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combined with single-cell
seguencing analysis revealed
prognostic genes related to
myeloid cell differentiation in
prostate cancer and
experimental verification

Jianbai Chen, Jianxin Qiu, Wei Zhang, Zhiyong Nie,
Xiaoping Gao, Gongquan Xu, Leiming Kang
and Zhiming Zhang*

Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China

Background: Myeloid cell differentiation (MCD) has an important correlation with
prostate cancer (PCa), but the mechanism of action of the former in the latter is
still under investigation. This study designed to investigate the prognostic genes
related to MCD in PCa and the associated mechanisms.

Methods: The related data were downloaded from public databases.
Differentially expressed genes (DEGs) were intersected with MCD related genes
(MCDRGs) to acquire candidate genes. Candidate prognostic genes with a causal
relationship to PCa were further obtained through Mendelian randomization
(MR). Prognostic genes were acquired by univariate Cox regression analysis and
Least Absolute Shrinkage and Selection Operator (LASSO) analysis. Then, the risk
model was built based on prognostic genes. Immune infiltration, nomogram
model, and drug sensitivity were employed to investigate the roles of prognostic
genes in PCa. The manifestation of prognostic genes in key cells was also
investigated by single-cell sequencing (scRNA-seq) analysis. Finally, the
manifestation of prognostic genes were authenticated by in vitro experiments.
Results: The 23 candidate prognostic genes had a causal relationship with PCa.
The 5 prognostic genes (NR3C1, BMP2, RACGAPL, TLR3, FASN) were identified.
The risk models suggested that high risk group (HRG)'s survival rate was inferior
to that of low risk group (LRG). The nomogram indicated that prognostic genes
could effectively predict the survival status of PCa patients. There were 18
immune cells that suggested notable differences between the HRG and the
LRG. The HRG and LRG suggested notable differences in sensitivity to 86 drugs
such as AZD8186. Epithelial cells were considered as key cells. Only FASN was
consistently active during critical cell differentiation. The in vitro results were
consistent with the results of bioinformatics analysis, indicating that the analysis
results were reliable.
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Conclusion: This study identified 5 prognostic genes and a risk model,
suggesting a fresh thought on the subsequent development of PCa related drugs.

prostate cancer, myeloid cell differentiation, prognostic genes, Mendelian
randomization, single-cell sequencing analysis, experimental verification

1 Introduction

Prostate cancer (PCa) represents one of the most prevalent
malignancies in the male genitourinary system, globally ranking as
the second most frequently diagnosed cancer among males (1, 2). Its
pathogenesis is multifactorial, involving age, genetic predisposition,
racial disparities, and dysregulated gene expression, with
approximately 20% of cases exhibiting aberrations in DNA repair
pathways (1, 3). Although localized PCa in early stages can be
effectively managed through radical prostatectomy or radiotherapy,
biochemical recurrence occurs in 20-40% of treated patients (1, 3).
Notably, individuals progressing to metastatic castration-resistant PCa
(mCRPC) demonstrate a 5-year survival rate below 30%, underscoring
the critical need for advanced therapeutic strategies (2, 3).

Current clinical management strategies encompass androgen
deprivation therapy (ADT), novel androgen receptor pathway
inhibitors, chemotherapy, and immune checkpoint inhibitors
(ICIs) (3-5). However, these therapeutic approaches demonstrate
suboptimal efficacy against metastatic lesions and biochemical
recurrence, coupled with a substantial toxicity burden that often
limits their clinical utility (3-5).

In-depth investigation of the molecular mechanisms underlying
PCa represents a critical avenue to overcome current therapeutic
limitations. scRNA-seq technologies have unveiled substantial
heterogeneity within cancer-associated fibroblasts (CAFs) in the
tumor microenvironment, which promote oncogenic niche
formation through secretion of specific cytokines, a biological feature
positively correlated with tumor progression (6, 7). Genomic studies
have identified key driver events including PTEN deletion and BRCA1/
2 mutations that induce homologous recombination repair (HRR)
pathway dysfunction (3, 8, 9). PARP inhibitors developed based on
these molecular characteristics demonstrate significant clinical benefits
in BRCA-mutant patients, extending median radiographic
progression-free survival (rPES) to 7.4 months (3). Prognostic
models systematically integrating 10 CAFs core regulatory genes
such as THBS1 and LDHA exhibit robust discriminative power for
stratifying patient survival outcomes through risk scoring (3). These
findings not only elucidate the evolutionary biology of PCa but also
provide critical theoretical foundations for developing targeted
therapies and advancing personalized medicine. Therefore,
identification of novel prognostic biomarkers and establishment of
precision prediction frameworks will be pivotal to resolving therapeutic
challenges in advanced PCa.
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Myeloid cells, as central orchestrators of the tumor immune
regulatory network, critically determine immune evasion, tumor
progression, and clinical outcomes through their differentiation states
and functional plasticity (10, 11). Accumulating evidence demonstrates
that myeloid-derived suppressor cells (MDSCs) in solid tumor
microenvironments drive oncogenesis through dual mechanisms,
direct suppression of CD8+ T cell antitumor activity via effector
molecules including arginase-1 (ARG1), inducible nitric oxide
synthase (iNOS), and reactive oxygen species (ROS), and facilitation
of metastatic dissemination through pro-angiogenic mediators such as
VEGEF (10, 12). Notably, LOX-1 surface expression on MDSCs exhibits
significant inverse correlations with circulating tumor DNA burden and
overall survival rates (10, 12). Mechanistically, tumor-derived oxidized
lipids potentiate myeloid immunosuppressive capacity by activating the
STATS3 signaling axis and CSFIR pathway, thereby inducing metabolic
reprogramming that sustains immune tolerance (11, 12).

Previous study has indicated that PCa cells elicit functional
reprogramming of myeloid lineages (including THP-1 and HL-60)
through stress protein secretion, particularly heat shock protein 27
(Hsp27), manifesting as surface marker polarization and VEGF
secretion dysregulation, thereby modulating tumor-immune crosstalk
(13). Notably, therapeutic interventions targeting myeloid surface
receptors like the CD47-SIRP. axis enhance macrophage-mediated
tumor phagocytosis compared to controls and improve anti-tumor
immune responses in preclinical studies (11). However, the precise
molecular targets governing myeloid cell differentiation (MCD) in PCa
progression remain poorly characterized, particularly key signaling
pathways such as JAK/STAT or NF-xB signaling pathways and
immunoregulatory cytokine networks (14). Moreover, the
bidirectional regulatory network between neoplastic cells and
myeloid populations involving cytokine crosstalk and surface
receptor interactions requires comprehensive investigation to
delineate their co-evolution mechanisms.

Mendelian randomization (MR) leverages the random
assortment of genetic variants during gametogenesis to emulate
randomized controlled trials, effectively circumventing
confounding biases and reverse causation inherent in
conventional observational studies (15, 16). SCRNA-seq offers
high-throughput resolution of whole transcriptomes at individual
cell resolution, enabling precise mapping of immune cell
heterogeneity and functionally distinct subsets within tumor
microenvironments. Pioneering studies have employed scRNA-
seq to construct pan-cancer endothelial cell atlases, uncovering
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tumor-specific endothelial subpopulations orchestrating pro-
angiogenic and immunosuppressive programs (5, 17, 18). In PCa
pathobiology investigations, Miao et al. integrated scRNA-seq with
bulk transcriptomics to identify MXRA8-mediated tumor
progression through dysregulating oxidative stress pathways in
prostate tumor niches (16), while Ye et al. established MR-based
causal relationships between genetically proxied CD25+ naive B cell
abundance and PCa risk (19). Nevertheless, the synergistic
application of MR framework with scRNA-seq technologies to
decipher MCD-PCa crosstalk mechanisms remains substantially
underexplored, representing a critical knowledge gap in the field.
In this study, we employed integrated multi-omics analyses
(incorporating bulk transcriptomic and scRNA-seq data) to identify
prognostically significant genes causally linked to MCD through MR
framework, ultimately constructing a clinical-grade prognostic
signature. Bioinformatics interrogation systematically delineated the
molecular regulatory circuitry underlying these candidate genes in PCa
progression. Furthermore, single-cell resolution analysis uncovered
their expression dynamics within disease-associated cell
subpopulations, while reverse transcription-quantitative polymerase
chain reaction (RT-qPCR) experiments provided preliminary
validation of their potential roles in tumorigenesis. To further
validate the functional roles of candidate genes in PCa progression,
we performed complementary in vitro assays: Western blot analysis to
examine protein expression, Ki67 immunofluorescence staining to
assess cell proliferation, and scratch-wound assays to evaluate cell
migratory capacity, aiming to verify their regulatory effects on PCa cell
malignant behaviors. Our findings provide multi-dimensional evidence
elucidating MCD-associated molecular networks in PCa, establishing
both conceptual and experimental foundations for developing
personalized therapeutic strategies and targeted drug discovery.

2 Method
2.1 Data collection

The transcriptome data (TCGA-PRAD) on gene expression matrix
and relapse information of PCa were extracted from The Cancer
Genome Atlas (TCGA) database (https://tcga-data.nci.nih.gov/tcga/).
The TCGA-PRAD dataset (access time: November 20th, 2024)
included 502 PCa tissue samples (397 samples with relapse
information) and 52 paracancer (control) tissue samples. Among
the 397 samples, 70% samples (278 samples) were employed as the
training set (TCGA-PRAD-train), and 30% samples (119 samples)
were employed as the validation set (TCGA-PRAD-validation). The
single-cell RNA sequencing (scRNA-seq) data (GSE141445) of PCa
was scoured from Gene Expression Omnibus (GEO) database
(https://www.ncbi.nlm.nih.gov/geo/). The GSE141445 (GPL24676,
access time: November 20th, 2024) included 13 PCa tissue samples.
Validation dataset GSE116918 contained 248 samples with
complete recurrence information. The MR data (EBI-A-
GCST90018905) of PCa and eQTL data were acquired from the
Integrative Epidemiology Unit (IEU) Open Genome-wide
Association Study (GWAS) database (https://gwas.mrcieu.ac.uk/).
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The “EBI-A-GCST90018905” included 24,119,306 SNPs from
211,227 Europeans (case: control=11,599: 199,628). The 423
MCD-related genes (MCDRGs) used in the study were obtained
by merging and removing duplicates from three myeloid cell
differentiation-related datasets: GOBP_NEGATIVE_
REGULATION_OF_MYELOID_CELL_DIFFERENTIATION (95
genes), GOBP_POSITIVE_REGULATION_OF_MYELOID_
CELL_DIFFERENTIATION (104 genes), and GOBP_MYELOID_
CELL_DIFFERENTIATION (423 genes), which were downloaded
from the MCD related genes (MCDRGs) were acquired from
Molecular Signatures Database (MSigDB) (https://www.gsea-
msigdb.org/gsea/msigdb/human/search.jsp) and relevant
references (20) (Supplementary Table 1).

2.2 Differential expression analysis

To acquire differentially expressed genes (DEGs) between PCa
and control samples in TCGA-PRAD, “DESeq2” package (v 3.4.1)
was carried out (PCa vs control) (Jlog,Fold Change (FC)| > 0.5, P <
0.05) (21). On the basis of the log,FC value, DEGs were visualized
and the top 10 up/down-regulated gene names were labeled by the
volcano plot utilizing “ggplot2” package (v 3.4.1) (22). Similarly, the
expressions of the top 10 up/down-regulated genes between PCa
and control groups were displayed by the heat plot utilizing
“ComplexHeatmap” package (v 2.14.0) (23).

2.3 ldentification and functions of
candidate genes

DEGs were intersected with MCDRGs to acquire candidate genes
via “ggvenn” package (v 1.7.3) (24). To probe the organic activities and
signal pathways involved in candidate genes, based on background
gene set of “org.Hs.eg.db” package (v 3.16.0) (25), Gene Ontology (GO)
(P <0.05) and Kyoto Encyclopedia of Genes and Genomes (KEGG) (P
< 0.05) enrichment analyses were carried out utilizing “clusterProfiler”
package (v 4.7.1.3) (26). Subsequently, to determine the interactions of
proteins encoded by candidate genes, candidate genes were uploaded to
STRING database (https://cn.string-db.org/) (interaction score > 0.4).
The results were imported into Cytoscape software (v 3.9.1) and
Protein-Protein Interaction (PPI) network was constructed (27).

2.4 MR analysis

To probe the causal dependence between candidate genes and
PCa and acquire candidate prognostic genes, MR analysis was
performed with PCa as outcome event and candidate genes as
exposure factors utilizing “TwoSampleMR” package (v 0.6.1) (28).
The MR consisted of 3 assumptions: (1) instrumental variables
(IVs) were linked with exposure factors; (2) IVs could only
influence outcomes by exposure factors; (3) IVs were not linked
with potential confounders. To obtain effective IVs, exposure
factors and outcome event were read and IVs were screened via
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“extract_instruments” function. The screening criteria were as
follows: (1) IVs strikingly linked with exposure factors (P <
5x107°%); (2) IVs that exhibited linkage disequilibrium were
removed with R? = 0.001, kb=10, and clump=TRUE; (3) IVs that
were strikingly linked with outcome were removed with rsq=0.8 and

proxies=TRUE; (4) IVs whose F statistic < 10 were removed
(F= (N*K*I)/ R*

K 1-R2
variance of SNPs, N represented the number of the samples, and
K represented the number of SNPs). Then, the effect alleles and

effect sizes were unified via “harmonCle_data” function. The 5

R? represented the cumulative explanatory

algorithms of the “mr” function were utilized to conduct MR
analysis for each exposure factor and outcome, which included
Inverse Variance Weighted (IVW) (29), Weighted Mode (30), MR
Egger (31), Simple Mode (28), and Weighted Median (32). MR
analysis mainly relied on IVW results. Exposure factors with SNP >
2 and P < 0.05 were considered as the exposure factors that had a
causal relationship with PCa. The odds ratio (OR) > 1 suggested
that the exposure factor was a contributing factor to the risk of PCa,
while an OR < 1 indicated that it was a protective factor. Notably,
the scatter plot was drawn to further identify the correlation
between exposure factors and outcome in combination with SNP-
exposure effects and SNP-outcome effects via “mr_scatter_plot”
function. The forest plot was drawn to evaluate the diagnostic
power of the estimated exposure factors of each SNP site on the
outcome via “mr_forest_plot” function. The funnel plot was drawn
to judge whether the analysis was random and adhered to Mendel’s
second law random grouping in combination with the  and
standard error (SE) of each IV via “mr_funnel_plot” function.

Moreover, to evaluate the reliability of MR analysis results,
sensitivity analysis was applied. Heterogeneity test was performed
via “mr_heterogeneity” function (P > 0.05, Cochran’s Q test).
Horizontal pleiotropy test was performed to find out whether
confounding factors existed via “mr_pleiotropy_test” and “MR-
Egger” functions (P > 0.05). To observe whether the SNPs of each
IV caused considerable changes in the outcome, Leave-one-out
(LOO) analysis was performed via “mr_leaveoneout” function.

To verify that the results of the forward analysis were not interfered
by reverse causality and determine the validity of the causal sequence
between the outcome and the exposure factors, Steiger test was carried
out via “steiger_filtering” function (Steiger-dir=TRUE, P < 0.05).

At last, the candidate genes examined by sensitivity analysis and
Steiger test were specified as candidate prognostic genes.

2.5 Identification of prognostic genes and
construction of prognostic models

To identify prognostic genes, in TCGA-PRAD-train, univariate
Cox regression analysis was performed on the basis of candidate
prognostic genes via “survival” package (v 3.5-3) (33)(P < 0.2) (34,
35) and the result was presented via “forestplot” package (v 2.0.1)
(36). Genes with consistent hazard ratios (HRs) or ORs in both
univariate Cox regression analysis and MR analysis were utilized for
proportional hazards (PH) assumption test via “cox.zph” function
(P > 0.05). After that, Least Absolute Shrinkage and Selection
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Operator (LASSO) was implemented utilizing “glmnet” package
(v 4.1.4) (37)(10-fold cross-validation). Finally, genes that had
passed through the above analyses in sequence were defined as
prognostic genes to construct a risk model.

In TCGA-PRAD-train, on the basis of the expression of
prognostic genes and the risk coefficients gained from LASSO
regression, PCa patients were scored with the following formula.

risk score = Ei“:lcoef (gene;) X expr (gene;)

Expr represented the expression level of each prognostic gene and
coef signified the risk coefficient of each prognostic gene. Notably,
according to the median of risk score, PCa patients were categorized
into high risk group (HRG) and low risk group (LRG) and risk score
distribution and survival status of patients were displayed. According to
relapse time and relapse status of PCa patients, the “survminer”
package (v 0.4.9) (38) was implemented to draw and compare
survival curves of HRG and LRG (P < 0.05). The Area Under Curve
(AUC) values of receiver operating characteristic (ROC) curves at 1, 2,
and 3 years were employed to evaluate the accuracy of risk model
utilizing “survivalROC” package (v 1.18.0) (39) (AUC > 0.6). The
validation was performed in the GSE116918 dataset. Additionally, the
heat plot was drawn to display the expression levels of prognostic genes
in HRG and LRG. Using the same method, 2 risk models were
constructed in TCGA-PRAD-validation and all samples with relapse
information of TCGA-PRAD to validate the accuracy of the above-
mentioned model.

2.6 Construction of nomogram model

To evaluate the ability of prognostic genes to predict PCa
recurrence rates, the “regplot” package (v 1.1) (40) was employed to
build the nomogram model for PCa in the TCGA-PRAD-train. Each
prognostic gene was scored separately, and the scores were added
together to obtain the total scores. The higher the total scores, the
higher the recurrence rate of the patient. Calibration curves built via
“rms” package (v 6.5.0) (41) and ROC curves built via “survivalROC”
package (v 1.18.0) (AUC > 0.6) were applied to compute the
effectiveness of the nomogram model in clinical prediction at 1, 2,
and 3 years for PCa.

2.7 Immune infiltration analysis

To estimate the tumor purity and the status of stromal and
immune cells in the malignant tumor tissues within the tumor
microenvironment of PCa patients. The data were normalized using
the R package estimate (v 1.0.13, https://R-Forge.R-project.org/
projects/estimate/), and the stromal score, immune score, and
ESTIMATE score were calculated using the ESTIMATE
algorithm. Wilcoxon test was employed to contrast the scores
mentioned above between HRG and LRG (P < 0.05). For further
evaluation of the situation of immune cells in the development
process of PCa, based on single sample Gene Set Enrichment
Analysis (ssGSEA) algorithm, in the TCGA-PRAD-train, “GSVA”
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package (v 1.46.0) (42) was applied to compute the enrichment
scores of 28 immune cells (43) in the HRG and LRG. Wilcoxon test
was implemented to contrast differences in immune cell infiltration
between HRG and LRG (P < 0.05). What’s more, to understand the
link between prognostic genes and differential immune cells, in the
TCGA-PRAD-train, “psych” package (v 2.2.9) (44) was performed
(|correlation (cor)| > 0.3, P < 0.05).

2.8 Pathways and GeneMANIA analysis

To determine the biological pathways involved in the
occurrence and development of PCa in the HRG and LRG, in the
TCGA-PRAD-train, “DESeq2” package (v 3.4.1) was employed to
perform differential expression analysis between HRG and LRG and
log,FC values were calculated. The log,FC values were sorted in
descending order. Then, Gene Set Enrichment Analysis (GSEA) was
performed via “clusterProfiler” package (v 4.7.1.3) (|Normalized
Enrichment Score (NES)| > 1, P < 0.05). The top 5 pathways with
notable P-values were presented. Besides, GeneMANIA database
(http://genemania.org) was applied to predict the genes related to
the functions of prognostic genes and their involved functions.

2.9 Drug sensitivity analysis

To probe the drug sensitivity of the HRG and LRG, drugs related to
tumors were obtained from Genomics of Drug Sensitivity in Cancer 2
(GDSC2) database (https://www.cancerrxgene.org/). In the TCGA-
PRAD-train, “pRRophetic” package (v 0.5) (45) was employed to
determine the half maximal inhibitory concentration (IC50) of each
tumor sample. Wilcoxon test was employed to contrast the
differences in drug sensitivity between the HRG and LRG (P <
0.05). The result was displayed via “ggplot2” package (v 3.4.1).

2.10 Construction of molecular regulatory
network

To explore the upstream regulatory factors of prognostic genes
and their interaction relationships, based on NetworkAnalyst online
website (https://www.networkanalyst.ca/NetworkAnalyst/uploads/
ListUploadView.xhtml), Transcription Factors (TFs) were
predicted by TRRUST database (https://www.grnpedia.org/trrust/)
and miRNAs were predicted by miRTarBase database (v 9.0)
(https://mirtarbase.cuhk.edu.cn/) and TarBase (v 9.0) (https://
dianalab.e-ce.uth.gr/tarbasev9). Finally, the TF-mRNA-miRNA
network was constructed utilizing Cytoscape software (v 3.9.1).

2.11 ScRNA-seq analysis

All scRNA-seq analyses were performed via “Seurat” package (v
5.0.1) (46). To ensure the accuracy and reliability of scRNA-seq data,
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in the GSE141445, the data was filtered via “PercentageFeatureSet”
function. The screening criteria were as follows: (1) the number of
genes in the cells ranged from 200 to 3,000; (2) genes with an
expression level ranging from 200 to 4,531 and covered by at least 3
cells were retained. Then, the data after filtering were normalized via
“NormalizeData” function. The 2,000 highly variable genes (HVGs)
were acquired and the top 10 most mutated genes were labeled via
“FindVariableFeatures” function and the result was presented via
“LablePoints” function. Moreover, the samples of GSE141445 were
subjected to normalization processing via “Scale Data” function. The
HVGs were subjected to principal component analysis (PCA) via
“runPCA” function. The P-value when the principal components
(PCs) ranged from 1 to 30 was calculated via “Jackstraw” function.
The values of the sudden variance drops when different values were
taken for the PCs were calculated and the result was displayed via
“Elbowplot” function. When P < 0.05, the PCs at the inflection point
in the variance elbow plot were used for subsequent analysis.
Additionally, unsupervised clustering analysis was applied via
“FindClusters” and “FindNeighbors” functions (resolution=0.1).
Notably, cells were clustered and result was visualized via
“RunTSNE” function. Furthermore, to determine the cell types of
the cell clusters, cell clusters were commented on the basis of marker
genes (47). The expression patterns of marker genes in different cell
clusters and cells were displayed through bubble plots.

2.12 Identification of key cells, cell
communication, and pseudo-time analysis

To gain key cells associated with PCa development, in the
GSE141445, the manifestation of prognostic genes in cells were
displayed through bubble plots. The cells with the highest gene
expression were labeled as key cells. Besides, the distribution of
prognostic genes in cells was also presented.

In the GSE141445, the “CellChat” package (v 1.6.1) (48) was
employed to explore the communication networks among different
cells. The pairing of ligands and receptors among cells was
presented through bubble diagrams using “ggplot2” (v 3.4.1).
Furthermore, to investigate the differentiation of key cells, key
cells were subjected to secondary clustering using the same
method as that in 2.11. Then, the developmental trajectories of
key cells were analyzed via the “Monocle” package (v 2.22.0) (49).
The “DDRTree” package (v 0.1.5) (50) was employed to draw cell
trajectory diagram. Finally, the expression of prognostic genes
during the differentiation process of key cells was also explored.

2.13 Prognostic genes expression and
reverse transcription quantitative PCR

To clarify the manifestation of prognostic genes, in the PCa
tissue and paracancer tissue samples of TCGA-PRAD, Wilcoxon
test was employed to compare the differences in manifestation of
prognostic genes between PCa samples and control samples (P <
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0.05). Subsequently, to verify the accuracy of the above results, RT-
qPCR was performed. A total of 5 pairs of tissue samples were
obtained at Tangdu hospital, including 5 PCa and 5 paracancer
(control). Informed consent was obtained from all patients for the
use of PCa tissue samples in this study. The informed consent form
needed to be signed and filled out by all participants, while the
ethical approval agency was The Clinical Ethics Committee of
Tangdu Hospital of Air Force Medical University (permission
number: TDLL-KY-202405-18). Then, total RNA of 5 pairs of
tissue samples was extracted by TRizol reagent (Vazyme, Nanjing,
Jiangsu). The RNA concentrations were computed by
NanoPhotometer N50. Subsequently, mRNA was converted to
cDNA by Hifair® IIT 1st Strand cDNA Synthesis SuperMix for
qPCR test kit (Yeasen, Shanghai). Finally, RT-qPCR was carried
out. The primers of reaction reagents, reaction conditions and genes
were arranged in Supplementary Table 2. The internal reference
gene was GAPDH, which was employed to normalize the results.
The expression levels of prognostic genes were calculated by 244",
The results were calculated by GraphPad Prism software (v
5.0) (51).

2.14 Western blotting

Cells were lysed in RIPA buffer (P0013B, Beyotime) to extract
proteins, and protein concentrations were determined using a BCA
assay kit (P0012, Beyotime). Samples were separated by SDS-PAGE
(12%, Invitrogen) and transferred to PVDF membranes, which were
then blocked with BSA for 2.5 h. After washing, membranes were
incubated overnight at 4°C with primary antibodies, including anti-
BMP2 (ab284387, 1:1000, Abcam) and anti-FASN (ab128870,
1:1000, Abcam). The next day, membranes were washed three
times and incubated with HRP-conjugated goat anti-rabbit IgG
secondary antibody (G-21234, 1:5000, Invitrogen) at room
temperature for 2 h. Chemiluminescent substrate (ECL) was
applied evenly to the membranes, and signals were captured
using a ChemiDoc XRS+ imaging system (Bio-Rad, USA). Band
intensities were analyzed with Image], and protein levels were
quantified as the ratio of the target band intensity to that of -
actin (ab272085, 1:1000, Abcam).

2.15 Ki67 staining

Vector, OE-BMP2, sh-NC, and sh-FASN cells were seeded and
allowed to adhere for 24 h. Cells were washed twice with phosphate-
buffered saline (PBS) and fixed with 4% paraformaldehyde for 20
min. Permeabilization was performed with 0.3% Triton X-100 for
15 min, followed by blocking with 6% donkey serum for 30 min.
Cells were incubated overnight at 4°C with primary antibody
against Ki67 (1:200 in PBS). The next day, cells were incubated
with a fluorescent secondary antibody (1:500 in PBS) for 1 h at 37°C
in the dark. After three PBS washes, nuclei were counterstained with
DAPI for 10 min. Ki67 expression was assessed using a
fluorescence microscope.
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2.16 Scratch-wound assay

Vector, OE-BMP2, sh-NC, and sh-FASN cells (1x1076 cells/
well) were seeded in 6-well plates and allowed to adhere for 24 h.
Once confluence exceeded 90%, a straight scratch perpendicular to
the horizontal axis was made using a sterile 20-pL pipette tip. To
remove debris, cells were rinsed with serum-free DMEM. Plates
were incubated, and scratch closure was monitored at 24 h and 48 h
after wounding under a high-power microscope. Migrating cells
within the scratch area were quantified using Image].

2.17 Cell culture and viral preparation

Human prostate cancer PC3 cells (ATCC® CRL—1435TM) were
maintained in RPMI-1640 medium (Gibco) supplemented with
10% fetal bovine serum (FBS; Corning) and 1% penicillin/
streptomycin (HyClone) at 37°C with 5% CO,. Lentiviral particles
expressing shRNA targeting human fatty acid synthase (FASN;
target sequence: shRNA1:5-GCATGGAGCGTATCTGTGAGA
ACTCGAGTTCTCACAGATACGCTCCATGTTTTTT-3’
shRNA2: 5'-GCTACGACTACGGCCCTCATTCTCGAGAATG
AGGGCCGTAGTCGTAGCTTTTTT-3") or non-targeting
scramble control (shRNA-NC: 5'-GCACCCAGTCCGCCCTGA
GCAAATTCAAGAGATTTGCTCAGGGCGGACTGGGTG
CTTTTT-3’) in pLKO.1 vector were packaged in HEK293T cells
using psPAX2 and pMD2.G plasmids. Viral supernatants were
concentrated by ultracentrifugation (26,000 x g, 2.5 h) and titers
determined via qPCR.

The human BMP2 ORF (NM_001200) was cloned into pLV-
CMV-3flag-zsgreen vector via Notl and Nhel site. Lentivirus
production and titration followed procedures (titer 5x10” TU/mL).
PC3 cells were transduced at MOI=20 with polybrene supplementation.

Cells were seeded in 6-well plates (5x105 cells/well) and
incubated for 24 h to reach 50-60% confluency. Transduction
was performed by replacing medium with viral suspension
(MOI=20) containing 8 pug/mL polybrene (Sigma).

2.18 Statistical analysis
R software (v 3.9.1) was implemented to apply bioinformatics

analyses. Wilcoxon test and t test were utilized to compare the
disparities between 2 groups (P < 0.05).

3 Results

3.1 Identification and functions of
candidate genes in PCa

By differential expression analysis, 13,091 DEGs were acquired,
comprising 7,935 DEGs with up-regulated expression and 5,156
DEGs with down-regulated expression. All DEGs and the top 10
up/down-regulated gene names were presented (Figure 1A).
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Besides, the expressions of the top 10 up/down-regulated genes in
PCa and control groups were also displayed (Figure 1B). After that,
141 candidate genes were acquired (Figure 1C). GO analysis
indicated that candidate genes were enriched in 1,758 functions,
including 1,619 biological process (BP) items such as MCD, 37
cellular component (CC) items such as chromosome centromeric
core domain, and 102 molecular function (MF) items such as
cytokine receptor binding (Figure 1D, Supplementary Table 3).
KEGG analysis suggested that candidate genes were enriched in 85
pathways such as osteoclast differentiation (Figure IE,
Supplementary Table 4). Subsequently, PPI network indicated
that there were interactions among proteins encoded by 122
candidate genes such as MYC, H4Cl11, and MMP9 (Figure 1F).

3.2 Candidate prognostic genes with a
causal relationship with PCa

In order to investigate the causal relationship between DE-
MCDRGs and PCa outcomes, MR analysis was conducted using
141 candidate genes as exposure factors and PCa as the outcome.
Firstly, the 46 candidate genes had a substantially causal
relationship with PCa based on the IVW method (P < 0.05),
including 23 risk factors (OR > 1) and 23 protective factors (OR

10.3389/fimmu.2025.1619194

< 1) (Table 1). The positive slope of the scatter plot indicated that
the gene was a risk factor, while a negative slope indicated that it
was a protective factor. The intercept close to 0 suggested the
absence of confounding factors (Supplementary Figure 1). For
protective factors, the effect size of each SNP was less than 0. In
contrast, for risk factors, the effect size of each SNP was greater than
0 (Supplementary Figure 2). The symmetrical arrangement of SNPs
around each exposure indicated that MR affirmed Mendel’s second
law of randomization (Supplementary Figure 3). So 46 candidate
genes were used for subsequent analysis. Notably, among the 46
candidate genes, heterogeneity was calculated for 35 of them. The P-
values of 34 candidate genes were greater than 0.05, indicating the
absence of heterogeneity. Since the P-value of SLC4A1 was less than
0.05, SLC4A1 was analyzed with random effects IVW
(Supplementary Table 5). Meanwhile, among the 46 candidate
genes, the P-values of 33 candidate genes were greater than 0.05,
suggesting the lack of horizontal pleiotropy and the reliability of the
results. However, the P-values of the remaining 13 candidate genes
were less than 0.05, suggesting the presence of horizontal
pleiotropy. To ensure the reliability of the results, these 13
candidate genes were excluded (Supplementary Table 6). LOO
analysis demonstrated that the removal of any SNP had minimal
impact on the results (Supplementary Figure 4). Steiger test
indicated that only the P-values of 33 candidate genes were all
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constructed using the 122 candidate genes.
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less than 0.05 and the Steiger-dir values were all TRUE
(Supplementary Table 7). Finally, taking all of the above
screening results into account, only 23 candidate genes could be
labeled as candidate prognostic genes.

3.3 The value of prognostic genes in risk
models

In order to further screen for genes related to prognosis among
the 23 candidate prognostic genes, univariate Cox regression
analysis was conducted. The 9 candidate prognostic genes
associated with PCa recurrence were gained utilizing univariate
Cox regression analysis (P < 0.2), including 4 risk factors (HR > 1)
and 5 protective factors (HR < 1) (Figure 2A). Notably, compared
with the results of the MR analysis, only the OR/HR of 6 candidate
prognostic genes was consistent. Besides, these 6 candidate
prognostic genes were also identified by PH assumption test (P >
0.05) (Figure 2B). Among them, 5 candidate prognostic genes were
identified by LASSO analysis (lambda.min=0.005517655)
(Figure 2C). So NR3C1, BMP2, RACGAP1, TLR3, and FASN

‘Schoanteld IndvidualTos 51 03871

10.3389/fimmu.2025.1619194

were considered as prognostic genes to build the risk model in
TCGA-PRAD-train. On the basis of the median of the risk scores
(1.111923), PCa patients were divided into a HRG (139 PCa
patients) and a LRG (139 PCa patients). Patients’ risk score
distribution (Figure 2D) and survival status (Figure 2E) were
displayed. The survival curves indicated that the survival rate of
the HRG was substantially lower than that of the LRG (P=0.00077)
(Figure 2F). The AUC values of the ROC curves were all greater
than 0.7, indicating that the risk model had good performance
(Figure 2G). In addition, BMP2, RACGAPI, and FASN were
prominently expressed in the HRG, while TLR3 and NR3C1 were
prominently expressed in the LRG (Figure 2H).

3.4 Validation of risk models

In order to assess the accuracy of risk prediction, the ROC curve
was used to calculate the AUC value based on the TCGA-PRAD
training set and the GSE116918 dataset to evaluate the model’s
effectiveness. In the TCGA-PRAD-validation, on the basis of the
median of the risk scores (1.056659), PCa patients were separated
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FIGURE 2

Development and validation of a prognostic gene signature for PCa recurrence. (A) Univariate Cox regression analysis identified 9 candidate genes.
(B) MR analysis and PH assumption testing confirmed consistency in 6 candidate genes. (C) LASSO regression selected 5 prognostic genes (NR3C1,
BMP2, RACGAP1, TLR3, FASN) for model construction. (D) Risk score distribution (median=1.11) in TCGA-PRAD cohort (n=278) divided into high-
(HRG) and low-risk (LRG) groups. (E) Survival status distribution between risk groups. (F) Significant survival difference by Kaplan-Meier analysis. (G)
ROC validation showing predictive accuracy (AUC>0.7). (H) Differential expression patterns of signature genes across risk groups, red indicates HRG,

blue indicates LRG.
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into a HRG (59 PCa patients) and a LRG (60 PCa patients).
Patients’ risk score distribution (Figure 3A) and survival status
(Figure 3B) were also displayed. The survival curves indicated that
HRG had a lower survival rate than LRG (P=0.033) (Figure 3C). As
the AUC values were all above 0.7, it demonstrated that the risk
model had excellent performance (Figure 3D). BMP2, RACGAPI,
and FASN exhibited high expression in the HRG, with TLR3 and
NR3ClI showing high expression in the LRG (Figure 3E). Similarly,
in all samples with relapse information of TCGA-PRAD, on the
basis of the median of the risk scores (1.085715), PCa patients were
categorized into a HRG (198 PCa patients) and a LRG (199 PCa
patients). The risk score distribution (Figure 3F) among patients
and their survival status (Figure 3G) were likewise shown.
According to the survival curves, the survival rate in the HRG
was markedly lower than that in the LRG (P < 0.0001) (Figure 3H).
Given that the AUC values all exceeded 0.7, it was evident that the
risk model performed well (Figure 3I). High expression of BMP2,
RACGAPI1, and FASN was observed in the HRG, while high
expression of TLR3 and NR3Cl was found in the LRG
(Figure 3]). Based on the results of 3.4, the risk model was
accurate. In the GSE116918 dataset, there was a significant

10.3389/fimmu.2025.1619194

survival difference between the high and low-risk groups
(p=0.014), but the ROC curves for recurrence at 1, 2, and 3 years
showed that the AUC values were all less than 0.6. This suggests that
although the risk score was significantly associated with survival
differences, its accuracy in predicting recurrence remains limited.
Further validation and optimization may be needed, possibly by
integrating other clinical indicators or more comprehensive models
(Supplementary Figure 5).

3.5 The predictive ability of prognostic
genes for PCa patients

The nomogram indicated that prognostic genes could predict
the return rate of PCa patients quite well, and the recurrence rate
increased as the total score of the nomogram rose (Figure 4A). The
slope of all calibration curves was close to 1, indicating the accuracy
of the nomogram model (Figure 4B). The AUC values of ROC
curves all exceeded 0.7, which further verified the accuracy of the
nomogram model (Figure 4C). In conclusion, prognostic genes
could be utilized to predict the recurrence rate of PCa patients.
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3.6 Tumor microenvironment and immune
cells in PCa

In order to assess tumor purity, immune infiltration, and stromal
infiltration in the malignant tumor tissue within the patient’s tumor
microenvironment, immune infiltration analysis was conducted.
Within the microenvironment specific to PCa tumors, immune
scores, ESTIMATE scores, and the stromal scores in the LRG were
all strikingly higher than those in the HRG (P < 0.05) (Figure 5A).
Subsequently, the infiltration levels of 28 immune cells in the HRG and
LRG were analyzed (Figure 5B). There were 18 immune cells that

10.3389/fimmu.2025.1619194

showed notable distinctions between the HRG and the LRG, and they
were defined as differentially expressed immune cells (P < 0.05)
(Figure 5C, Supplementary Table 8). Except for the activated CD4 T
cells, the extents of infiltration of the remaining cells in the LRG were
all remarkably higher than those in the HRG (P < 0.05). TLR3 had the
largest notable positive link with natural killer cells (cor=0.66, P <
0.0001) and FASN had the largest notable negative correlation with
natural killer (NK) T cells (cor=-0.38, P < 0.0001) (Figure 5D,
Supplementary Table 9). In summary, the occurrence and
development of PCa might be related to changes in the tumor
microenvironment or some immune cells.
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3.7 Enrichment pathways and drug
sensitivity in HRG and LRG

In order to determine the biological pathways involved in the
development of PCa between the high and low-risk groups, GSEA
enrichment analysis was conducted. By GSEA analysis, the HRG and
LRG were strikingly enriched 41 pathways such as hcm, porphyrin and
chlorophyll metabolism, pentose and glucuronate interconversions,
and cell cycle (Figure 6A, Supplementary Table 10). These pathways
suggested that the risk of PCa might be related to some biological role.
In order to obtain molecular targeted drugs corresponding to the genes
in the high and low-risk groups, drug sensitivity analysis was
conducted. Among 198 drugs, the HRG and LRG suggested notable
disparities in sensitivity to 86 drugs (P < 0.05) (Figure 6B,
Supplementary Table 11). The ICs, value of AZD8186 in the HRG
was strikingly higher than that in the LRG, indicating that the LRG was
more sensitive to this drug. On the contrary, the IC5, value of ML323 in
the HRG was remarkably lower than that in the LRG, indicating that
the HRG was more responsive to this drug.
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3.8 The functions and related regulatory
factors of prognostic genes

In order to identify other genes related to the function of
prognostic genes, the GeneMANIA database was used to predict
genes associated with the function of prognostic genes and the
functions they are involved in. By GeneMANIA analysis, 20 genes
related to the functions of prognostic genes were acquired such as
BMPRIA and these genes were related to 7 functions such as
response to BMP (Figure 7A). Furthermore, in order to explore
the upstream regulatory factors and their interactions for the
prognostic genes, a TF-mRNA-miRNA regulatory network was
constructed. Two TFs and 32 miRNAs were predicted for FASN;
5 TFs and 32 miRNAs were predicted for NR3C1; 2 TFs and 32
miRNAs were predicted for RACGAPI; 4 TFs and 10 miRNAs were
predicted for BMP2; 6 TFs and 10 miRNAs were predicted for TLR3
(Figure 7B). Then, the network was constructed to demonstrate the
complex relationships between prognostic genes and

regulatory molecules.
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FIGURE 6

Pathway enrichment and therapeutic vulnerability profiling in PCa risk groups. (A) GSEA enrichment plot showing HRG-specific activation of 41
pathways (FDR <0.25), including hypertrophic cardiomyopathy (HCM), porphyrin metabolism, and cell cycle regulation. Colored traces represent
pathway-specific enrichment scores, with dashed lines indicating significance thresholds. (B) Box plots comparing IC50 values of 86 clinically
actionable drugs (Wilcoxon test, P <0.05). Yellow indicates HRG; blue indicates LRG. LRG exhibits heightened AZD8186 sensitivity (HRG median
IC50: 6.3 uM vs. LRG: 3.1 uM, P=0.002), while HRG shows preferential ML323 response (HRG: 0.8 uM vs. LRG: 2.4 uM, P=0.0001).

3.9 Key cells in PCa

In order to ensure the accuracy, reliability, and interpretability of
the single-cell data, quality control was performed on all scRNA-seq
data. There were 24,391 genes and 36,424 cells before quality control
(Figure 8A), and 24,391 genes and 34,571 cells after quality control
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(Figure 8B). Then, the 2,000 HVGs and the top 10 most varied gene
names were displayed (Figure 8C). After dimensionality reduction, the
first 30 PCs were used for clustering analysis (Figure 8D). Finally, the
14 cell clusters were acquired (Figure 8E). After annotating cell clusters
with markers genes, there were 7 cells acquired, which included mast
cells (TPSB2, MS4A2, TPSABI1), stroma cells (COL1A2, TAGLN,
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FIGURE 7

Functional interactome and regulatory networks of PCa prognostic genes. (A) GeneMANIA-derived functional interaction network of 20 co-
expressed genes (e.g.,, BMPR1A) enriched in 7 pathways including BMP response (red edges) and cell adhesion (blue edges). Node size reflects
interaction degree, with physical interactions (gray edges) and genetic linkages (gold edges) highlighting modular biology. (B) Multi-layer regulatory
network mapping transcription factors (TFs, pink nodes) and miRNAs (green nodes) targeting core prognostic genes. Circular layout emphasizes
combinatorial regulation, with edge thickness proportional to prediction confidence.

ACTA?2), endothelial cells (PECAM1, VWF, ACKR1), T cells (GZMA,  prominently expressed in epithelial cells, so epithelial cells were
CD3E, CD3D), epithelial cells (KRT18, EPCAM, KRT19), myeloid  considered as key cells (Figure 8I). NR3Cl was more abundantly
cells (CD14, FCGR3A, CD163), and B cells (MS4A1, CD79A, DERL3) distributed in T cells, and FASN was more abundantly distributed in
(Figures 8F-H). Among all the prognostic genes, FASN was epithelial cells (Figure 8]).
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Single-cell transcriptomic profiling identifies epithelial cells as key mediators in PCa progression. (A, B) Quality control metrics showing 36,424 cells
(24,391 genes) pre-filtering (A) and 34,571 cells post-filtering (B) with mitochondrial/ribosomal thresholds. (C) Top 10 highly variable genes (HVGs)
among 2,000 identified, ranked by dispersion. (D) Principal component analysis using first 30 principal components (PCs) for dimensionality
reduction. (E) t-SNE visualization of 14 unsupervised cell clusters. (F-H) Cell type annotation using lineage-specific markers: mast (TPSB2), stroma
(COL1A2), endothelial (PECAMY), T cells (CD3E), epithelial (KRT18), myeloid (CD14), B cells (MS4A1). (I) Violin plots revealing FASN overexpression (red
gradient) in epithelial clusters versus other cell types. (J) Spatial expression mapping showing NR3C1 enrichment (blue) in T cells and FASN

dominance (red) in epithelial compartments.

3.10 Communication networks,
differentiation of key cells, and expression
of prognostic genes in key cells

In order to identify the cell types of the samples in the dataset
GSE141445 and describe the cellular states of the clustering results,
annotations were made for the seven different cell clustering results.
Among the annotated cells, the engagements between endothelial
cells and epithelial cells were the most frequent (Figure 9A,
Supplementary Figure 6A). Epithelial cells and myeloid cells had
the strongest interactions with other cells (Figure 9B). Epithelial
cells had the strongest interaction with endothelial cells, T cells,
myeloid cells, and B cells (Supplementary Figure 6B). Interaction
between epithelial cells and B cells was carried out by MIF—-(CD74
+CXCR4) (Figure 9C). Through reduction and clustering, epithelial
cells were eventually categorized into 12 clusters (Figures 9D, E).
Further investigation into the developmental trajectory of the key
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cell, epithelial cell, revealed that epithelial cells varied from dark
blue to light blue during differentiation and were categorized into 9
stages and 12 clusters (Figure 9F). During the differentiation of
epithelial cells, only the expression level of FASN continuously
increased, and it remained relatively active throughout the entire
cell development stage (Figure 9G). In conclusion, the development
of PCa might be related to epithelial cells and FASN. Furthermore,
the expression patterns of prognostic genes during the pseudotime
process of myeloid cells differentiation were demonstrated. As
shown in the figure, the FASN and TLR3 genes exhibited higher
expression levels at the early stages of myeloid cell differentiation,
while RACGAP1 and NR3Cl genes had higher expression at the
late stages, and BMP2 gene showed higher expression at the mid-
stage of differentiation. These results suggested that these five
prognostic genes had elevated expression at specific stages of
myeloid cell differentiation, which might have led to their overall
expression being less prominent (Supplementary Figure 7).
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BMP2.

3.11 Validation of prognostic gene
expression

In order to determine the expression patterns of prognostic
genes in PCa samples and control samples, expression analysis was
conducted using the dataset and RT-qPCR experiments. The
expression levels of BMP2, NR3C1 and TLR3 were all remarkably
lower in PCa samples than in the control samples (P < 0.0001),
while the expression levels of RACGAP1 and FASN were
remarkably higher in PCa samples than in the control samples (P
< 0.0001) (Figure 10A). In RT-qPCR, the expression levels of
NR3C1 (P < 0.0001), BMP2 (P < 0.01) and TLR3 (P < 0.01) in
PCa were significantly lower than those in control group, while the
expression levels of RACGAP1 (P < 0.05) and FASN (P < 0.01) in
PCa were significantly higher than those in control group
(Figure 10B). The expression level and trend of prognostic genes
in vitro samples were consistent with that of bioinformatics analysis,
indicating the reliability of bioinformatics analysis results. Previous
studies have highlighted the significance of BMP2 and FASN in PCa
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progression. Horvath et al. demonstrated that reduced BMP2
expression is associated with PCa progression, linking its loss to
more aggressive phenotypes (52). Similarly, Tae et al. reported that
decreased BMP2 expression correlates with a higher incidence of
biochemical recurrence (BCR) and elevated Gleason scores (GS)
(53). However, the precise mechanisms underlying BMP2’ s role as
a tumor outcome determinant remain elusive. In contrast, the
biological role of FASN as a key regulator of lipid metabolism is
well-established. By driving lipid synthesis, FASN provides energy
to fuel tumor proliferation and progression. Despite this, its specific
regulatory effects within the PCa microenvironment are not fully
understood. Chianese et al. observed FASN overexpression in PCa
and proposed that FASN inhibition disrupts the metabolic axis,
leading to lipid accumulation and subsequent lipotoxicity (54, 55).
This metabolic dysregulation impairs replication mechanisms and
arrests cells in the GO/G1 phase, thereby inhibiting proliferation
(56, 57). These findings underscore the multifaceted roles of BMP2
and FASN in PCa biology and warrant further investigation into
their underlying mechanisms and therapeutic potential.
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Experimental validation of prognostic gene expression patterns in PCa. (A) Box plots of RNA-seq expression levels in control (teal) and PCa (orange)
groups. Whiskers extend to 1.5xIQR; dots indicate outliers. (B) RT-gPCR confirmation using 15 paired PCa/control specimens. Bar graphs quantify

concordant expression trends.

3.12 Overexpression of BMP2 or silencing
of FASN suppresses malignant behaviors of
PCa cells

Western blot analysis revealed that compared with the Vector
group, the protein level of BMP2 was significantly upregulated in the
OE-BMP2 group, while the FASN protein level showed no obvious
change; conversely, in the sh-FASN group, the FASN protein level was
notably downregulated compared with the sh-NC group, with no
significant difference in BMP2 level (Figures 11A-D).
Immunofluorescence staining demonstrated that the proportion of
Ki67-positive cells was significantly higher in the OE-BMP2 group than
in the Vector group (Figures 11E, G), and lower in the sh-FASN group
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than in the sh-NC group (Figures 11F, H), as quantified by statistical
analysis. In the cell migration assay, the number of migrated cells in the
OE-BMP2 group was significantly greater than that in the Vector
group at both 24 h and 48 h time points, whereas the sh-FASN group
showed a significantly reduced number of migrated cells compared
with the sh-NC group at the same time points, as shown by the
quantitative results (Figures 111-L).

4 Discussion

PCa remains a leading contributor to global cancer-related
morbidity and mortality among males, with rising incidence rates
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documented in recent epidemiological studies (58). The clinical
management of PCa faces significant challenges due to the lack of
discernible clinical manifestations in early-stage disease, resulting in
delayed diagnosis for the majority of patients until intermediate/
advanced phases or metastatic progression, which is the critical factor
driving elevated mortality (59). These clinical realities underscore the
urgent need to develop novel therapeutic strategies and personalized
treatment paradigms to improve patient outcomes. In this study, we
integrated transcriptomic profiling and scRNA-seq data to
systematically identify MCDRGs with causal associations in PCa
pathogenesis. A predictive risk model was developed and rigorously
validated to assess the clinical utility of these biomarkers. Through
comprehensive bioinformatic interrogation, we elucidated the
mechanistic contributions of candidate genes to PCa progression,
complemented by single-cell resolution analysis of their expression
dynamics across tumor-associated cellular subpopulations. The
computational findings were further substantiated through in vitro
functional validation, confirming the biological relevance of identified
molecular networks.

NR3C1 (Nuclear Receptor Subfamily 3 Group C Member 1),
located at chromosome 5q31.3-q32, encodes the glucocorticoid
receptor (GR), the sole mediator of glucocorticoid signaling
through ligand-activated transcriptional regulation within the
nuclear receptor superfamily (60). This receptor-ligand complex
translocates to the nucleus, binding specific DNA response
elements to orchestrate diverse physiological processes including
glucose/lipid metabolism, inflammatory responses, and cellular
differentiation (60, 61). Emerging evidence positions NR3Cl1 as a
pivotal oncogenic regulator across malignancies: it drives progression
in triple-negative breast cancer, ovarian carcinoma, urothelial cancer,
and clear cell renal carcinoma (61-65), while mediating platinum and
targeted therapy resistance in lung and ovarian cancers (66, 67). In
PCa, a dynamic AR-NR3Cl axis governs therapeutic resistance.
Androgen receptor (AR) suppresses NR3C1 expression in
treatment-naive states, whereas androgen deprivation therapy
induces compensatory GR upregulation—a critical mechanism
enabling treatment evasion through AR-GR crosstalk (68, 69).
Mechanistically, Qian et al. delineated the role of NR3Cl1 in PCa
lineage plasticity, demonstrating that the ONECUT2 (OC2)
transcription factor activates NR3C1 and neuroendocrine splicing
factor SRRM4 to drive adenocarcinoma progression and therapy-
resistant stem-like/neuroendocrine variants (70).

BMP2 (Bone Morphogenetic Protein 2), a key TGF-B
superfamily member located at chromosome 20pl12, encodes a
multifunctional regulator of cellular processes including
proliferation, differentiation, migration, and apoptosis, though it
remains best characterized for its osteoinductive role in skeletal
development (71). During embryogenesis, BMP2 drives osteogenic
differentiation of mesenchymal stem cells by stimulating
extracellular matrix production (collagen, osteocalcin) and
subsequent bone mineralization (72, 73). Beyond developmental
biology, BMP2 exhibits remarkable therapeutic potential in fracture
repair through site-specific upregulation that recruits progenitor
cells and accelerates osteogenesis (74). The pleiotropic nature of
BMP2 signaling manifests through context-dependent tumor
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modulation. While suppressing metastasis in breast cancer (75,
76) and inhibiting proliferation/biochemical recurrence in PCa (53,
77), its aberrant activation paradoxically enhances hepatocellular
carcinoma progression via proliferative and invasive mechanisms
(78, 79). Moreover, recent evidence extends the functional
repertoire of BMP2 to fibroblast biology, demonstrating anti-
inflammatory properties that mitigate atrial fibrosis (80).

RACGAP1 (Rac GTPase-Activating Protein 1), a critical
regulator of cellular dynamics, encodes a member of the GTPase-
activating protein (GAP) family that modulates Rac GTPase activity
to control cytoskeletal reorganization and mitotic fidelity (81).
During cell division, RACGAP1 ensures genomic stability
through its indispensable role in spindle assembly and
chromosome segregation (82, 83). Emerging oncogenic roles of
RACGAP1 span multiple malignancies. Its dysregulated expression
correlates with aggressive phenotypes in lung adenocarcinoma and
bladder cancer, where it drives tumor progression via enhanced
proliferation, invasion, and metastatic dissemination. In
hepatocellular carcinoma, RACGAP1 emerges as both an
independent prognostic biomarker and a modulator of tumor
immune microenvironment (84-86). Notably, RACGAPI
intersects with therapeutic resistance pathways in PCa.
Mechanistic studies reveal its capacity to activate downstream
effectors of the PI3K/AKT axis, a compensatory signaling network
implicated in ADT resistance and neuroendocrine differentiation
(87). Clinical validation through qPCR analysis confirms
RACGAPI1 overexpression in castration-resistant PCa (CRPC),
underscoring its functional relevance in treatment-refractory
disease (88).

TLR3 (Toll-like Receptor 3), located at chromosome 4q35.1,
encodes a pattern recognition receptor predominantly expressed on
immune cells including dendritic cells, NK cells, and macrophages
(89). This receptor initiates antiviral immunity through specific
recognition of viral double-stranded RNA (dsRNA), triggering
signal transduction cascades that activate NF-xB and induce
interferon/cytokine production (90). Emerging evidence reveals
context-dependent prognostic implications of TLR3 dysregulation
across malignancies, low TLR3 expression correlates with favorable
outcomes in gastric, prostate, and breast cancers, yet paradoxically
associates with poor prognosis in clear cell renal carcinoma and
hepatocellular carcinoma (91-93). Muresan et al. analyzed
hormone-naive and hormone-resistant PCa specimens,
demonstrating TLR3 upregulation in therapy-refractory tumors
alongside its functional role in promoting migratory and invasive
capacities (94). These findings align with prior clinical observations
documenting TLR3’s association with aggressive PCa behavior (95-
97). Intriguingly, comparative studies reveal tissue-specific
expression patterns, While Gonzalez-Reyes et al. reported elevated
TLR3 levels in PCa versus benign prostate tissue (97), our data
paradoxically demonstrate significant TLR3 downregulation in
tumor versus adjacent paracancerous tissues, which correlates
with changes in the tumor microenvironment and immune
evasion mechanisms, suggests that TLR3 suppression may play a
critical role in the malignant transformation of prostate epithelium.
As a critical bridge between innate and adaptive immunity, TLR3
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Overexpression of BMP2 or silencing of FASN suppresses malignant behaviors of PC3 cells. (A—D) Western blot results confirm that BMP2
overexpression effectively increases BMP2 protein levels in PC3 cells, whereas FASN knockdown effectively reduces FASN protein levels. (E-H) Ki67
immunostaining shows that BMP2 overexpression or FASN knockdown both suppress PC3 cell proliferative activity. (I-L) Scratch-wound assay
indicate that BMP2 overexpression or FASN knockdown significantly reduces the migratory capacity of PC3 cells. Data are presented as mean + SEM,

n=3. **p < 0.0L.

plays a pivotal role in anti-tumor immunity (98). Extensive research
has demonstrated that TLR3 can directly activate tumor-specific
NK cells or mediate the release of interferon to enhance cytotoxic
lymphocyte (CTL) infiltration and response, establish type 1 T

Frontiers in Immunology

helper cells (Th1) immunity, and upregulate genes involved in the
recruitment and functionality of immune cells within the tumor
microenvironment (99, 100). Notably, TLR3 executes its functions
through diverse immune pathways. However, its expression at the
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tissue or organismal level may exhibit ectopic distribution, such as
variations in subcellular localization (e.g., cytoplasmic versus
membrane-bound) or differential expression between cell types
(101, 102). Importantly, the functional impact of TLR3 cannot be
comprehensively inferred from its overall expression levels alone, as
shifts in cellular composition or differential expression across
specific cell types may obscure its true immunological significance
under various conditions. These complexities underscore the need
for a nuanced exploration of the role of TLR3 in tumor immunity.

FASN (Fatty Acid Synthase), the rate-limiting enzyme catalyzing
the final step of de novo fatty acid synthesis, is ubiquitously expressed
with elevated activity in lipid-metabolizing organs including liver,
adipose tissue, and mammary glands (103, 104). This multienzyme
complex mediates the NADPH-dependent condensation of acetyl-
CoA and malonyl-CoA to generate palmitate, the primary substrate
for membrane phospholipid synthesis, energy storage, and bioactive
lipid precursors (104). Under physiological conditions, FASN activity
is tightly regulated, with endogenous synthesis suppressed under
nutrient-replete conditions via insulin-mediated regulation to
prioritize dietary fatty acid utilization. In oncogenic contexts, FASN
undergoes pathological upregulation to fuel tumorigenic demands.
Elevated FASN expression drives de novo lipogenesis, fulfilling the
biosynthetic requirements of rapidly proliferating cancer cells for
membrane remodeling and signaling lipid generation (105, 106).
Beyond its role in lipid synthesis, FASN promotes lipid accumulation
within tumor cells, which may disrupt antigen presentation or alter
surface molecule profiles, thereby impairing the immune system’ s
ability to recognize these cells (107, 108). Moreover, FASN-mediated
metabolic reprogramming reshapes the tumor microenvironment
through lipid-driven immunosuppression, where increased FASN
activity inversely correlates with antitumor immune cell infiltration
across multiple malignancies (109, 110). These findings position
FASN as a compelling therapeutic target, with pharmacological
inhibition strategies showing promise for disrupting cancer-specific
lipogenic dependencies.

Our investigation revealed 18 differentially abundant immune cell
populations between LRG and HRG in the PCa microenvironment,
with NK cells demonstrating the most significant correlations with
prognostic gene signatures. Unlike T cells requiring antigen-specific
MHC recognition, NK cells execute innate immunosurveillance
through non-antigen-directed cytotoxicity against malignant cells.
Notably, NK cells constitute 2-9% of tumor-infiltrating lymphocytes
in prostate carcinoma, underscoring their microenvironmental
relevance (111). Gannon et al. reported reduced biochemical
recurrence rates in treatment-naive patients exhibiting elevated
intraprostatic NK cell infiltration (112). Complementary studies by
Pasero et al. linked high surface NKG2D expression on tumor-
associated NK cells with attenuated disease progression (113).
Mechanistically, Lundholm et al. identified tumor-derived exosomal
NKG2D ligands as immunosuppressive agents that downregulate NK
cell activation via receptor internalization—a plausible immune
evasion mechanism (114). Multidimensional profiling by Zorko
et al. further delineated NK cell-mediated clinical benefits, enhanced
NK infiltration inversely correlated with driver mutations (e.g., AR-V7
variants) in primary tumors while positively associating with
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immunosuppressive checkpoints, suggesting dual roles in tumor
editing and microenvironment modulation (111). These findings
collectively nominate NK cell potentiation strategies—including
endogenous activity enhancement and adoptive cell therapies—as
promising therapeutic frontiers for CRPC. Additionally, in tumor
immunotherapy, mitochondrial function in NK cells directly impacts
their activity, survival, and antitumor capacity (115, 116). Thus,
optimizing mitochondrial health in NK cells may emerge as a
potential strategy to enhance therapeutic efficacy.

Our analysis identified clinically divergent drug sensitivities
between HRG and LRG, including AZD8186 and JAKI. AZD8186,
a potent selective PI3KP inhibitor, targets the oncogenic PI3K
signaling axis implicated in tumor cell proliferation, metabolic
adaptation, and angiogenesis (117-119). The first-in-human trial
(NCT01884285) established its manageable safety profile and
preliminary efficacy (120). Preclinically, Ruiz et al. demonstrated
synergistic antitumor activity of AZD8186 combined with
selumetinib in docetaxel-resistant murine models without additive
toxicity, highlighting its therapeutic potential for taxane-refractory
prostate cancer (121). Mechanistic insights into chemoresistance
emerged from single-cell profiling of docetaxel-resistant tumors by
Cheng et al. revealing IL-11 overexpression that activates the JAK1/
STAT4 axis. This cascade facilitates STAT4-CBP complex formation,
driving ¢-MYC transcription—a well-characterized oncogene
promoting tumorigenesis and therapy resistance (122-124). IL-11
further orchestrates a chemoresistant niche via autocrine tumor cell
signaling and paracrine stromal interactions involving extracellular
matrix remodeling (125, 126). Therapeutic opportunitieslie in
disrupting this axis through JAKI inhibition, IL-11 neutralization,
or STAT4-CBP interface targeting. Future work should employ
advanced humanized models recapitulating tumor-immune-stroma
crosstalk to validate these strategies and delineate microenvironmental
influences on drug response.

GeneMANIA analysis identified 20 functionally interconnected
genes associated with prognostic signatures, including BMPR1A—a
pivotal receptor mediating BMP signaling through ligand binding
and pathway activation (127). Yang et al. mechanistically
demonstrated that GALNT12 enhances BMPR1A O-glycosylation
to suppress metastatic PCa cell proliferation, migration, and
invasion, nominating GALNT12 as a therapeutic target (128).
Notably, several network components like GREM2 and FSTLI
remain underexplored in PCa contexts, warranting further
investigation of their therapeutic potential. The reconstructed
regulatory network revealed transcription factors with established
oncogenic roles. Yin Yang 1 (YY1), a C2H2 zinc finger
transcriptional regulator implicated in tumor-associated immune
suppression, was shown to drive IL-6 production in M2-polarized
macrophages while inhibiting anti-tumor T-cell activity—a
mechanism suggesting YY1-targeted immunomodulation
strategies (14, 129, 130). Furthermore, CUX1, a homeodomain
transcription factor governing development and cell cycle
progression (131), emerged as a network hub differentially
regulated during ADT. Sharma et al. identified CUXI as a key
transcriptional regulator through whole-transcriptome profiling of
pre-/post-ADT specimens (132), while Dorris et al. reported
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paradoxical effects: CUX1 knockdown enhanced migration in
androgen-sensitive cells but increased invasion in castration-
resistant lineages (133). These context-dependent phenotypes
underscore the need for mechanistic elucidation of CUX1’s dual
roles in PCa progression.

Epithelial cells, integral components of innate immune
surveillance and tissue barrier defense (134, 135), emerge as pivotal
mediators of PCa progression through multifaceted mechanisms. In
this study, the results form scRNA-seq analyze revealed three
interconnected oncogenic roles: (1) Prognostic gene FASN exhibits
sustained overexpression in malignant epithelia, directly driving
tumorigenic behaviors; (2) Epithelial cells orchestrate a pro-
tumorigenic niche via crosstalk with endothelial and immune
compartments; (3) Persistent FASN activation during epithelial
differentiation suggests dynamic involvement in malignant
transformation. These findings align with growing interest in PCa
immunotherapy, though its unique immunosuppressive
microenvironment poses translational challenges (136-138). Zhu
et al. pioneered an epithelial cell marker gene prognostic signature
(ECMGPS) derived from scRNA-seq data (GSE176031),
demonstrating robust predictive accuracy for immunotherapy
responses despite lacking clinical cohort validation (139).
Mechanistic insights from Jiang et al. established its capacity to
induce epithelial-mesenchymal transition (EMT) via transcriptional
repression of E-cadherin and N-cadherin activation, facilitating
peritoneal metastasis in ovarian cancer (140). To date, no studies
have mechanistically delineated FASN-epithelial cell interactions in
PCa. Our study addresses this critical knowledge gap by providing the
first functional evidence linking FASN activity to epithelial cell-
mediated oncogenic progression in PCa pathogenesis.

Experimental validation using RT-qPCR confirmed the
consistency between bioinformatic predictions and experimental
findings, with dysregulated expression of BMP2, NR3C1, TLR3,
RACGAPI, and FASN closely associated with PCa progression.
Specifically, BMP2 was found to suppress tumor cell proliferation
and migration, as evidenced by downregulation of Ki67 expression
and reduced migratory activity in PC3 cells. Conversely, FASN
promoted both proliferation and migration, underscoring its role as
a driver of tumor aggressiveness. These findings highlight the dual
regulatory roles of BMP2 and FASN in PCa pathobiology,
suggesting their potential as both biomarkers and therapeutic
targets. The observed concordance between bioinformatic analysis
and experimental validation strengthens the reliability of the
identified prognostic genes. Furthermore, the mechanistic insights
into BMP2 and FASN’s opposing effects on proliferation and
migration provide a foundation for the development of targeted
therapeutic strategies. Future studies should prioritize mechanistic
investigation of these biomarkers, including development of
targeted agents, analysis of stage-specific expression dynamics,
and optimization of combinatorial therapeutic strategies. Such
efforts will advance precision oncology frameworks to address
unmet clinical needs in PCa management.
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5 Conclusions

This study innovatively integrated MR with transcriptomic and
scRNA-seq analyses to identify five prognostic genes associated
with PCa progression, subsequently constructing a risk
stratification model and evaluating its clinical utility. Mechanistic
exploration revealed functional roles of these genes in tumorigenic
pathways, complemented by scRNA-seq analysis of their expression
patterns across PCa-associated cellular subpopulations. While these
findings advance our understanding of PCa biology, several
limitations warrant consideration. First, the prognostic model
relied solely on a single dataset without external validation
cohorts, potentially limiting its generalizability. Second,
experimental validation focused primarily on preliminary
functional assays, necessitating further exploration of the
molecular mechanisms underlying BMP2 and FASN-mediated
effects. Despite these constraints, our study establishes a robust
theoretical foundation for the development of personalized
therapeutic strategies in PCa management. By identifying and
characterizing key prognostic genes, we provide a comprehensive
framework for advancing precision oncology and addressing unmet
clinical needs in PCa prognosis and treatment.
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