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CRISPR/Cas9-based discovery
of ccRCC therapeutic
opportunities through molecular
mechanism and immune
microenvironment analysis
Bo Han, Weiyang Liu, Wanhui Wang, Zhuolun Li, Bosen You,
Dongze Liu, Yunfeng Nan, Tiankai Ding, Zhou Dai,
Yantong Zhang, Wei Zhang*, Qing Liu* and Xuedong Li*

Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
Introduction:Clear cell renal cell carcinoma is a common and aggressive form of

renal cell carcinoma. Its incidence continues to rise, and metastatic recurrence

leads to poor clinical outcomes. Current prognostic biomarkers lack reliability.

We integrated multi-omics data to discover key ccRCC genes and build a

prognostic model to improve risk prediction and guide treatment decisions.

Methods: Our study integrated genome-wide CRISPR screening data from

DepMap and transcriptomic profiles from TCGA to identify key genes

associated with ccRCC pathogenesis. Initial screening identified 11 candidate

genes through differential expression analysis and CRISPR functional validation.

Using LASSO and Cox regression, we selected five key genes (GGT6, HAO2, SLPI,

MELK, and EIF4A1) for model construction. The functional role of MELK was

tested by knockdown experiments. Additional analyses included tumor mutation

burden, immune microenvironment assessment, and drug response prediction.

Results: The model stratified patients into high-risk and low-risk groups with

distinct survival outcomes. High-risk cases showed higher mutation loads,

immunosuppressive features, and activated cytokine pathways, whereas low-

risk cases displayed metabolic pathway activity. MELK knockdown reduced

cancer cell proliferation and migration. High-risk patients exhibited better

responses to targeted drugs such as pazopanib and sunitinib.

Discussion: Our study demonstrates the pivotal role of MELK in ccRCC

progression. This multi-omics-driven model elucidates MELK-mediated

mechanisms and their interactions with the tumor microenvironment,

providing novel strategies for risk stratification and targeted therapy. Future

studies will validate these findings in independent cohorts and investigate the

regulatory networks of MELK to identify potential therapeutic targets.
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Introduction

Renal cell carcinoma (RCC) ranks among the most prevalent

cancers in the urological system, with its incidence on the rise,

representing approximately 2%–3% of malignant neoplasms in

adults (1). RCC is a prevalent malignancy within the

genitourinary tract, characterized by its aggressive nature and

high fatality rate (2). Among RCC subgroups, clear cell Renal Cell

Carcinoma (ccRCC) predominates histologically, representing

about 75-80% among RCC diagnoses (3). Globally, approximately

400,000 RCC diagnoses are identified each year, with the United

States contributing an estimated 82,000 cases in 2024 with ccRCC

accounting for about 75%–80% of these cases. RCC is responsible

for over 170,000 deaths annually. The vast majority of which were

ccRCC, with around 15,000 deaths attributed to the disease.

ccRCC exhibits significant heterogeneity, a high propensity for

metastasis, and a generally unfavorable prognosis (4). Despite

surgical excision being the mainstay treatment for patients with

localized ccRCC, a significant proportion 30–40% of these patients

experience metastatic relapse after surgery during subsequent

follow-up. As a result, early detection of metastatic propensity in

ccRCC is crucial for enhancing the precision of prognostic

predictions. At present, our knowledge of the pathogenesis of

ccRCC remains incomplete, and reliable tumor biomarkers for

predicting prognosis have yet to be established.

Recently, high-throughput screening initiatives, such as the

DepMap project, have gained prominence. These projects

leverage RNA interference silencing and CRISPR-Cas9 (Clustered

Regularly Interspaced Short Palindromic Repeats-associated

protein 9) knockout techniques to pinpoint possible essential

genes vital to tumor survival, metastasis, or recurrence (5–7).

Researchers have employed CRISPR technology to selectively

knock out target genes, thereby exploring potential therapeutic

strategies (8, 9). To systematically identify potential cancer

biomarkers, the CRISPR-Cas9 system has been employed to

screen essential genes regulating cancer cell growth and viability.

To enhance the specificity of CRISPR-based screens, the CERES

algorithm was developed to computationally correct copy number

effects, thereby quantifying the median impact of core and

dispensable genes on a for each individual cell line basis (10).

Genes deemed essential in a limited number of cell lines are

regarded as more promising therapeutic targets, since targeting

these genes is less likely to induce off-tissue toxicity. In addition,

studying the prognostic value of ccRCC can help urologists better

treat patients.

By combining DepMap CRISPR screening and TCGA

transcriptomic data, we identified five pivotal ccRCC-associated

genes. Using LASSO and multivariate Cox regression, we developed

a prognostic model and analyzed its relationships with tumor

mutational burden (TMB), Tumor microenvironment (TME)

immune infiltration, immunotherapy response, and chemotherapy

efficacy. A clinical nomogram incorporating risk scores and clinical

features was established for ccRCC prognosis prediction.
Frontiers in Immunology 02
Method

Data collection and preprocessing

This study focuses on characterizing molecular biomarkers while

investigating potential therapeutic targets for ccRCC. Utilizing TCGA

database, gene expression profiles and clinical data from 537 ccRCC

patients were analyzed. Differential expression analysis was

conducted between matched tumor-normal tissue pairs from the

TCGA cohort, with differentially expressed genes (DEGs) identified

using a false discovery rate (FDR) threshold of less than 0.05 and a

log2 fold change (log2FC) greater than 1 as the criteria for defining

primary cancer-associated genes. Subsequently, the DepMap

database contains gene dependency data from cancer cell lines, was

employed in conjunction with CRISPR-Cas9 gene-editing technology

to further validate the critical role of these genes in cancer cell

survival. For this purpose, the CRISPR dataset from the 24Q4 release

of the DepMap database was downloaded, and genes with Chronos

scores below zero were identified as essential genes. By integrating the

analytical results from TCGA and DepMap, the study successfully

identified a group of core genes closely associated with ccRCC, which

may serve as potential diagnostic markers and pharmacological

targets for further in-depth analysis. External validation was

performed using the GEO dataset GSE26909 (n=39), with risk

scores calculated using the same coefficients derived from the

TCGA cohort.
Identification of DEGs

After identifying 11 genes in ccRCC, we first analyzed their

expression and copy number variation (CNV) profiles. A cutoff-

based approach was applied, and heatmaps were generated using

the “pheatmap” R package (11). Next, differential expression and

co-expression analyses of these 11 genes were performed to assess

their expression patterns. Boxplots were generated using the

‘ggpubr’ R package. (12).
Recognition of key genes in ccRCC

To identify survival-related genes in ccRCC, we conducted

univariate, LASSO-penalized, and multivariate Cox proportional

hazards regression analyses using R’s glmnet package to develop a

prognostic prediction model (13–16). The heatmap illustrates the

pattern of clinical feature distribution across patients in the high-

risk and low-risk groups which was generated to visualize the

expression patterns of DEGs across the patient samples. The

expression data were normalized and log2-transformed to reduce

skewness and improve comparability. Hierarchical clustering was

performed on both genes and samples to group those with similar

expression profiles. The chord diagram was generated to visualize

regulatory or functional interactions between the top DEGs. The

risk score for each patient was calculated using a linear combination
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of the expression levels of the DEGs, weighted by their respective

regression coefficients derived from multivariate Cox analysis. The

formula is as follows:

Riskscore  =  o iCoefficient (i)*Expression of gene(i)

Differences in survival between risk strata were evaluated

through Kaplan-Meier (KM) analysis performed with the

“survival” R package (17, 18). Patients were dichotomized into

high- and low-risk groups using the median risk score as the

threshold. This cutoff was selected to ensure balanced group sizes

and clinical interpretability. Time-dependent Receiver operating

characteristic (ROC) analysis evaluated the gene risk model’s

performance using 1-year, 3-year, and 5-year follow-up data. We

validated the optimal threshold value via principal component

analysi (PCA) (19). Calibration curves approaching the 45-degree

line indicated optimal predictive performance of the nomogram.
Consensus clustering analysis

This study investigates the application of clustering analysis in data

classification through experiments, centered on the k-means

partitioning method and its implementation in the R environment

using the ConsensusClusterPlus tool (20). The experiment employed

Euclidean distance as the similarity measure and incorporated the

Partitioning Around Medoids (PAM) algorithm to perform clustering

analysis on the dataset, ranging from 2 to 9 clusters. the study

constructed a reliable consensus matrix, significantly reducing inter-

cluster overlap and achieving efficient data classification. This analysis

was implemented using the R package ConsensusClusterPlus.
Predictive nomogram with interactive
dynamic features

We developed the prognostic nomogram with the “rms”

package (21) and implemented an interactive web calculator using

“shiny” and “DynNom” packages (22, 23) for real-time survival

probability estimation. The model’s predictive performance was

validated through calibration plots comparing observed KM versus

predicted 1-year, 3-year, and 5-year survival outcomes.
TMB calculation

TMB was quantified based on the count including

nonsynonymous single nucleotide variants and insertion-deletion

alterations per megabase. Leveraging the “maftools” R package, we

derived TMB values for our predictive model (24).
Function enrichment analysis

Gene Ontology (GO), Kyoto Encyclopedia of Genes and

Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA)
Frontiers in Immunology 03
were performed using the R packages clusterProfiler and GOplot to

identify biological functions and pathways associated with cancer

essentiality in high-risk vs low-risk groups (25). Results were

visualized with ggplot2 (26).
Drug sensitivity analysis

We conducted a drug sensitivity analysis aimed at evaluating

the impact of various compounds on specific cell lines. For this

purpose, we utilized the “limma”, “ggpubr” and the “pRRophetic” R

package for our analysis, with the selection threshold set at p < 0.05

and q < 1 (27).
Investigation of immune cell infiltration

Immune cell infiltration profiles were analyzed using

complementary approaches: ssGSEA via the GSVA package

quantified 22 immune cell subtypes, while CIBERSORT assessed

immune infiltration patterns and their association with immune

checkpoints across risk groups.
Cell culture

The ccRCC cell lines 786O, 769P, and Caki-1 were obtained

from the American Type Culture Collection (ATCC). The cells were

cultured in RPMI-1640 medium containing 10% fetal bovine serum

(FBS) and 1% penicillin/streptomycin. All reagents were purchased

from Gibco (Invitrogen-Gibco). Cells were incubated at 37°C with

5% CO2 in a humidified environment.
Human specimens

This study was conducted at the Second Affiliated Hospital of

Harbin Medical University to provide a scientific basis for ccRCC early

detection and therapy. Tumor and adjacent normal tissues (0.5 cm³

each) were collected from surgically treated ccRCC patients. The study

was approved by the hospital’s Ethics Committee, after obtaining

participant consent. Formalin-fixed paraffin-embedded specimens

were prepared for immunohistochemistry, and clinical data were

verified by two board-certified surgeons.
Western blot

Cells were lysed in RIPA buffer containing protease inhibitors

(Seven, China), collected by scraping (BIOFIL), and quantified by

BCA (Beyotime). Proteins were separated by 10% SDS-PAGE,

transferred to PVDF membranes (Millipore), and incubated with

specific primary antibodies at 4°C for 12-16 hours followed by

HRP-secondary antibodies (RT, 1 h) were detected by

chemiluminescence (Tanon).
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Cell colony formation analyze

Cells were harvested in RIPA/protease inhibitor cocktail (Seven,

China), collected by scraping (BIOFIL), and quantified by BCA

(Beyotime). Proteins were resolved on 10% SDS-PAGE, transferred

to PVDFmembranes, and immunoblotted with primary antibodies (4°

C, overnight) and HRP-secondaries (RT, 1 h), followed by

chemiluminescent detection (Tanon). Following distilled water

washes and air-drying, colonies (≥50 cells) were microscopically

counted to calculate formation rates, with images captured for analysis.
Transwell assay

Cells (5 × 104 ccRCC) were seeded in serum-free 8 μm

Transwell chambers (Corning), with 600 μL complete medium in

the lower compartment. Following a 24-hour incubation period,

non-invasive cells were gently eliminated. Transmigrated cells

underwent fixation using 4% paraformaldehyde, labeled with

0.5% crystal violet solution, and quantified by light microscopy.
Statistical analysis

The experiments were repeated independently a minimum of three

replicates and presented as mean values ± SD. All statistical evaluations

and computations were conducted using R software (4.4.0). Statistical

significance was determined using unpaired t-tests and two-factor

variance analyses (GraphPad Prism 8). Threshold for statistical

significance was set at p<0.05.

Result

Identification of 11 important DEGs in
ccRCC

The complete analytical workflow is presented (Figure 1). Initially,

essential genes that significantly impact cell viability in ccRCC cell lines

were identified based on genome-wide CRISPR knockout screening

data from the DepMap database. Subsequently, DEGs in ccRCC

tumors compared to adjacent normal tissues were detected via

TCGA transcriptomic data mining. By integrating these two datasets

(Figures 2A), we identified 11 key genes exhibiting significant difference

in ccRCC (Figures 2B, C). Further analysis revealed that these genes

commonly exhibit CNVs, predominantly characterized by copy

number losses (Figure 2D). Additionally, the correlations among

these 11 DEGs are shown in Figure 2E. Most importantly, we

successfully identified 11 crucial DEGs for further in-depth analysis.
The construction and evaluation of the
prognostic model

Through univariate Cox regression analysis of the 11 candidate

genes, we identified 7 genes that exhibited stronger associations with
Frontiers in Immunology 04
the prognosis of ccRCC. Subsequently, we employed the k-means

clustering algorithm to perform grouping experiments on these 7

genes. The results demonstrated that the clustering performance was

most stable when k=2 (Supplementary Figures S1A–D). UAMP

revealed distinct gene expression patterns between cluster 1 and

cluster 2 (Supplementary Figure S1E). Additionally, the Kaplan–

Meier analysis demonstrated significantly better OS in cluster 2

compared to cluster 1 among ccRCC patients (Supplementary Figure

S1F). The findings not only confirmed the classification of ccRCC

patients into two subgroups but also revealed notable disparities in

their OS. Pronounced differences in expression patterns between the

two gene groups with high internal consistency. In the initial stage of

our analysis, we performed univariate Cox regression on the 11 DEGs

(Figure 3A). Subsequently, we applied LASSO regression to further

refine the gene set (Figures 3B, C). Intriguingly, 7 genes were retained

based on partial likelihood minimization and were subsequently

applied in constructing the risk prediction model. Then we utilize

multivariate Cox regression analysis, ultimately screening out 5 core

genes: GGT6 (95% CI = 0.62-0.99, p = 0.041), HAO2 (95% CI = 0.78-

0.97, p = 0.013), SLPI (95% CI = 1.03-1.18, p = 0.006), MELK (95% CI

= 1.11-1.92, p = 0.006), and EIF4A1 (95% CI = 1.14-1.69, p = 0.001).

These genes showed significant correlations with the OS (Figures 3D,

E). The correlations between these DEGs are displayed (Figure 3F).
Clinical evaluation based on a risk score-
derived prognostic model

We built a risk score model from the transcriptional signatures

of the five genes, dividing patients into high-risk and low-risk

groups. Through heatmap analysis (Supplementary Figure S2A),

we revealed potential associations between risk scores of ccRCC and

clinical characteristics of patients. The heatmap results

demonstrated a positive correlation between elevated risk scores

and poor prognosis. To further quantify these relationships, we

constructed scatter plots using the Wilcoxon signed-rank test

(Supplementary Figures S2B–G). It indicated that ccRCC risk

stratification exhibited a strong positive association with clinical

stage, N stage, T stage, M stage, gender, and tumor grade (p < 0.05).

However, no statistically significant correlation was observed

between age and ccRCC risk scores (Supplementary Figure S2H).

In summary, the ccRCC risk score serves as a robust indicator for

evaluating tumor malignancy, with predictive efficacy independent

of age.
Prognostic stratification and risk
assessment

KM analysis confirmed a worse prognosis in high-risk versus low-

risk patients (Figure 4A). Additionally, the prognostic value of our

model was examined using ROC curve methodology (Figure 4B). The

model demonstrated strong predictive accuracy with 1-year, 3-year,

and 5-year AUCs of 0.711, 0.673, and 0.706, confirming its robust

prognostic value. It’s displays the risk score distribution across high-
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and low-risk groups (Figure 4C). indicating a direct relationship

between rising risk scores and mortality probability (Figure 4D).

Furthermore, PCA was employed to classify ccRCC samples into

distinct groups. PCA results distinctly stratified ccRCC samples into

high-risk and low-risk groups, reaffirming the significant prognostic
Frontiers in Immunology 05
differentiation of ccRCC patients based on our risk model (Figures 4E).

To further validate our prognostic model, we applied it to an

independent GEO dataset (GSE26909, n=39). Consistent with TCGA

results, the model significantly stratified patients into high- and low-

risk groups (Figure 4F), confirming its generalizability.
FIGURE 1

The flowchart and graphic abstract of this study.
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Formulation and evaluation of the
nomogram

Univariate and multivariate Cox proportional hazards models

were utilized to evaluate the risk score’s independence as a prognostic

indicator for ccRCC (Figures 5A, B). Notably, while age did not show

a significant correlation with the risk score (Supplementary Figure
Frontiers in Immunology 06
S2H), multivariate Cox regression analysis confirmed its independent

prognostic value for overall survival. Therefore, we included age in

the nomogram and considered potential confounding factors, such as

treatment tolerance and comorbidities, which may independently

affect patient prognosis regardless of molecular risk stratification.

Based on significant p-values from multivariate Cox regression, we

constructed a nomogram as a quantitative method to predict OS in
FIGURE 2

Identification of 11 Important DEGs in ccRCC. (A) Venn diagram of genes in the TCGA and DEPMap datasets. (B) Expression heatmap of the eleven
genes in normal versus tumor samples. (C) Differential expression levels of the eleven genes in normal and tumor samples. (D) Locations of the
DEGs on chromosomes. (E) Expression correlation analysis of the eleven DEGs. *p < 0.05; **p < 0.01; ***p < 0.001.
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ccRCC patients(Figure 5C). The predictive factors included in the

nomogram were the risk score and age. The results showed that the

risk score was the key prognostic indicator. Additionally, calibration

curves for 1-year, 3-year, and 5-year predictions were generated,
Frontiers in Immunology 07
demonstrating that the model exhibited satisfactory predictive

accuracy (Figures 5D–F). The data indicate this signature may

serve as a dependable assessment method for OS prediction

in ccRCC.
FIGURE 3

The construction and evaluation of the prognostic models. (A) Univariate Cox regression identifies 7 DEGs. (B) Coefficient trajectories of 7 DEGs in
LASSO regression. (C) Optimal lambda selection in LASSO regression (10-fold CV). (D, E) Prognostic impact of 5 DEGs assessed by multivariate Cox
regression. (F) Inter-gene correlations among the five DEGs.
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Investigating the relationship between TMB
and risk scores

Subsequently, we focused on the potential value of TMB in

tumor immunotherapy and its molecular characteristics. We

analyzed genomic alteration landscapes in high-risk and low-risk
Frontiers in Immunology 08
groups risk scores from the TCGA database (Figures 6A, B).

Survival curves stratified by TMB levels indicated that patients

with low TMB exhibited improved clinical prognosis compared to

those with high TMB (Figure 6C). Subgroup analysis revealed

significant differences in mutation distribution and genetic

features between high TMB groups(Figures 6D–F) and low TMB
FIGURE 4

Multi method validation of risk score-derived prognostic models. (A) KM survival curves demonstrated markedly shorter overall survival in high-risk
ccRCC patients relative to those in the low-risk group. (B) ROC analysis of the DEGs prognostic signature for predicting the 1/3/5-year survival.
(C, D) Risk score stratification and survival duration distribution in ccRCC cohort. (E) PCA discriminates high- and low-risk groups using whole
transcriptome data. (F) KM survival analysis of ccRCC patients stratified by risk score in the GEO validation cohort (GSE26909, n=39).
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groups(Figures 6G–I). Missense mutations predominated in both

groups, while frameshift mutations demonstrated pronounced

prevalence in the low TMB group, hinting at distinct functional

impacts on tumor progression. Mutation distribution and gene

characteristics also differed between TMB groups.
Prognostic model using immune cells and
drug sensitivity

TME has been shown to have a critical impact on the

progression and treatment of various cancers. By constructing

an immune cell atlas of the TME, we systematically analyzed the

infiltration patterns of 22 immune cell subsets in ccRCC

(Figure 7A). Our findings revealed that immune cell populations

including dendritic cells, M1 macrophages, mast cells, and

monocytes exhibited significant anti-tumor activity, with their

abundance positively correlated with improved patient prognosis
Frontiers in Immunology 09
(Figures 7B, C). In contrast, neutrophils, memory T cells,

regulatory T cells, follicular helper T cells, M0 macrophages,

activated mast cells demonstrated pro-tumor characteristics, and

elevated infiltration levels correlated significantly with adverse

clinical outcomes (Figures 7D–F). Further analysis using the

ESTIMATE algorithm evaluated immune cell infiltration in the

TME of ccRCC patients (Figure 7G). The results showed a marked

reduction in anti-tumor immune cells and a concomitant increase

in immunosuppressive cell infiltration in high-risk TME. Based on

these derivations, we assessed the therapeutic efficacy of three

targeted agents pazopanib, sunitinib, and temsirolimus in high-

risk and low-risk group (Figures 7H–J). The research indicate that

these agents show significantly higher drug sensitivity and

improved treatment outcomes in low-risk patients. These

findings indicate that our model is closely associated with

tumor-infiltrating immune cells and drug sensitivity, providing

va luab l e in s i gh t s fo r the deve l opmen t o f t a r ge t ed

immunotherapies in ccRCC.
FIGURE 5

Construction of a nomogram for prediction prognosis. (A) Univariate Cox regression analysis identified grade, stage, T stage, M stage, and risk score
as significant prognostic factors. (B) Multivariate Cox regression identifies risk score and age as independent prognostic predictors. (C) Prognostic
nomogram incorporating risk score and age for ccRCC survival probability. (D–F) Calibration curves demonstrate the accuracy of 1-year, 3-year, and
5-year overall survival predictions.
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Enrichment analysis of the prognostic
model

To further annotate the functional enrichments in the high-risk

and low-risk groups, we performed GSEA to identify significantly

enriched signaling pathways (Figures 8A–F). The high-risk group

showed prominent enrichment in the “Cytokine-cytokine receptor

interaction” pathway, while the low-risk group exhibited significant

enrichment in metabolic pathways including fatty acid, propanoate,
Frontiers in Immunology 10
and branched-chain amino acid degradation. KEGG and GO analyses

(Figures 8G, H) were performed to explore the molecular mechanisms

of the five prognosis-related genes. KEGG pathway analysis indicated

significant enrichments in pathways including Phagosome, Carbon

metabolism, Diabetic cardiomyopathy. These findings suggest that the

prognosis of RCC patients may be influenced by the aforementioned

biological functions and signaling pathways. GO analysis highlighted

enrichment in cell adhesion regulation, energy metabolism, and

extracellular matrix components.
FIGURE 6

Correlation between TMB and risk score. (A, B) Comparative mutation landscapes in high-risk (A) and low-risk (B) groups. (C) Survival outcomes
stratified by TMB levels. (D–I) Variant type distributions are shown for high-risk (D–F) and low-risk (G–I) patients.
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High MELK expression is associated with
poor prognosis in patients with ccRCC

Based on existing studies, both MELK and EIF4A1 are highly

expressed in tumor cells, and high EIF4A1 expression has been
Frontiers in Immunology 11
confirmed to correlate with poor patient prognosis (28). Elevated

MELK (HR=1.46) and EIF4A1 (HR=1.39) expression predicted

adverse outcomes, with MELK showing the highest risk

association. Based on our analysis, high MELK expression levels

correlated with adverse clinical outcomes (Figure 9A). IHC staining
FIGURE 7

Correlation of immune microenvironment with risk score. (A) Immune cell infiltration landscape in ccRCC revealed by CIBERSORT. (B–F) Linear
regression models demonstrate risk score-dependent immune cell infiltration patterns. (G) Differential immune cell distribution between risk groups.
(H–J) Risk-stratified therapeutic sensitivity to pazopanib, sunitinib, and temsirolimus.
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further demonstrated that MELK expression was higher in tumor

tissues than in normal adjacent tissues (NAT) (Figures 9B, C),

confirming that MELK levels are elevated in tumor tissues.

Moreover, MELK levels increased significantly with tumor

progression, showing higher expression in advanced-stage

compared to early-stage ccRCC (Supplementary Figures S3A–E).

Patients in the high-risk category demonstrated markedly elevated

MELK expression compared to their low-risk counterparts.

(Supplementary Figure S3F). MELK upregulation represents a

potential prognostic marker in ccRCC. We selected three ccRCC

cell lines (786-O, 769-P, and Caki-1) and transfected these cells with
Frontiers in Immunology 12
MELK-specific siRNA plasmids. Successful knockdown of MELK

was confirmed by Western blotting (Figure 9D). MELK knockdown

substantially inhibited colony formation and cell proliferation

(Figure 9E). The results of migration assays demonstrated that

relative counts of migrating cells were significantly reduced in

MELK knockdown groups (Figures 9F–I). This indicates that

MELK knockdown significantly suppresses the migratory abilities

of 786-O, 769-P, and Caki-1 cells. Collectively, our clinical and

experimental data establish MELK as a critical oncogenic driver in

ccRCC, whose overexpression correlates with advanced tumor

progression, poor prognosis, and enhanced malignant
FIGURE 8

Functional enrichment and GSEA analysis. (A) Significantly enriched biological pathways in high-risk patients. (B–F) Distinct biological pathway
enrichment profile in low-risk cohort. (G) GO analysis reveals key biological processes of DEGs. (H) KEGG pathway enrichment landscape of DEGs.
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FIGURE 9

MELK is a poor prognostic marker in ccRCC. (A) Significant variations in overall survival between ccRCC patients with high and low MELK expression.
(B, C) Immunohistochemical evidence of MELK overexpression in tumor tissues versus NAT. (D) Successful MELK knockdown confirmed by
western blot across 769P, 786O and Caki-1 cell lines. (E) Silencing MELK suppressed proliferation abilities in 769P, 786O and Caki-1 cells. (F–I)
Silencing MELK suppressed migration abilities as measured via transwell assay (F) and scratch assay (G–I) in 769P, 786O and Caki-1 cells. *p < 0.05;
**p < 0.01; ***p < 0.001.
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phenotypes, while its knockdown potently suppresses tumor

aggressiveness, highlighting its potential as both a prognostic

biomarker and therapeutic target.
Discussion

As the predominant pathological category of renal carcinoma,

ccRCC is notable for substantial heterogeneity and aggressive

progression. Despite recent advancements in therapeutic

strategies, the prognosis for ccRCC remains poor, particularly for

advanced-stage patients (29, 30). Identifying key prognostic genes

and constructing robust prognostic models are therefore critical for

improving survival rates and guiding personalized treatment (31).

Current ccRCC risk stratification methods primarily rely on clinical

and pathological features, lacking consideration of tumor molecular

mechanisms and the immune microenvironment. This limits their

predictive accuracy and ability to provide personalized treatment

recommendations. Our study integrates CRISPR-Cas9 gene-editing

data from DepMap and transcriptome data from TCGA to

construct a prognostic model, which has been further validated in

an independent GEO cohort (GSE29609). This model not only

enhances the accuracy of risk stratification but also offers more

precise clinical guidance through drug sensitivity analysis. The

consistent performance across multiple datasets (TCGA and

GEO) demonstrates its robustness and generalizability. It helps

optimize treatment plans, improve therapeutic outcomes, and

reduce medical costs. The DepMap database, a comprehensive

resource cataloging genetic dependencies in cancer cell lines,

facilitated the identification of genes essential for ccRCC survival

through CRISPR-Cas9 knockout screening. By leveraging

DepMap’s Chronos scores we prioritized genes with significant

functional relevance, ensuring that findings were grounded in both

in vitro experimentation and clinical data (32). This dual-validation

approach minimized false-positive results and enhanced the

translational potential of the prognostic model. The development

of genome-wide CRISPR-Cas9 loss-of-function screening

represents a major breakthrough in biological research, offering a

powerful tool to dissect gene function in tumorigenesis (33–37).

Concurrently, TCGA project has unveiled the complex genomic

landscape of ccRCC, including mutations, CNVs, dysregulated gene

expression, and immune microenvironment alterations, laying the

groundwork for novel diagnostic markers and therapeutic targets.

This study integrates TCGA-derived ccRCC data with DepMap

CRISPR-Cas9 screening to identify prognostic genes and construct

a predictive model, thereby advancing precision medicine strategies

for ccRCC.

From DepMap (CERES scores), we identified 116 ccRCC-

essential proliferation genes, while TCGA-KIRC analysis

uncovered 2,677 DEGs. Intersecting these datasets yielded 11

candidate genes. Subsequent univariate Cox and LASSO

regression analyses narrowed the selection to five key genes—

GGT6, HAO2, SLPI, MELK, and EIF4A1—whose expression

patterns correlated strongly with tumor grade, clinical stage, and
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metastatic status. KM analysis revealed pronounced survival

differences between gene-stratified high-risk and low-risk groups.

ROC analysis confirmed the model’s superior predictive accuracy

compared to conventional clinical parameters (AUC >0.75 for 1–5-

year survival), while its age independence underscored its

applicability across diverse patient populations. The prognostic

model, validated by nomogram calibration and marked survival

differences between risk groups, exhibited exceptional performance.

Notably, MELK and EIF4A1 were highly expressed in tumor cells.

MELK, a serine/threonine kinase implicated in cancer stem cell

maintenance and chemoresistance in multiple malignancies, was

associated with poor prognosis (38). Similarly, EIF4A1, a

translation initiation factor, may drive tumor proliferation by

enhancing oncoprotein synthesis, a mechanism observed in other

cancers (39).

Further analysis revealed interactions between risk scores and

TMB, highlighting their combined prognostic value. Patients with low

TMB exhibited improved clinical outcomes, while distinct mutational

profiles between high-TMB and low-TMB groups (e.g., VHL

mutations in high TMB vs. DNAH9 in low TMB) emphasized the

genomic heterogeneity of ccRCC and the need for tailored therapies.

TME analysis demonstrated that immune cell infiltration patterns

significantly influenced disease progression and treatment response.

Anti-tumor immune cells, such as dendritic cells and M1

macrophages, were enriched in low-risk groups, whereas neutrophils

and regulatory T cells (Tregs) exhibited pro-tumor activity (40). The

immunosuppressive TME in high-risk patients, marked by reduced

anti-tumor immunity and increased immunosuppressive cell

infiltration, underscores the therapeutic potential of targeting the

TME. Drug sensitivity assays validated the model’s clinical utility,

revealing significant associations with pazopanib, sunitinib, and

temsirolimus—agents targeting angiogenesis and mTOR pathways

central to ccRCC treatment (41). Enrichment of “cytokine-cytokine

receptor interaction” pathways in high-risk tumors further supports

the potential of immunomodulatory therapies to counteract pro-

tumor inflammation.

GSEA uncovered divergent signaling pathways between risk

groups. High-risk patients exhibited enrichment in cytokine-related

pathways linked to tumor progression and immune evasion, while

low-risk patients showed metabolic pathway activation, suggesting

metabolic reprogramming contributes to favorable outcomes. These

findings deepen our understanding of ccRCC biology and highlight

actionable therapeutic targets. For instance, HAO2, associated with

fatty acid metabolism, underscores the role of metabolic

dysregulation in driving tumor aggressiveness—a hallmark of

ccRCC. HAO2 (glycine oxidase 2) is upregulated in ccRCC and

involved in glycine oxidation, impacting cellular energy metabolism

and oxidative stress response. Its overexpression may enhance

tumor cell proliferation and survival by boosting energy

metabolism and antioxidant capacity. Additionally, metabolic

pathway alterations can influence immune cell infiltration in the

tumor microenvironment, affecting tumor immune evasion (42).

This study establishes a multi-omics-driven prognostic

framework for ccRCC, bridging genetic vulnerabilities with
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clinical outcomes. The identified genes and pathways not only

enhance our mechanistic understanding of ccRCC but also offer

translatable strategies for risk stratification and therapeutic

innovation. MELK has been pinpointed as a core gene within the

constructed prognostic model, playing a pivotal role in the genesis

and progression of ccRCC. As a member of the AMPK-related

kinase family, MELK is overexpressed in various malignancies

including breast cancer, hepatocellular carcinoma, and glioma,

where it drives oncogenesis by regulating cell cycle progression,

cancer stemness, and therapy resistance (43, 44). Previous studies

have demonstrated that MELK is not only crucial for the

development of breast and liver cancers, but also contributes to

radio- and chemoresistance in patients with hepatocellular

carcinoma and glioma (45). Given its oncogenic properties,

MELK is currently being investigated as a potential therapeutic

target, although its specific impact on ccRCC requires further

elucidation. Further validation studies in independent cohorts are

warranted to confirm these observations, elucidating downstream

signaling mechanisms, and exploring targeted therapies against

MELK and EIF4A1 to realize their clinical potential. Among the

five prognostic genes, MELK emerged as a central player in ccRCC

progression. Our functional studies demonstrated that MELK

knockdown potently inhibited tumor cell proliferation, migration

and invasion in ccRCC cell lines. These results corroborate prior

findings in other cancers, where MELK overexpression promotes

tumorigenesis via cell cycle regulation and DNA damage repair. The

elevated MELK expression in advanced-stage tumors and its

correlation with poor prognosis highlight its potential as a

therapeutic target. Notably, the efficacy of pazopanib, sunitinib,

and temsirolimus in high-risk tumors suggests that targeting

MELK-related pathways may synergize with existing therapies to

improve outcomes.

Despite these advances, Certain methodological constraints

merit careful consideration. First, the reliance on TCGA data may

introduce selection bias, and external validation in independent

cohorts is essential to confirm the model’s generalizability. Second,

while in vitro experiments demonstrated MELK’s functional role, in

vivo studies and mechanistic investigations are needed to elucidate

its downstream signaling networks. Third, the clinical utility of the

nomogram requires prospective validation to assess its impact on

therapeutic decision-making.

Future studies should focus on translating these findings into

clinical practice. For instance, exploring small-molecule inhibitors

targeting MELK or EIF4A1 may open new avenues for precision

therapy. Additionally, integrating immune cell infiltration profiles with

genomic data could refine immunotherapy selection, particularly for

patients with high-risk scores and immunosuppressive TME features.

In conclusion, our study has developed a novel prognostic

framework for ccRCC by integrating CRISPR-Cas9 screening data

from DepMap and transcriptomic profiles from TCGA. This

approach bridges genomic vulnerabilities with clinical outcomes,

offering a more comprehensive understanding of ccRCC biology
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compared to previous models that rely solely on transcriptomic

data. The identified genes and pathways not only enhance our

insights into the disease but also provide actionable targets for risk

stratification and therapeutic development. Furthermore, the

identification of MELK as a key driver gene and its association

with the immunosuppressive tumor microenvironment highlight

new avenues for targeted therapy in high-risk patients. Future

validation and functional studies will be critical to realizing the

translational potential of these findings and further improving the

reliability and clinical applicability of our model.
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SUPPLEMENTARY FIGURE 1

Consensus clusters by 7 DEGs. (A) Cumulative distribution function (CDF) plot
demonstrating consensus clustering stability. (B) Delta area plot showing

relative changes in CDF curve area for each k value. (C) Consensus clustering
matrix identifies two distinct molecular subtypes (k=2). (D) Cluster stability
assessment. (E) Transcriptome-wide UAMP reveals inter-cluster divergence.

(F) Survival disparity between clusters by KM analysis.

SUPPLEMENTARY FIGURE 2

Clinical Evaluation Based on a Risk Score-Derived Prognostic Models. The

heatmap (A) and scatter plots demonstrate association of the stage (B), N
stage (C), T stage (D), M stage (E), gender (F), grade (G), and age (H) with the
risk score.

SUPPLEMENTARY FIGURE 3

Expression levels and functions of the MELK gene. Box plots of MELK gene
expression in different clinical stages. Scatter plots demonstrate that T stage

(A), N stage (B), M stage (C), grade (D), and stage (E).Violin plots show the

differential expression of the MELK gene between the high - risk and low - risk
groups (F).
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