = 577) (n = 431)

Age 0.102

< 45 152 (15.1) 75 (13.0) 77 (17.9)

45 ~ 60 412 (40.9) 241 (41.8) 171 (39.7)

> 60 444 (44.0) 261 (45.2) 183 (42.4)

Menopause status 0.886

Premenopausal 217 (21.5) 126 (21.8) 91 (21.1)

Postmenopausal 647 (64.2) 366 (63.4) 281 (65.2)

Perimenopausal 35 (3.5) 22 (3.8) 13 (3.0)

Unknown 109 (10.8) 63 (10.9) 46 (10.7)

Prior malignancy diagnoses 1

Yes 60 (6.0) 34 (5.9) 26 (6.0)

No 948 (94.0) 543 (94.1) 405 (94.0)

Clinical stage at diagnosis 0.158

I/II 742 (73.6) 435 (75.4) 307 (71.2)

III/IV/Unknown 266 (26.4) 142 (24.6) 124 (28.8)

Breast carcinoma surgical procedure 0.015

BCS 237 (23.5) 133 (23.1) 104 (24.1)

Mastectomy 471 (46.7) 252 (43.7) 219 (50.8)

Unknown 300 (29.8) 192 (33.3) 108 (25.1)

Axillary lymph node surgical procedure 0.108

Axillary lymph node dissection 533 (52.9) 289 (50.1) 244 (56.6)

Sentinel node biopsy alone 250 (24.8) 149 (25.8) 101 (23.4)

Unknown 225 (22.3) 139 (24.1) 86 (20.0)

Histological type of tumor 0.007

Ductal 710 (70.4) 384 (66.6) 326 (75.6)

Lobular 192 (19.0) 126 (21.8) 66 (15.3)

mixed/others 106 (10.5) 67 (11.6) 39 (9.0)

Pathologic T stage 0.889

T1/T2 845 (83.8) 485 (84.1) 360 (83.5)

T3/T4/Tx 163 (16.2) 92 (15.9) 71 (16.5)

Pathologic N stage 0.055

N0/N1/NX 828 (82.1) 486 (84.2) 342 (79.4)

N2/N3 180 (17.9) 91 (15.8) 89 (20.6)

Pathologic M stage 0.444

M0 835 (82.8) 483 (83.7) 352 (81.7)

cM0 (i+)/M1/Mx 173 (17.2) 94 (16.3) 79 (18.3)

Radiation therapy 0.54

(Continued)
F
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3.5 Quantitative analysis of STAT3 protein
expression in breast cancer tissues using
DIA

We utilized the DIA software QuPath for both qualitative and

quantitative anal-yses of IHC-stained images from the HPA

database. By integrating the regions of in-terest delineated by

pathologists, facilitated by QuPath, we distinguished between dis-

tinct compartments within breast cancer (tumor and stromal

regions) and normal breast tissue (breast and stromal

components). Furthermore, we identified cells within STAT3-

positive (STAT3+) and STAT3-negative (STAT3-) breast cancer

subtypes, as well as across various sectors of normal breast tissue
Frontiers in Immunology 07
(Figure 5A). Semi-quantitative anal-ysis demonstrated a statistically

significant difference in Integrated Optical Density (IOD) and

Average Optical Density (AOD) between breast cancer and

normal tissues (IOD: p = 0.004; AOD: p < 0.001, Figure 5B). The

positive rate of STAT3+ cells in tumor re-gions was significantly

higher compared to region of normal breast tissue (p = 0.048,

Figure 5C). The number and density of STAT3+ cells in tumor

tissues were found to be higher compared to those in normal tissues,

however, no statistically significant dif-ference was observed

(number: p = 0.113, Figure 5D; density: p = 0.125, Figure 5E).

Notably, in breast cancer tissues, the number of STAT3+ cells

within the tumor regions were sig-nificantly greater than that

observed in the stromal regions (p < 0.0001, Figure 5F).
TABLE 1 Continued

Variables Total High expression Low expression P-value

(n = 1008) (n = 577) (n = 431)

Yes 524 (52.0) 308 (53.4) 216 (50.1)

No 383 (38.0) 211 (36.6) 172 (39.9)

Unknown 101 (10.0) 58 (10.1) 43 (10.0)
BCS, breast-conserving surgery; ALND, axillary lymph node dissection; SNB, sentinel node biopsy.
FIGURE 2

STAT3 gene expression in breast cancer tissues (n = 1008) and normal tissues (n = 177) and its prognostic implications in patients with breast cancer.
(A) The cutoff value of STAT3 gene expression based on the highest Youden index; (B) K-M survival curves comparing OS between high and low
STAT3 gene expression groups in patients with breast cancer (n = 1008); (C) Landmark analysis of OS between high and low STAT3 gene expression
groups in patients with breast cancer (n = 1008).
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3.5 Screening radiomics features and
performance evaluation of models

The study cohort comprised 101 patients, randomly divided into

development (n = 60) and validation (n = 41) sets at a 6:4 ratio, with
Frontiers in Immunology 08
balanced clinical characteristics and STAT3 expression between groups

(p > 0.05, Additional file 5). From multiphase MRI, 3,100 radiomic

features were initially extracted. Following combat analysis (Figure 6A),

quality control (ICC ≥ 0.70, Additional file 6), Pearson correlation

analysis, and LASSO regression with 5-fold cross-validation (optimal l
FIGURE 3

Forest plots of OS and clinical characteristics in patients with breast cancer (n = 1008). (A) Forest plot of univariate analysis examining the
relationship between OS and clinical characteristics in patients with breast cancer; (B) Forest plot of multivariate analysis between OS and clinical
characteristics in patients with breast cancer. BCS, breast-conserving surgery; ALND, axillary lymph node dissection; SNB, sentinel node biopsy.
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= 0.081), six robust features (three each from early- and delayed-phase

images) were identified at last (Figure B). The weight coefficients of

each selected features inherently represent their importance were

shown in Additional file 7, and the clinical and biological

interpretations were detailed in Additional file 8.

The analysis revealed that while the RF model showed

significantly higher AUC than LR in the training cohort (p = 0.029),

other models demonstrated only marginal improvements over LR

(Additional file 9). Notably, both LR and DT models maintained

consistent performance across development and validation cohorts

(p > 0.05), indicating acceptable generalizability, whereas other models

exhibited varying degrees of overfitting. When comparing the two

stable models (Additional file 9), LR demonstrated superior

discriminative ability in both cohorts (development: 0.861, 95% CI

[0.749 - 0.947], Figure 6C; validation: 0.742, 95% CI [0.588 - 0.884],

Figure 6D, p = 0.209) compared to DT (development: 0.730, 95% CI

[0.615 - 0.837], Figure 6C; validation: 0.571, 95% CI [0.376 - 0.746],

Figure 6D, p = 0.089). Based on this robust performance and stability

across datasets, we selected the LR model as the optimal predictive

model for our study. The performance matrix analysis (Figures 6E, F)

further confirmed that the LR model achieved the highest specificity

(92.3%), PPV (94.1%), and Youden index (0.495) in the validation

cohort. Bootstrap validation confirmed LR model stability (mean

AUC = 0.822, 95%CI: 0.780–0.847, Additional file 10). Calibration

analysis showed excellent fit in both cohorts (p = 0.412 development,

p = 0.088 validation; Figures 6G, H). DCA demonstrated clinical utility

across probability thresholds of 0%-70% (development, Figure 6I) and

20% - 50% (validation, Figure 6J). These results validate the LR

model’s accuracy, reliability, and clinical applicability for breast

cancer stratification.

The Rad-score was calculated using the LR-based model and

compared between STAT3-low and STAT3-high expression groups
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in both the development and validation cohorts. Significant RAD-

score differences were observed between STAT3 expression groups

in both development (median [IQR]: 0.222 [-0.070, 0.465] vs 0.628

[0.405, 0.844], p < 0.001, Figures 6K–L) and validation cohorts

(0.258 [-0.069, 0.452] vs 0.582 [0.430, 0.789], p = 0.018,

Figures 6M, N).
3.6 Relationship between RAD-scores and
patient survival

The prognostic value of RAD-scores was evaluated by analyzing

their association with OS in the 101-patient cohort. Using the Youden

index-derived cutoff (0.523), patients were stratified into high (n = 47)

and low (n = 54) RAD-score groups. K-M analysis demonstrated

significantly improved OS in the high-RAD group (p = 0.034,

Figure 7A), confirming the model’s prognostic capability.
3.7 Relationship between RAD-scores and
tumor immune-related genes

Our analysis revealed significant immunogenomic

correlations with RAD-scores in breast cancer. A strong positive

association was observed between RAD-scores and STAT3

expression (r = 0.47, p < 0.01, Figure 7B), with similar

correlation patterns for immune-related genes. Specifically,

RAD-scores showed significant positive correlations with:
• T-cell related genes (TSC1, FOXP1, LEF1, SEMA4A, RELB,

PSEN1, EIF2AK4, RORA, IFNW1, IL4R, KMT2A, BCL6;

p < 0.05, Figure 7C)
FIGURE 4

Biological and immunological functions of the STAT3 gene in breast cancer. (A–C) GSEA enrichment analysis for the STAT3 high expression group
(A, GO analysis; B, Hallmark pathway analysis; C, KEGG pathway analysis); (D–F) GSEA enrichment analysis for the STAT3 low expression group
(D, GO analysis; E, Hallmark pathway analysis; F, KEGG pathway analysis); (G) Correlation matrix showing the relationship between STAT3 gene
expression and immune cell infiltration levels in breast cancer tissues.
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• NK-cell markers (STAT5B, AXL, PBX1, IFNW1, RABL3;

p < 0.05, Figure 7D)

• B-cell associated genes (NOTCH2, BCL2, MLH1, LEF1,

ZBTB1, BLNK, PIK3R1; p < 0.05, Figure 7E)
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4 Discussion

Breast cancer biomarker research remains in nascent stages,

with no single prognostic marker achieving universal clinical
FIGURE 5

Digital image analysis of immunohistochemical staining images in HPA database. (A) Results of tissue segmentation and cell recognition of breast
cancer and normal breast tissue; (B) Integrated optical density and average optical density of STAT3+ cells in breast cancer and normal breast
tissues; (C) Rate of STAT3+ cells in breast cancer and normal breast tissues; (D) Number of STAT3+ cells in breast cancer and normal breast tissues;
(E) Density of STAT3+ cells in breast cancer and normal breast tissues; (F) Comparison of the number of STAT3+ cells in different regions.
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adoption. Among emerging candidates, STAT3 has emerged as a

critical regulator in breast cancer progression, particularly in triple-

negative subtypes, demonstrating strong prognostic value and

immunotherapy response associations (10, 30). These

characteristics position STAT3 expression status as a crucial

determinant for personalized treatment strategies.

Our study findings demonstrate the complex role of STAT3 in

breast cancer, particularly its complex relationship with immune

regulation and patient prognosis, which aligns with existing

literature that emphasizes the importance of STAT3 as a

prognostic factor and potential biomarker for immunotherapy

responses in breast cancer (31, 32), and this phenomenon may

contribute to the diminished ten-year survival rates observed in

these patients, reflecting the complex interplay between STAT3

expression patterns and immune activity Additionally, our study

developed a novel radiomics approach using DCE-MRI to non-

invasively predict STAT3 expression, bridging imaging and

genomic analysis in precision oncology.

Our study revealed higher STAT3 mRNA levels in normal

tissues compared to breast cancer tissues, challenging the

conventional oncogenic view of STAT3 (33). This paradox

underscores the complexity of its role in cancer biology,

necessitating evaluation of multiple factors, including mRNA/

protein expression, activation states (e.g., phosphorylation), and

context-dependent signaling pathway interactions. Notably, STAT3

expression correlated significantly with immune modulation,

particularly through suppressed NK cell activity—a key anti-
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tumor mechanism—potentially facilitating immune evasion via

impaired IFN-g and TNF-a production (34, 35). While our

CIBERSORTx analysis identified these immune correlates, the

computational nature of deconvolution warrants validation

through flow cytometry or spatial transcriptomics in future studies.

The GSEA analysis revealed enrichment of immune-suppressive

pathways and exhaustion markers in low-STAT3 tumors, suggesting

STAT3 deficiency may drive immune evasion through both

immunosuppressive cell recruitment and T-cell dysfunction. This

aligns with evidence that STAT3 loss promotes TGF-b-mediated

suppression and PD-L1 upregulation, while impairing T-cell

metabolic fitness through oxidative stress (36, 37). The combined

effects of tumor cell p-STAT3 hyperactivation and STAT3 mRNA

deficiency likely create a dual immunosuppressive axis, though

future studies should dissect cell-type-specific effects using

spatial transcriptomics.

The prognostic paradox of low STAT3 mRNA associating with

poorer survival may reflect compensatory hyperactivation through

post-transcriptional modifications. Growing evidence suggests

STAT3’s functional activity is primarily regulated through

phosphorylation status rather than mRNA abundance (38). While

moderate STAT3 activity maintains normal T-cell function (39), its

deficiency may drive T-cell exhaustion, evidenced by enriched TCR

signaling pathways as a compensatory mechanism. This aligns with

studies demonstrating that STAT3 activation (p-STAT3), not total

STAT3 mRNA levels, drives tumor progression and poor survival,

likely via cell-autonomous and immune-mediated mechanisms
FIGURE 6

Radiomics model construction and efficacy evaluation results. (A) The box diagram of eigenvalue distribution before and after Combat with 20
random features; (B) Cluster heatmap of the correlation of selected features; (C, D) ROC curves showing the performance of all radiomics models in
the development and validation cohorts; (E, F) Metric heatmap analysis of diagnostic efficacy parameters for all radiomics models in the
development and validation cohorts; (G, H) Calibration curves depicting the agreement between predicted and observed outcomes based on LR
model in the development and validation cohorts; (I, J) DCA curves evaluating the clinical utility of the LR model in the development and validation
cohorts; (K) Waterfall plot illustrating the distribution of radiomics scores (RAD-scores) in the development cohort; (L) Box plot showing the
differences in distribution of RAD-scores between high and low STAT3 expression groups in the development cohort; (M) Waterfall plot of RAD-
scores in the validation cohort; (N) Box plot comparing RAD-score distributions between high and low STAT3 expression groups in the
validation cohort.
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(40). Although our study identifies a correlation between low

STAT3 expression and T cell exhaustion, the downstream

mechanisms remain unclear. Prior work suggests STAT3 may

regulate key exhaustion-related genes, such as PD-1 and TOX

(41), and modulate T cell metabolism (42). While our data do not

functionally validate these targets, the observed exhaustion

signature aligns with potential STAT3-dependent regulation.

Further studies could clarify these mechanistic links.

Contrary to previous reports of STAT3 upregulation in breast

cancer (11, 12), our integrated TCGA/GTEx analysis demonstrated

higher constitutive expression in normal tissues, with survival

analysis showing no significant prognostic impact of mRNA levels

alone. This dichotomy suggests STAT3’s physiological role in

normal tissue homeostasis (43) versus its cancer-specific

hyperactivation through post-transcriptional mechanisms (44).

Crit ica l ly , tumor progress ion appears driven not by

transcriptional overexpression but by dysregulated activation

states, particularly phosphorylation-mediated signaling (45, 46).

These findings redefine STAT3 ’s oncogenic paradigm,

emphasizing that malignant progression depends more on post-

transcriptional activation than mRNA abundance, with important

implications for targeted therapeutic strategies.
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Recent advances in medical imaging and computer science have

established radiomics as a powerful tool for breast cancer research

(47). Multisequence, multiparametric breast MRI enables extraction

of high-throughput radiomic features that provide novel biological

insights, predict disease progression, and guide personalized

treatment strategies. The emerging field of radiomics has

demonstrated particular promise by correlating multimodal

imaging data (MRI/CT) with genomic profiles to improve

prognostic predictions (48–50). This approach has revealed

significant associations between imaging features (tumor

morphology, texture) and molecular characteristics, including gene

expression patterns in the tumor microenvironment (51, 52). Given

the established association between high STAT3 expression and poor

prognosis (53), we hypothesized that integrating STAT3 expression

profiles with advanced radiomic analysis could enhance

prognostic accuracy.

In this study, we developed a novel MRI-based radiomics model

to predict prognosis and immunotherapeutic characteristics based on

STAT3 expression. Leveraging MRI’s superior soft-tissue resolution

and multiphasic contrast enhancement capabilities, so the signal

intensity and texture features of these images correlate with tumor

heterogeneity and may also serve as predictors of its biological
FIGURE 7

Association of RAD-score With Prognosis and Immune-Related Genes. (A) K-M curves comparing survival outcomes between high and low RAD-
score groups in patients with breast cancer; (B) Correlation matrix illustrating the relationship between RAD-scores and immune cell-related gene
expression in breast cancer tissues; (C–E) Correlation matrix between RAD-score and immune cell-related gene expression in breast cancer tissues
(C, T cell-related genes; D, NK cell-related genes; E, B cell-related genes). The symbols "*" and "**" indicate statistical significance levels of p < 0.05
and p < 0.01, respectively.
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behavior (54). We identified six statistically significant radiomic

features associated with STAT3 expression: one first-order feature

(Square_Firstorder_Kurtosis), two texture features, and three

wavelet-transformed higher-order features. Notably, the two most

predictive features (regression coefficients > 10) derived from

delayed-phase images included: (1) wavelet.HHL_glcm_JointEnergy

(Coef = 122.452), reflecting tumor texture uniformity, and (2)

original_glszm_LargeAreaLowGrayLevelEmphasis (Coef = 32.437),

characterizing tissue distribution patterns (55). Through

comprehensive evaluation of multiple machine learning classifiers,

the LR-based model demonstrated superior generalizability in the

validation cohort compared to alternative approaches. Despite

comparable AUC to other models, LR was selected for its lower

performance variance and higher specificity—a clinical priority to

minimize costly false positives in molecular profiling. This finding

supports the selection of the LR model as a robust, non-invasive tool

for characterizing STAT3 expression levels, offering potential clinical

utility for tumor phenotyping.

Our study advances previous research by uniquely integrating

STAT3 expression analysis with advanced radiomics, revealing new

relationships between molecular processes and imaging

phenotypes. The identified features not only capture subvisual

tumor heterogeneity but also demonstrate significant associations

with gene expression and survival outcomes. Future directions

include multi-omics integration for enhanced predictive

modeling, prospective clinical validation, and investigation of

radiomic-immune microenvironment correlations. While clinical

translation requires further validation, our findings demonstrate

radiomics’ potential as a non-invasive tool for STAT3 expression

profiling and prognostic assessment in breast cancer, representing a

significant step toward precision oncology.

However, several limitations should be acknowledged in this study.

First, this study focused on OS due to data availability constraints in

public repositories. Future work should integrate disease-free survival

and treatment-response metrics through prospective collaborations

with clinical centers. Second, potential biases may exist as all DCE-

MRI data were obtained from public repositories, and although

ComBat harmonization was applied, residual variability across

scanners may persist. Third, the smaller sample size (particularly in

the TCIA cohort) may limit generalizability, warranting external

validation in larger multicenter cohorts - an effort we are actively

pursuing through expanded collaborations. Lastly, incomplete

immunohistochemical data precluded molecular subtype analyses,

potentially masking subtype-specific radiomic-STAT3 relationships.

These limitations highlight the need for prospective multicenter

studies with standardized protocols.
5 Conclusions

This study establishes STAT3 as a key prognostic biomarker in

breast cancer and demonstrates the clinical potential of our

validated DCE-MRI radiomics model for noninvasive STAT3

assessment. These findings advance precision oncology by
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enabling imaging-based prediction of tumor biology and

treatment response, supporting personalized therapeutic strategies.
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