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Exploring immune-inflammation
markers in psoriasis prediction
using advanced machine
learning algorithms
Li Yang, Shixin He, Li Tang, Xiao Qin* and Yan Zheng*

Department of Medical Cosmetology, The Third People’s Hospital of Chengdu, Chengdu,
Sichuan, China
Background: Psoriasis is a chronic immune-mediated inflammatory skin disorder

characterized by multifactorial pathogenesis. Recent studies have extensively

highlighted the strong associations between psoriasis and various inflammatory

markers, which are considered novel predictive tools for evaluating

systemic inflammation.

Methods: Cross-sectional data from the NHANES were analyzed in this study. To

assessmodel performance and generalizability, the dataset was randomly divided

into 70% for training and 30% for validation. To address class imbalance in the

training data, a hybrid resampling technique (SMOTEENN) was applied.

Subsequently, nine classification algorithms were developed using the

processed training set, including random forest, neural networks, XGBoost, k-

nearest neighbors, gradient boosting, logistic regression, naïve Bayes, AdaBoost,

and SVMs. The final gradient boosting was implemented via the gbm package in

R, with hyperparameters selected from the default tuning grid of the caret

framework. Inflammatory biomarkers with the highest classification utility were

identified based on the predictions of the best-performing model.

Results: A total of 22,908 participants were included in the final analysis. Gradient

boosting (AUC: 0.629, 95% CI: 0.588–0.669) demonstrated the highest

performance, followed closely by logistic regression (AUC: 0.627, 95% CI:

0.588–0.666). Among all the inflammatory markers, MLR exhibited the best

classification performance, with an AUC value of 0.662 (95% CI: 0.640–0.683),

followed by NLMR, with an AUC value of 0.661 (95% CI: 0.640–0.683). Other

markers, including the NLR, dNLR, SII, SIRI, and PLR, had AUC values ranging from

0.658 to 0.661. The MLR had the highest relative importance score,

demonstrating its critical role in the model’s predictive performance for

psoriasis classification. The NLR ranked second, followed by the SII and SIRI,

which had moderate contributions, whereas the PLR contributed the least.
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2025.1619490/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1619490/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1619490/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1619490/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2025.1619490&domain=pdf&date_stamp=2025-07-31
mailto:qingx1232024@163.com
mailto:dryzheng@163.com
https://doi.org/10.3389/fimmu.2025.1619490
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2025.1619490
https://www.frontiersin.org/journals/immunology


Abbreviations: SII, Systemic Immune-Inflammation

Inflammation Response Index; NLR, Neutrophil-to-Ly

Platelet-to-Lymphocyte Ratio; SMD, Standard Mean Dif

Neutrophil-to-Lymphocyte Ratio; MLR, Monocyte-

NLMR, Neutrophil-to-Monocyte Ratio; AISI, Aggreg

Inflammation; PWR, Platelet-to-White Blood Cell Ratio

Platelet Ratio; XGBoost, Extreme Gradient Boosting

Boosting; SVM, Support Vector Machine; NHANES,

Nutrition Examination Survey; PIR, Poverty I

Cardiovascular Disease; OA, Osteoarthritis; SBP, Systoli

Diastolic Blood Pressure; BMI, Body Mass Index; FPG, F

HbA1c, Hemoglobin A1c; TC, Total Cholesterol; H

Lipoprotein Cholesterol; TG, Triglycerides; LDL-C, Lo

Cholesterol; MICE, Multiple Imputation by Chained Equ

Chain Monte Carlo; FCS, Fully Conditional Specification;

Factor; k-NN, k-Nearest Neighbors; XGBoost, Extreme G

Receiver Operating Characteristic; AUC, Area Under the

Yang et al. 10.3389/fimmu.2025.1619490

Frontiers in Immunology
Conclusions: Among all the tested algorithms, the gradient boosting model

achieved the best performance. Not only does it achieve the highest predictive

accuracy, but it also excels in classification efficacy and feature importance

analysis, highlighting key inflammatory markers such as the MLR, SII, and NLR.

These markers are significant as reliable indicators for evaluating systemic

inflammation and predicting the development of psoriasis, emphasizing their

potential clinical applications.
KEYWORDS

psoriasis, national health and nutrition examination survey, machine learning
algorithms, monocyte-to-lymphocyte ratio, neutrophil-to-monocyte ratio
Background

Psoriasis is a chronic skin disease, and studies have shown that

its prevalence ranges from 0.51% to 11.43% in adults, whereas in

children, it ranges from 0% to 1.37% (1). Regional statistics indicate

that the lowest prevalence is observed in East Asia, at 0.14% (95%

CI: 0.05%-0.40%), whereas Oceania has a relatively high prevalence

of 1.99% (95% CI: 0.64%-6.60%). Additionally, high prevalence

rates are observed in Western Europe (1.92%, 95% CI: 1.07%-

3.46%), Central Europe (1.83%, 95% CI: 0.62%-5.32%), North

America (1.50%, 95% CI: 0.63%-3.60%), and high-income regions

of southern Latin America (1.10%, 95% CI: 0.36%-2.96%) (2). The

incidence of psoriasis also exhibits a distinct bimodal age

distribution, with the first peak occurring between 30 and 39

years of age and the second peak occurring between 60 and 69

years of age. Studies have suggested that females tend to develop

psoriasis at an earlier age than males do. As age increases, the

prevalence peaks between 60 and 70 years of age and subsequently

decreases (3).

The pathogenesis of psoriasis involves genetic factors, immune

system abnormalities, and various environmental triggers, such as
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infections, medication use, and psychological stress. In addition to

cutaneous manifestations, the disease may also be associated with

systemic inflammatory responses, including abnormalities in the

cardiovascular, neurological, hepatic, and endocrine-metabolic

systems (4, 5). Due to the systemic circulation of inflammatory

cells and cytokines, studies have suggested that cutaneous

inflammatory processes may contribute to dysfunction in

systemic organs (6). The clinical manifestations of psoriasis are

diverse, ranging from mild and stable forms to severe and active

disease. Systemic involvement is common, accompanied by

complications and significant elevations in parameters indicative

of heightened innate immune activity, particularly in patients with

severe active disease (7). Thus, analyzing inflammation-related

markers is critical for assessing the dynamics of the disease and

its systemic impact, providing valuable insights into disease severity

and overall inflammatory status.

Recent studies have extensively highlighted the strong

associations between psoriasis and various inflammatory markers,

which are considered novel predictive tools for evaluating systemic

inflammation. These markers include the Systemic Immune-

Inflammation Index (SII) and the Systemic Inflammation

Response Index (SIRI) (8–10). Paliogiannis et al., through a

systematic review and meta-analysis, demonstrated that the NLR

(neutrophil-to-lymphocyte ratio) and PLR (platelet-to-lymphocyte

ratio) were significantly greater in psoriasis patients than in healthy

controls (standard mean difference: SMD = 0.69, 95% CI: 0.53–1.85,

p < 0.001; SMD = 0.40, 95% CI: 0.12–0.68, p = 0.006) (11). This

finding was further validated by larger population studies,

reinforcing the association between psoriasis and these

inflammatory markers[ (12). In addition, other indices derived

from complete blood cell counts have garnered attention, such as

the dNLR (derived neutrophil-to-lymphocyte ratio), MLR

(monocyte-to-lymphocyte ratio), NLMR (neutrophil-to-monocyte

ratio), AISI (aggregate index of systemic inflammation), PWR

(platelet-to-white blood cell ratio), and NPR (neutrophil-to-

platelet ratio) (13–17). These markers are quick and

straightforward to measure, allowing for repeated monitoring of

disease progression or treatment effectiveness, making them
frontiersin.org
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particularly suitable for large-scale population screening and

routine clinical monitoring.

In previous studies, multivariable linear regression and logistic

regression models have been widely used to analyze the

relationships between inflammatory markers and psoriasis (9, 18,

19). However, with the increasing complexity and dimensionality of

data, these traditional statistical methods have gradually revealed

their limitations, particularly in handling nonlinear relationships

and interactions with high-dimensional data. In recent years,

machine learning technologies (20, 21), with their superior data

processing capabilities, have emerged as pivotal tools in medical

research. Algorithms can effectively perform feature selection and

optimization, uncover patterns hidden within complex datasets,

and enhance the accuracy and efficiency of predictive models.

Therefore, the present study utilized cross-sectional data from the

National Health and Nutrition Examination Survey (NHANES) to

train multiple machine learning models, evaluate the predictive ability

of various inflammatory markers, and ultimately identify optimal

inflammatory biomarkers. To ensure the comprehensiveness of the

research and the reliability of the results, nine machine learning

algorithms were employed, including random forest, neural network,

extreme gradient boosting (XGBoost), k-nearest neighbors, gradient

boosting, logistic regression, naive Bayes, adaptive boosting (AdaBoost)

and support vector machines (SVM). Finally, based on the predictions

of the best-performing model, further evaluation was conducted to

assess the predictive contributions of various inflammatory markers for

psoriasis onset, leading to the identification of biomarkers with the

highest clinical utility.
Methods

Study population

Our study utilizes data derived from the NHANES database,

which serves as a comprehensive, ongoing nationwide health and

nutrition monitoring program. The NHANES database originated

in the 1960s and, since 1999, has been used in biennial cycles to

ensure the randomness and representativeness of the samples,

thereby accurately reflecting the health status and behavioral

characteristics of the U.S. population (official website link: https://

wwwn.cdc.gov/nchs/nhanes/Default.aspx). The NHANES dataset

encompasses an extensive array of multidisciplinary information,

including demographic details, dietary intake and deficiencies,

biological concentrations of nutritional biomarkers, health

behaviors, and key indicators obtained through laboratory tests

and physical examinations. Prior to data collection, all participants

provided written informed consent, and Institutional Review Board

approval was obtained. For this study, we specifically focused on

NHANES data related to psoriasis, which were primarily

concentrated within the periods of 2003–2006 and 2009–2014,

and incorporated these datasets into our in-depth analysis.

The 2003–2006 NHANES cycles included individual interview

data that provided information on psoriasis, sun exposure, and

sunscreen usage. The participants were asked the following
Frontiers in Immunology 03
question: “Have you ever been told by a health care provider that

you had psoriasis?” Similarly, during the 2009–2014 NHANES

cycles, self-reported data on various health conditions were

collected, using the same question to identify patients with

psoriasis. Across these cycles, a total of 50,938 participants were

included (Figure 1). The exclusion criteria for this sample were as

follows: participants under 18 years of age (n = 21,251) and

participants with missing data, including psoriasis status,

lymphocyte count, monocyte count, neutrophil count, platelet

count, or missing weights/weights equal to 0 (n = 6,779); a total

of 22,908 participants were retained for analysis.
Index calculation and data collection

The following hematological and inflammatory indices were

calculated via detailed methods based on cellular counts and ratios

derived from laboratory measurements:
1. NLR: The NLR represents the ratio of neutrophils to

lymphocytes and is calculated as follows: NLR =

neutrophil count ÷ lymphocyte count. This index is

widely utilized to assess systemic inflammation, as

neutrophils are key players in acute immune responses,

whereas lymphocytes represent adaptive immunity.

2. dNLR: The dNLR provides an alternative to the NLR, with a

focus on derived white blood cell subsets. It is calculated as

follows: dNLR = neutrophil count ÷ (total white blood cell

count − neutrophil count). This adjustment accounts for the

exclusion of neutrophils from the total white blood cell

population, emphasizing the derived inflammatory profile.

3. SII: The SII combines neutrophils, lymphocytes, and

platelets to reflect systemic immune and inflammatory

status. It is calculated as follows: SII = (platelet count ×

neutrophil count) ÷ lymphocyte count. This index is

particularly relevant for evaluating inflammation related

to immune responses and disease progression.

4. SIRI: The SIRI incorporates monocytes along with

neutrophils and lymphocytes, representing a broader

measure of inflammation. It is calculated as follows: SIRI

= (neutrophil count × monocyte count) ÷ lymphocyte

count. This index provides insights into the inflammatory

responses driven by innate immune cells.

5. MLR: The MLR reflects the balance between monocytes

and lymphocytes and is calculated as follows: MLR =

monocyte count ÷ lymphocyte count. Monocytes play a

significant role in chronic inflammation, making this ratio

valuable for understanding immune dynamics.

6. PLR: The PLR reflects the relationship between platelets

and lymphocytes and is calculated as follows: PLR =

platelet count ÷ lymphocyte count. Platelets contribute

to both hemostasis and inflammatory processes, whereas

lymphocytes represent adaptive immunity.

7. NLMR: The NLMR integrates neutrophils and monocytes

into a single ratio relative to lymphocytes and is calculated
frontiersin.org
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as NLMR = (neutrophil count + monocyte count) ÷

lymphocyte count. This index captures the combined

effects of innate immune cells in the context of

systemic inflammation.

8. AISI: The AISI reflects a comprehensive measure of

systemic inflammation by incorporating neutrophils,

monocytes, and platelets, calculated as follows: AISI =

(Neutrophil count × Monocyte count × Platelet count) ÷

Lymphocyte count. This aggregate index offers a

multidimensional view of inflammatory activity.

9. PWR: The PWR focuses on the balance between the PLT

and total white blood cell count, which is calculated as

follows: PWR = platelet count ÷ total white blood cell

count. This ratio highlights platelet involvement relative to

total leukocytes in immune responses.

10. NPR: The NPR reflects the relationship between

neutrophils and platelets and is calculated as follows:

NPR = neutrophil count ÷ platelet count. This index

sheds light on the interplay between inflammatory cells

and thrombocytes.
A wide range of variables across demographics, lifestyle factors,

comorbidities, and health metrics exist. The demographic data

included age, race, educational status, marital status, and the

family poverty income ratio (PIR). Lifestyle factors include

drinking habits and smoking history, whereas comorbidities

include hypertension, diabetes, cardiovascular disease (CVD), and

osteoarthritis (OA). Health metrics include systolic blood pressure

(SBP), diastolic blood pressure (DBP), body mass index (BMI),

fasting plasma glucose (FPG), HbA1c, total cholesterol (TC), high-
tiers in Immunology 04
density lipoprotein cholesterol (HDL-C), triglycerides (TG), and

low-density lipoprotein cholesterol (LDL-C). Additionally, blood

metrics such as platelet count, segmented neutrophils, lymphocytes,

monocytes, and white blood cell counts are presented. Furthermore,

variables with more than 15% missing data were excluded to ensure

the reliability of the analysis (Supplementary Table S1).
Statistical analysis

First, variables with less than 15% missing values were included

in the final analysis. Missing data were efficiently handled via the

`mice` package in R through the multiple imputation by chained

equations (MICE) method. Appropriate regression models, such as

linear regression for continuous data and logistic regression for

categorical data, were applied according to the variable types. The

iterative sampling and imputation processes were performed via the

Markov chain Monte Carlo (MCMC) algorithm. Variables were

processed sequentially using the fully conditional specification

(FCS) approach, which leveraged both existing values and

imputed values to estimate missing data, thereby ensuring both

flexibility and accuracy in the imputation process.

The analysis utilized functions to construct complex survey

design objects by specifying stratification variables, cluster variables,

weight variables, and adjustment options for complex survey

sampling. The continuous variables in Table 1 are presented as

means and standard deviations and were analyzed using t-tests,

whereas the categorical variables are presented as frequencies and

percentages and were analyzed using chi-square tests. The

evaluation of linear relationships was conducted by calculating
FIGURE 1

Flowchart illustrating the participant selection process in NHANES cycles.
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TABLE 1 Baseline demographic and clinical characteristics of participants.

Variable
Overall,
N = 22908 (100%)1

No psoriasis,
N = 22295 (97%)1

With psoriasis,
N = 613 (3.0%)1

P-value

Age, years 44.18(16.05) 44.08(16.07) 47.39(15.08) <0.001

Sex, N (%) 0.7

female 11,026 (49%) 10,739 (49%) 287 (48%)

male 11,882 (51%) 11,556 (51%) 326 (52%)

Race, N (%) <0.001

Mexican American 3,724 (8.8%) 3,673 (9.0%) 51 (3.8%)

Other Hispanic 1,889 (5.2%) 1,841 (5.2%) 48 (4.0%)

Non-Hispanic White 10,078 (68%) 9,703 (67%) 375 (81%)

Non-Hispanic Black 4,904 (11%) 4,828 (11%) 76 (5.8%)

Other/multiracial 2,313 (6.9%) 2,250 (7.0%) 63 (5.6%)

Educational status, N (%) 0.3

Less Than 9th Grade 2,219 (5.3%) 2,181 (5.4%) 38 (3.0%)

9-11th Grade 3,412 (11%) 3,328 (11%) 84 (11%)

High School Grad/GED 5,121 (22%) 4,984 (23%) 137 (21%)

Some College or AA degree 6,961 (32%) 6,763 (32%) 198 (34%)

College Graduate or above 5,163 (28%) 5,007 (28%) 156 (30%)

Refused answer 17 (<0.1%) 17 (<0.1%) 0 (0%)

Don't Know 15 (<0.1%) 15 (<0.1%) 0 (0%)

Marital Status, N (%) 0.8

Married 11,529 (55%) 11,217 (55%) 312 (57%)

Widowed 1,386 (4.3%) 1,344 (4.3%) 42 (5.0%)

Divorced 2,303 (10%) 2,222 (10%) 81 (11%)

Separated 752 (2.4%) 728 (2.4%) 24 (2.7%)

Never married 4,950 (20%) 4,848 (20%) 102 (17%)

Living with partner 1,967 (8.2%) 1,915 (8.2%) 52 (7.8%)

Refused answer 11 (<0.1%) 11 (<0.1%) 0 (0%)

Don't Know 10 (<0.1%) 10 (<0.1%) 0 (0%)

Family PIR 2.95(1.66) 2.95(1.66) 3.08(1.67) 0.087

Drinking habit, N (%) 0.007

1-5 drinks/month 6,528 (23%) 6,376 (23%) 152 (20%)

10+ drinks/month 11,412 (51%) 11,110 (51%) 302 (46%)

5-10 drinks/month 1,850 (9.5%) 1,789 (9.4%) 61 (13%)

Non-drinker 3,118 (17%) 3,020 (17%) 98 (21%)

Smoking history, N (%) <0.001

Current smoker 12,847 (55%) 12,575 (55%) 272 (43%)

Former smoker 4,937 (22%) 4,740 (22%) 197 (35%)

Never smoker 5,124 (23%) 4,980 (23%) 144 (21%)

(Continued)
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the Pearson correlation coefficients between variables. An absolute

correlation coefficient close to 1 indicates the potential presence of a

significant linear correlation among variables. However, relying

solely on correlation coefficients is insufficient to detect issues of

multicollinearity fully. Therefore, this study further employed the

variance inflation factor (VIF) for detailed analysis. The VIF values

of each predictor variable were calculated individually to determine

whether multicollinearity existed between it and other variables.

Generally, a VIF value exceeding five is considered indicative of

significant multicollinearity, suggesting that model adjustments

may be necessary to enhance robustness.

For further model analysis, stratified random sampling was

used to divide the dataset into 70% training data and 30% validation

data. To address class imbalance, SMOTEENN random
Frontiers in Immunology 06
oversampling techniques were applied to balance the training

dataset. This method generates additional samples based on the

distribution of the original data, notably by expanding instances of

minority classes to mitigate imbalance. Subsequently, noise

reduction was performed via the k-nearest neighbors (k-NN)

algorithm. For each sample, the k-NN algorithm computes the

distance between the sample and its nearest neighbors and applies

majority voting to predict the class of the sample. This step

eliminates potential noise samples with incorrect classifications,

retaining only those that are correctly classified to optimize

data quality.

After the data were balanced, multiple machine learning

models, including random forest, neural network, XGBoost, k-

nearest neighbors, gradient boosting, logistic regression, Naibe
TABLE 1 Continued

Variable
Overall,
N = 22908 (100%)1

No psoriasis,
N = 22295 (97%)1

With psoriasis,
N = 613 (3.0%)1

P-value

Hypertensions, N (%) <0.001

Yes 14,416 (66%) 14,099 (66%) 317 (55%)

No 8,492 (34%) 8,196 (34%) 296 (45%)

SBP, mmHg 120.54(16.45) 120.50(16.45) 121.57(16.39) 0.063

DBP, mmHg 70.48(12.06) 70.44(12.06) 71.86(11.84) 0.013

BMI (kg/m2) 98.07(16.47) 97.95(16.45) 101.97(16.74) <0.001

HbA1c, % 5.54(0.89) 5.54(0.90) 5.57(0.81) 0.021

TC, mmol/L 5.03(1.07) 5.03(1.07) 5.12(1.07) 0.14

HDL-C, mmol/L 1.38(0.41) 1.38(0.41) 1.34(0.41) 0.035

Platelet count (1000 cells/uL) 250.3815(65.7540) 250.3104(65.6891) 252.6618(67.8198) 0.4

Segmented neutrophils num (1000
cell/uL)

4.3400(1.7484) 4.3345(1.7503) 4.5176(1.6775) 0.017

Lymphocyte number (1000 cells/uL) 2.1269(0.8714) 2.1296(0.8768) 2.0399(0.6720) 0.025

Monocyte number (1000 cells/uL) 0.5501(0.1965) 0.5500(0.1974) 0.5562(0.1652) 0.15

White blood cell count (1000 cells/uL) 7.2624(2.2383) 7.2588(2.2438) 7.3753(2.0558) 0.2

NLR 2.22(1.14) 2.21(1.14) 2.42(1.28) <0.001

dNLR 1.56(0.69) 1.55(0.68) 1.66(0.75) <0.001

SII 555.78(342.97) 554.05(342.51) 611.20(353.27) <0.001

SIRI 1.24(0.87) 1.24(0.88) 1.36(0.83) <0.001

MLR 0.28(0.12) 0.28(0.12) 0.30(0.12) <0.001

PLR 128.21(48.78) 128.00(48.65) 134.97(52.54) 0.01

NLMR 2.49(1.21) 2.49(1.21) 2.72(1.35) <0.001

AISI 314.82(262.85) 313.84(263.51) 346.16(238.80) <0.001

PWR 36.58(11.95) 36.60(11.98) 35.98(11.08) 0.6

NPR 0.0182(0.0105) 0.0181(0.0106) 0.0188(0.0082) 0.066
1Mean (SD); n (unweighted) (%).
PIR, Poverty-to-Income Ratio; BMI, Body Mass Index; SBP, Systolic Blood Pressure; DBP, Diastolic Blood Pressure; HbA1c, Glycated Hemoglobin; TC, Total Cholesterol; HDL-C, High-Density
Lipoprotein Cholesterol; NLR, Neutrophil-to-Lymphocyte Ratio; dNLR, Derived Neutrophil-to-Lymphocyte Ratio; SII, Systemic Immune-Inflammation Index; SIRI, Systemic Inflammation
Response Index; MLR, Monocyte-to-Lymphocyte Ratio; PLR, Platelet-to-Lymphocyte Ratio; NLMR, Neutrophil-to-Lymphocyte and Monocyte-to-Lymphocyte Ratio; AISI, Aggregate Index of
Systemic Inflammation; PWR, Platelet-to-White Blood Cell Ratio; NPR, Neutrophil-to-Platelet Ratio.
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Bayes, AdaBoost, and SVM, were trained. Predictive probabilities

were generated on the test set, and model performance in

distinguishing positive and negative samples was evaluated via

receiver operating characteristic (ROC) curves. ROC curves for

different models were plotted, and the area under the curve (AUC)

values for each model were calculated as key indicators of model

performance. The closer the AUC is to 1, the stronger the model’s

classification ability. Additionally, accuracy, precision, recall, and

F1-scores were computed for each model to highlight differences in

classification ability and performance across the machine learning

approaches. To further evaluate model fit, the Hosmer–Lemeshow

goodness-of-fit test was employed. The results revealed that P > 0.05

indicates a good fit, suggesting strong consistency between the

model predictions and observed values, whereas P ≤ 0.05 suggests

significant discrepancies, potentially indicating poor fit.

Finally, based on the complex sampling design, the feature

importance of inflammatory markers from the selected optimal

model was ranked, and AUC values were calculated using ROC

curves to quantify the classification effectiveness of each metric. To

evaluate the subgroup-specific relevance of inflammatory markers,

SHapley Additive exPlanations (SHAP) analysis was performed on

the optimal model. Feature contributions were visualized with

color-coding based on four sociodemographic variables: age

group (≤60 years vs. >60 years), sex (Male vs. Female), race/

ethnicity (Mexican American, Other Hispanic, Non-Hispanic

Black, Other Race, Non-Hispanic White), and income level

(Below Poverty [PIR ≤ 1], Near Poverty [1 < PIR ≤ 2], Middle

Income [2 < PIR ≤ 4], High Income [PIR > 4]). All the analyses were

conducted in R version 4.4.2.
Results

A total of 22,908 participants were included in the final analysis,

with an average age of 44.18 years. Patients with psoriasis were

significantly older, with a mean age of 47.39 years, and this

difference was statistically significant (P < 0.001). No significant

differences were observed between the groups in terms of sex

distribution (P = 0.7) or marital status (P = 0.8). Compared with

nonpsoriatic patients, individuals with psoriasis accounted for a

greater proportion of nondrinkers and a significantly greater

proportion of former smokers. Among other health indicators,

patients with psoriasis presented higher DBP and HbA1c levels

than the controls, with P values of 0.013 and 0.021, respectively.

While TC levels were not significantly different (P = 0.14), high

HDL-C levels were significantly lower in patients with psoriasis (P =

0.035). Furthermore, inflammation and immune-related indices,

including the NLR, dNLR, SII, SIRI, and MLR, were markedly

elevated in patients with psoriasis (P < 0.001), suggesting that these

indices may be strongly correlated with the presence of psoriasis.

Additionally, as the PWR and NPR did not differ significantly

between the psoriasis and non-psoriasis groups in the baseline table,

these two metrics were also excluded during model construction to

optimize performance.
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Figure 2 illustrates the relationships between various

inflammatory markers and psoriasis. These inflammatory markers

were derived from a fundamental whole-blood cell analysis. To

further clarify the correlations among variables, a collinearity

analysis was performed. The variance inflation factors (VIFs) of

these inflammatory markers were all less than 5 (Supplementary

Table S2), indicating relatively low multicollinearity among the

variables. However, some markers, such as the SII (2.692) and AISI

(2.526), have relatively high variance inflation factor (VIF) values,

suggesting a certain degree of correlation with other variables. The

correlation coefficient plot (Figure 3) reveals that although all the

coefficients are less than 0.8, the dNLR and NLR, the SII and AISI,

and the NLMR and NLR are highly correlated. Therefore, in the

subsequent model training processes, dNLR, AISI, and NLMR were

excluded from the analysis.
Assessment of model performance

Figure 4 presents the rankings of the predictive models in

descending order based on their AUC values. Gradient boosting

(AUC: 0.629, 95% CI: 0.588–0.669) demonstrated the highest

performance, followed closely by logistic regression (AUC: 0.627,

95% CI: 0.588–0.666). SVM (AUC: 0.618, 95% CI: 0.577-0.660) and

random forest (AUC: 0.617, 95% CI: 0.576-0.658) algorithms also

demonstrated competitive performance. XGBoost (AUC: 0.615,

95% CI: 0.574–0.655) and naive Bayes (AUC: 0.608, 95% CI:

0.567–0.649) showed moderate performance, followed by

AdaBoost (AUC: 0.601, 95% CI: 0.560–0.643). K-nearest

neighbors (AUC: 0.512, 95% CI: 0.471 - 0.553) and the neural

network (AUC: 0.500, 95% CI: 0.500 - 0.500) displayed the lowest

predictive ability in this analysis.

Supplementary Table S3 presents the performance metrics of

various machine learning models for classification analysis. The

neural network demonstrated the best performance, achieving an

accuracy of 0.972, a recall of 1, and the highest overall F1 score of

0.986. XGBoost and random forest closely followed, with

commendable F1 scores of 0.883 and 0.871, respectively.

AdaBoost also exhibited stable performance, with an F1 score

of 0.87. Gradient boosting and SVM showed slightly weaker

performance, achieving accuracies of 0.748 and 0.741,

respectively, while maintaining consistently high precision. In

contrast, logistic regression and naive Bayes demonstrated

relatively average accuracies and F1 scores of 0.67 and 0.718,

respectively. Finally, K-nearest neighbors underperformed, with

the lowest accuracy of 0.534, as well as the lowest recall and F1

score, at 0.536 and 0.691, respectively. Furthermore, the Hosmer–

Lemeshow chi-square test (Supplementary Table S4) revealed

that only gradient boosting and logistic regression had P values

greater than 0.05. Gradient boosting yielded a test statistic of

3.023 with a p-value of 0.08, whereas logistic regression produced

a test statistic of 1.091 with a p-value of 0.3. Based on a

comprehensive assessment, gradient boosting was selected as

the optimal model.
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Classification performance of inflammatory
markers

Among all the inflammatory markers, the MLR exhibited the

best classification performance, with an AUC value of 0.662 (95%

CI: 0.640–0.683), highlighting its excellent efficacy in predicting

psoriasis occurrence (Figure 5A). The NLMR has an AUC value of

0.661 (95% CI: 0.640–0.683), indicating outstanding performance.

Other markers, including the NLR, dNLR, SII, SIRI, and PLR, had

AUC values ranging from 0.658 to 0.661, indicating relatively

consistent classification performance. In contrast, AISI, PWR, and

NPR have lower AUC values, ranging from 0.657 to 0.658,

suggesting weaker classification effectiveness. To further evaluate

the predictive contribution of inflammatory markers, this study

employed a gradient boosting machine learning model to analyze

the feature importance of five core variables (MLR, NLR, SII, SIRI,

and PLR) (Figure 5B). The analysis revealed that the MLR had the

highest relative importance score, demonstrating its critical role in

the model’s ability to predict psoriasis. The NLR ranked second,

followed by the SII and SIRI, which had moderate contributions,
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whereas the PLR contributed the least. Moreover, SHAP

dependence (Supplementary Figure S1) revealed consistent

predictive effects of inflammatory markers across age, sex, race/

ethnicity, and income levels. The absence of substantial SHAP

value divergence across groups suggests that baseline

demographic factors did not materially alter marker behavior

within the model.
Discussion

This study applied machine learning techniques to explore

predictive models for psoriasis and revealed that the gradient

boosting model demonstrated superior performance among all

the models. In the model analysis, the inflammatory marker MLR

had the highest feature importance score and the highest AUC value

among all the markers in terms of classification performance. These

findings underscore the pivotal role of the MLR in predicting

psoriasis and validate its potential as a key marker for assessing

systemic inflammation.
FIGURE 2

Relationships between the NLR, dNLR, SII, SIRI, MLR, PLR, NLMR, and AISI and psoriasis status. Each variable’s contribution and interaction within the
data are analyzed to provide insights into their predictive capabilities and potential correlations. Symbols *, **, and *** indicate statistical significance
levels: * p < 0.05, ** p < 0.01, *** p < 0.001.
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This study leveraged a large dataset and employed machine

learning techniques to develop predictive models for psoriasis. By

addressing the limitations of traditional statistical methods in

handling variable interactions and nonlinear data, machine

learning has demonstrated superior capabilities. Unlike

conventional approaches, machine learning excels in capturing

complex intervariable relationships, significantly enhancing

predictive performance and model stability. Among the

algorithms tested, the gradient boosting model proved to be the

most effective, outperforming the other methods in terms of

predictive accuracy. This study also highlighted the importance of

key inflammatory markers, such as the tMLR, in feature importance

analysis and classification efficacy. Previous studies have extensively

investigated the application of machine learning in psoriasis

research. For example, machine learning has been utilized to

analyze biological markers of psoriasis, including inflammatory

parameters, immune-related factors, and metabolic molecules,

shedding light on the underlying disease mechanisms.

Additionally, other studies have focused on pathway analysis and

the identification of potential key genes, aiming to elucidate the

genetic and molecular biology of psoriasis (22–24). As technology

has advanced, the scope of machine learning applications in

psoriasis research has broadened considerably. For example, one

study summarized the progress spanning areas from skin image
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analysis to clinical management (25), including automated lesion

identification and differential diagnosis, precise lesion

segmentation, and severity and area scoring. However, these

investigations have focused predominantly on image-based

analyses or the exploration of disease mechanisms. In contrast,

this study integrates classical machine learning algorithms with

inflammatory markers to establish predictive models for psoriasis

with novel clinical utility. To further evaluate the predictive role of

these markers, nine established machine learning algorithms were

selected, comprising both linear methods (e.g., logistic regression)

and nonlinear approaches (e.g., gradient boosting and random

forest). These models are capable of processing various data types

and accounting for variable interactions, enabling systematic

evaluations that optimize prediction performance. In particular,

the MLR, an emerging inflammatory marker, demonstrated

exceptional performance in this study.

The MLR is an emerging inflammatory marker that reflects the

dynamic balance between monocytes and lymphocytes in

peripheral blood, thereby serving as an indicator of the body’s

inflammatory state. Research has established a significant

association between the MLR and psoriasis. For example, a meta-

analysis conducted by Liu et al. revealed that MLR values were

significantly higher in psoriasis patients than in healthy controls

(MD = 0.034, 95% CI: 0.021–0.048, P < 0.001) (14). Hagino et al.
FIGURE 3

Correlation coefficient plot illustrating the relationships among various inflammatory markers. The coefficients are represented by a color gradient,
with darker hues indicating stronger correlations.
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reported that the novel antibody Bimekizumab, which targets IL-

17A and IL-17F, was associated with lower MLR values in long-

term responders than in nonresponders, with long-term responders

also tending to be younger (26). Additionally, the MLR has been

associated with disease severity in patients with psoriasis. A

retrospective study demonstrated a positive correlation between

MLR parameters and the Psoriasis Area and Severity Index (PASI)

(r = 0.153, P < 0.001) (27). Another study identified the MLR as an

independent inflammatory marker for predicting the severity of

liver fibrosis, a comorbidity of psoriasis (P < 0.001) (17).

Furthermore, prior research has associated elevated MLR values

with all-cause mortality in patients with psoriasis (13).

In addition to the established clinical associations of MLR, a

mechanistic understanding of MLR may further substantiate its

utility as a biomarker in psoriatic inflammation. Monocytes and

M1-polarized macrophages are recognized as key producers of

interleukin-23 (IL-23), a cytokine critical for the differentiation

and activation of Th17 cells. The IL-23–Th17 axis (28, 29) plays a

central role in the pathogenesis of psoriasis by promoting IL-17

secretion and keratinocyte-driven inflammation. Although MLR is

a peripheral blood marker that does not directly reflect macrophage

polarization, an elevated MLR may suggest increased monocyte-

driven inflammation. Given that M1 macrophages are a major

source of IL-23 in psoriatic lesions (30), it is plausible that higher

MLR values could be associated with enhanced IL-23–Th17 axis

activity. For example, a study demonstrated that a lower baseline

MLR was associated with a better long-term response to

bimekizumab, a dual IL-17A/F inhibitor, suggesting that MLR

may reflect the degree of upstream monocyte-driven
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inflammation and Th17 axis activation (26). Furthermore,

Demirel Öğüt et al. (31) reported that IL-17 inhibitors

significantly reduced MLR and other systemic inflammatory

markers, whereas IL-23 inhibitors did not, implying that MLR

may be more closely linked to IL-17–mediated inflammation.

These findings collectively support the notion that MLR may

serve as a peripheral surrogate for monocyte-derived IL-23–Th17

axis activity in psoriasis.

Notably, psoriasis is a clinically heterogeneous condition,

encompassing diverse subtypes and patient profiles that may

influence the inflammatory signature and the relevance of

biomarkers. Factors such as age, sex, lifestyle, and comorbidities

can modulate both immune responses and disease manifestation.

As such, the associations observed between inflammatory markers

and psoriasis in this study may vary across distinct patient

subgroups. Future research could benefit from exploring

heterogeneity through subphenotyping or unsupervised clustering

approaches, as demonstrated in the work of Yang et al. (32) in the

context of sepsis. Such stratified analyses may offer deeper insights

into patient-specific patterns and help refine individualized

prediction models.

In contrast, other inflammatory indices, such as the SII and the

NLR, have also been extensively studied in the context of psoriasis

development and progression. Studies by Ma et al. (33), Zhao et al.

(18), and Yorulmaz et al. (34) reported that the SII is a favorable

indicator of the inflammatory status and immune response in

psoriasis patients. Additionally, the SII has been observed to

display nonlinear associations with psoriasis in specific

subgroups, such as participants aged 20–39, former smokers,
FIGURE 4

Receiver operating characteristic (ROC) curves for various models. The true positive rate (TPR) is plotted against the false positive rate (FPR) for each
model. The curves highlight the area under the curve (AUC) values, providing a comparative measure of model performance.
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current alcohol users, individuals with or without a history of

myocardial infarction, those without coronary artery disease, and

overweight participants (35). Beyond its role as a general

inflammatory marker, elevated SII may also reflect platelet-driven

inflammation and endothelial activation in psoriasis. Platelets are

increasingly recognized as active mediators in psoriatic

inflammation, particularly in severe subtypes such as

erythrodermic and pustular psoriasis. Activated platelets release

proinflammatory cytokines, including interleukin-1b (IL-1b) and
C-X-C motif chemokine ligand 8 (CXCL8, also known as

interleukin-8 or IL-8), and interact with endothelial cells to

promote vascular inflammation. Garshick et al. (36) demonstrated

that platelets from psoriasis patients induce endothelial

inflammation via cyclooxygenase-1 (COX-1)- dependent

pathways, upregulating IL-1b, IL-8, and COX-2 expression in

human aortic endothelial cells, with disease severity correlating

with platelet activation levels. Visser et al. (37) further confirmed

that psoriatic disease is associated with endothelial dysfunction and
Frontiers in Immunology 11
a prothrombotic state, characterized by elevated soluble adhesion

molecules and dense fibrin networks. Some population-based

studies have supported this hypothesis, showing that SII is

independently associated with psoriasis risk (18, 19, 35) and

correlates with comorbidities such as metabolic syndrome and all-

cause mortality (10). These findings support the notion that SII may

capture platelet-driven inflammatory and endothelial processes in

psoriasis, beyond its role as a general inflammatory index.

Moreover, the NLR has demonstrated significant predictive

value. For example, Kommoss et al. validated the NLR as an

objective biomarker of skin inflammation in both psoriasis

patients and preclinical models of psoriasis (38). These findings

underscore the potential clinical applications of these markers.

Psoriatic lesions are characterized by intense neutrophil

infiltration and activation, including an oxidative burst and the

formation of neutrophil extracellular traps (NETs) (39), which

contribute to IL-17 release and keratinocyte activation (39, 40).

An elevated NLR may therefore reflect not only increased
FIGURE 5

(A) Weighted ROC curves for the metrics with covariates. Each curve represents the classification effectiveness of the corresponding metric for
predicting the target variable, adjusted for covariates such as age, sex, ethnicity, marital status, the family income–to–poverty ratio (PIR), BMI, waist
circumference, glucose levels, lipid levels, alcohol consumption, smoking status, and hypertension. (B) Feature importance of the variables in the
gradient boosting machine model.
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neutrophil counts but also their heightened activation status. This is

supported by recent studies demonstrating that NLR correlates with

disease severity and systemic inflammatory burden in patients with

psoriasis. For instance, Çelik et al. (41) reported that both IL-17 and

IL-23 inhibitors significantly reduced NLR and SII after 6 months of

treatment, suggesting that NLR is sensitive to therapeutic

modulation of neutrophil-driven inflammation. Similarly,

Kearney et al. showed that guselkumab treatment led to

significant reductions in NLR, PLR, and MLR across three

randomized clinical trials (42). These findings align with the

notion that NLR not only quantifies neutrophil burden but may

also indirectly capture functional activation states related to

psoriatic inflammation. Moreover, accumulating evidence suggests

that elevated NLR and SII values may reflect not only systemic

inflammation but also the activity of the IL-23/IL-17 axis, which is

central to the immunopathogenesis of psoriasis. IL-23 promotes the

differentiation and maintenance of Th17 cells, which secrete IL-

17A, a cytokine that drives neutrophil recruitment, keratinocyte

activation, and chronic inflammation. IL-17A is produced not only

by Th17 cells but also by neutrophils and mast cells in psoriatic

lesions, forming a feed-forward loop that amplifies neutrophilic

inflammation (43, 44). In this context, elevated NLR and SII may

serve as peripheral surrogates of Th17 axis activity, capturing both

the quantitative and functional aspects of neutrophil-driven

inflammation. As previously noted (41), NLR and SII levels

decrease in response to IL-17/IL-23–targeted therapies, further

supporting their relevance to this cytokine axis. In addition,

baseline NLR and SII values have been shown to positively

correlate with PASI scores—a clinical index known to reflect IL-

17/IL-23 activity (27). These findings suggest that NLR and SII are

not merely general inflammatory markers but may indirectly

capture the functional status of the IL-23/Th17 axis.

The MLR, SII, and NLR are all derived from routine blood test

data and serve as crucial inflammatory markers with significant

clinical utility in evaluating immune function and systemic

inflammation. Specifically, the MLR reflects monocyte

proliferation and activity while assessing lymphocyte-mediated

immune regulation, providing insights into the body ’s

inflammatory balance. SII, which integrates platelet, neutrophil,

and lymphocyte counts, offers a comprehensive evaluation of

systemic inflammation and tumor-related immune responses. The

NLR primarily reflects the inflammatory activity of neutrophils and

the regulatory functions of lymphocytes, making it valuable for

monitoring acute inflammation and infectious diseases. In

summary, the MLR is particularly well-suited for assessing

chronic inflammation and immune balance. At the same time, the

SII excels in providing a broader perspective on systemic

inflammation by incorporating platelet dynamics, and the NLR is

highly applicable to the evaluation of acute inflammation and

infection-related conditions. Although this study focused

primarily on prediction rather than causality, future research

should explore the causal association between inflammatory

markers and psoriasis using trial emulation approaches. Given
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that several biomarkers are modifiable, target trial emulation

(TTE) frameworks—such as those proposed by Yang et al. (45)—

could be used to simulate randomized comparisons in observational

data. These methods, such as inverse probability weighting,

marginal structural models, and targeted maximum likelihood

estimation, can improve causal interpretation and support

hypothetical intervention strategies for controlling inflammation

and preventing disease.

This study has several limitations that should be noted. First, the

cross-sectional design of the NHANES database prevents the

dynamic evaluation of variable changes over time, thereby limiting

the ability to infer causal relationships between identified risk factors

and psoriasis incidence. Furthermore, because both biomarker

measurements and psoriasis status were assessed at the same time

point in the NHANES dataset, the temporal relationship between

predictors and outcome could not be determined. This lack of a

defined time window prevents the assessment of biomarker

trajectories or lead-time effects. Future studies should employ

longitudinal data with clearly defined follow-up windows to explore

temporal patterns and establish causal directionality between

inflammation and psoriasis onset. Additionally, although

adjustments were made for known confounding factors, the

possibility of unmeasured or residual confounding cannot be ruled

out, which may impact the accuracy of the findings. To address this,

future research should consider employing large-scale, multicenter

prospective cohort studies to better establish causal links. On the

other hand, the diagnosis of psoriasis in this study relied primarily on

self-report questionnaire data, introducing potential recall bias and

the risk of disease misclassification. Furthermore, there was a

significant difference between the psoriasis and non-psoriasis

groups. Although the SMOTEEN technique was applied to mitigate

this imbalance, the use of synthetic samples may have influenced

model performance and generalizability, necessitating further

validation. Moreover, as the model was constructed using only

NHANES data and has not been externally validated, its

generalizability to other populations remains uncertain. Future

research should focus on validating the model in independent,

regionally diverse cohorts with clinically confirmed outcomes.
Conclusions

This study utilized machine learning techniques to develop

predictive models for psoriasis, with the gradient boosting model

demonstrating the best performance among all the tested algorithms.

Not only does it achieve the highest predictive accuracy, but it also

excels in classification efficacy and feature importance analysis,

highlighting key inflammatory markers such as the MLR, SII, and

NLR. These markers are particularly important as reliable indicators

for systemic inflammation evaluation and psoriasis prediction,

emphasizing their potential clinical application. This research

provides a solid theoretical foundation and methodological support

for psoriasis prediction and personalized disease management.
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Predictive Performances of Blood-Count-Derived Inflammatory Markers fo r Liver
Fibrosis Severity in Psoriasis Vulgaris. Int J Mol Sci. (2023) 24:16898. doi: 10.3390/
ijms242316898

18. Zhao X, Li J, Li X. Association between systemic immune-inflammation index
and psoriasis: a population-based study. Front Immunol. (2024) 15:1305701.
doi: 10.3389/fimmu.2024.1305701

19. Ma R, Cui L, Cai J, Yang N,Wang Y, Chen Q, et al. Association between systemic
immune inflammation index, systemic inflammation response index and adult
psoriasis: evidence from NHANES. Front Immunol. (2024) 15:1323174. doi: 10.3389/
fimmu.2024.1323174

20. Du AX, Ali Z, Ajgeiy KK, Dalager MG, Dam TN, Egeberg A, et al. Machine
learning model for predicting outcomes of biologic therapy in psoriasis. J Am Acad
Dermatol. (2023) 88:1364–7. doi: 10.1016/j.jaad.2022.12.046

21. Meienberger N, Anzengruber F, Amruthalingam L, Christen R, Koller T, Maul
JT, et al. Observer-independent assessment of psoriasis-affected area using machi ne
learning. J Eur Acad Dermatol Venereology: JEADV. (2020) 34:1362–8. doi: 10.1111/
jdv.16002

22. Liu XL, Chang LS. Deciphering the genetic links between psychological stress,
autophagy, and dermatological health: insights from bioinformatics, single-cell
analysis, and machine learning in psoriasis and anxiety disorders. Int J Mol Sci.
(2024) 25:5387. doi: 10.3390/ijms25105387

23. Liu L, Yin P, Yang R, Zhang G, Wu C, Zheng Y, et al. Integrated bioinformatics
combined with machine learning to analyze shared biomarkers and pathways in
psoriasis and cervical squamous cell carcinoma. Front Immunol. (2024) 15:1351908.
doi: 10.3389/fimmu.2024.1351908

24. Zhou Y, Wang Z, Han L, Yu Y, Guan N, Fang R, et al. Machine learning-based
screening for biomarkers of psoriasis and immune cell infiltration. Eur J Dermatol.
(2023) 33:147–56. doi: 10.1684/ejd.2023.4453

25. Yu K, Syed MN, Bernardis E, Gelfand JM. Machine learning applications in the
evaluation and management of psoriasis: A systematic review. J Psoriasis Psoriatic
Arthritis. (2020) 5:147–59. doi: 10.1177/2475530320950267

26. Hagino T, Saeki H, Fujimoto E, Kanda N. Effectiveness of long-term
bimekizumab treatment and predictive factor s for responders in moderate-to-severe
psoriasis: A 52-week real-world study. J Dermatol. (2025) 52:317–28. doi: 10.1111/
1346-8138.17532

27. Zhang Y, Qian H, Kuang Y-H, Wang Y, Chen W-Q, Zhu W. Evaluation of the
inflammatory parameters as potential biomarkers of s ystemic inflammation extent and
the disease severity in psoriasis pati ents. Arch Dermatol Res. (2024) 316:229.
doi: 10.1007/s00403-024-02972-8

28. Sharma A, Upadhyay DK, Gupta GD, Narang RK, Rai VK. IL-23/th17 axis: A
potential therapeutic target of psoriasis. Curr Drug Res Rev. (2022) 14:24–36.
doi: 10.2174/2589977513666210707114520

29. Di Cesare A, Di Meglio P, Nestle FO. The IL-23/Th17 axis in the
immunopathogenesis of psoriasis. J Invest Dermatol. (2009) 129:1339–50.
doi: 10.1038/jid.2009.59

30. Luque-Martin R, Angell DC, Kalxdorf M, Bernard S, Thompson W, Eberl HC,
et al. IFN-g Drives Human Monocyte Differentiation into Highly Proinflammator y
Frontiers in Immunology 14
Macrophages That Resemble a Phenotype Relevant to Psoriasis. J Immunol. (2021)
207:555–68. doi: 10.4049/jimmunol.2001310
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