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in N1b stage PTMC: insights into
immune infiltration and
therapeutic implications
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Wenyan Wang1, Zhiqian Liu1, Zhihan Liu1, Jinzi Guo1,
Yuan Shao1, Xiang Li1,2 and Yanxia Bai1*

1Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Xi’an Jiaotong
University, Xi’an, Shaanxi, China, 2Center for Gut Microbiome Research, Med-X Institute Centre, The
First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
Background: Papillary thyroid microcarcinoma (PTMC) with lateral neck lymph

node involvement exhibits a deceptively indolent yet highly invasive phenotype,

characterized by early dissemination and slow tumor growth. A comprehensive

understanding of integrating multiomics landscapes, circulating immune profiles,

and tumor immunemicroenvironment is essential for more accurate surveillance

and tailored therapeutic strategies.

Methods: Clinical profile and circulating immune-inflammatory markers from

638 PTMC patients were analyzed using multivariate and least absolute shrinkage

and selection operator (LASSO) regression to recognize N1b-associated risk

indicators. Eight supervised machine learning models were trained via 10-fold

cross-validation to select the optimal classifier. Weighted gene coexpression

network analysis (WGCNA) alongside machine learning identified metastasis-

related gene modules from the integrated RNA-seq profile, leading to a

multilayer perceptron gene classifier. Genomic profiling was employed to

investigate mutations, copy number alterations, and methylation modifications

in signature genes, followed by screening of antineoplastic drugs and docking

simulations to explore their therapeutic potential. CIBERSORT, combined with

immunohistochemistry, was used to investigate immune infiltration and

functional changes in N1b-stage PTMC lesions.

Results: Two clinical metastasis risk models were developed, with Model A based

on the neutrophil-to-lymphocyte ratio (NLR) and Model B on lymphocyte and

neutrophil counts, where Model A showed superior generalization (AUC = 0.852)

and discriminative performance. NLR was an independent risk determinant for

N1b-stage PTMC (OR = 2.12, p < 0.01). Transcriptomic profiling revealed a

molecular signature (ALDH1A3, CTXN1, MGAT3, and TMEM163) of occult lateral

lymph node metastasis, exhibiting strong robustness (AUC = 0.857). Signature

genes were predominantly associated with cell adhesion, intercellular signaling,

and KRAS dysregulation pathways. Hypomethylation of CTXN1, MGAT3, and

TMEM163 may underlie transcriptional activation. N1b-stage tumors exhibited

reduced CD8+ T and T follicular helper cell infiltration but increased dendritic, gd
T, and activated CD4+ memory T cells, suggesting immune evasion and

compensatory immune activation.
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Discussion: This study constructed a robust metastasis prediction nomogram for

N1b-stage PTMC and identified metastasis-associated molecular drivers through

integrative multiomics analysis. Comprehensive profiling of systemic and tumor-

infiltrating immunity revealed key antitumor immune alterations. These findings

establish a framework for early metastatic phenotype detection, potentially

inspiring relevant immunotherapeutic hypotheses.
KEYWORDS
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1 Introduction

Papillary thyroid carcinoma (PTC), the leading histological

subtype of differentiated thyroid cancer (DTC), comprises

approximately 84% of all thyroid carcinomas (1–3). The incidence of

PTMC (maximum diameter ≤ 1 cm) has risen alongside advancements

in ultrasound technology and increased health awareness. In the

absence of lateral lymph node involvement (LLNM) and distant

spread in most PTMCs, the latest American Thyroid Association

(ATA) guidelines advocated active monitoring and the most focused

intervention to reduce unnecessary surgical procedures (4–7). It is

worth noting that invasive PTMCs develop LLNM at an early stage

before tumour volume increases, and there are currently no specific

clinical features or molecules that can reliably predict it.

Studies have explored the genomic landscape and

ultrasonographic features of PTMCs, identifying numerous

characteristics associated with the progression of high-risk

subtypes, such as tumor vascularization and diffuse thyroid

parenchymal involvement (8–12). The accurate diagnosis of LLNM

remains challenging due to the limitations of preoperative fine-needle

aspiration and the potential misinterpretation of intraoperative

frozen sections of suspicious lymph nodes. Although clinical risk

factors, such as capsular invasion and imaging scores from systems

like TI-RADS, assist in assessing metastasis risk, their accuracy is

constrained by the absence of multidimensional evidence, such as

circulating immune-inflammatory markers. Hematological immune-

inflammatory indicators, like lymphocyte-to-monocyte ratio (LMR)

(13, 14), neutrophil-to-lymphocyte ratio (NLR) (15, 16), platelet-to-

lymphocyte ratio (PLR) (17), and the systemic immune-

inflammation index (SII) (18), are closely linked to the prognosis

and recurrence of various cancers, including thyroid cancer.

However, their association with LLNM in PTMC remains unclear.

Therefore, this study seeks to combine clinical features with immune-

inflammatory markers to develop a personalized model for improved

clinical assessment of metastasis risk. Lateral lymph node metastasis

is strongly associated with locoregional recurrence, distant metastasis,

and unfavorable prognosis in PTMC, with BRAFV600E mutation

further enhancing aggressiveness, resistance to radioactive iodine

therapy, and recurrence risk (19, 20). In addition to well-
02
established genetic alterations by next-generation sequencing in

PTC, including RET rearrangements and mutation of N/K/H-RAS,

and the TERT promoter region (C228T/C250T) (21, 22), there is a

need for further exploration of the genomic and transcriptomic

profiles of metastatic PTMC to identify potentially relevant factors

closely associated with its progression. PTCs are characterized by a

significantly heightened immune profile compared to normal thyroid

tissue, with these changes closely linked to tumor progression.

Compared to normal thyroid tissue, PTC patients exhibit higher

levels of Th17 cells and dendritic cells (DCs) infiltration in tumor

tissue (23). Additionally, elevated regulatory T cells (Tregs) and M0

macrophages are observed, and this trend correlates with higher T

staging and lymph node metastasis. While natural killer (NK) cell

infiltration is also enhanced, its degree of infiltration and functional

activity decrease as the tumor progresses.

This study aims to identify metastasis risk factors in N1b-stage

PTMC and to develop a highly accurate clinical model to facilitate

clinical assessment. Additionally, we investigate the multi-omics

landscape and immune infiltration profiles to provide molecular

evidence for the supervision and intervention of earlymetastatic cases.
2 Materials and methods

2.1 Cohort selection and machine learning
modeling

The retrospective study analyzed PTMC-confirmed patients who

received initial surgical intervention at The First Affiliated Hospital of

Xi’an Jiaotong University between January 2020 and January 2024.

Cases with a history of other malignancies, recurrent disease, or

secondary metastases requiring reoperation were excluded to

minimize confounding factors. Demographic, histopathological,

and hematologic parameters were retrospectively collected,

including gender, age, pathological subtype, nodule count, lesion

location, extrathyroidal extension (ETE), coexistence of Hashimoto’s

thyroiditis (HT) or nodular goiter (NG), circulating counts of

leukocytes (lymphocytes, neutrophils, and monocytes) and

platelets, ratios including NLR, PLR, LMR, and SII, defined as the
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1620085
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Dai et al. 10.3389/fimmu.2025.1620085
ratio of (neutrophil count × platelet count) to lymphocyte count.

Complete data were available for all variables following the exclusion

of records with missing values. To optimize feature selection, the least

absolute shrinkage and selection operator (LASSO) regression was

employed to identify variables significantly associated with aggressive

clinicopathological behaviors. Subsequently, eight machine learning

algorithms−AdaBoost, Logistic Regression, K-Nearest Neighbor

(KNN), Decision Tree, Multilayer Perceptron (MLP), Extreme

Gradient Boosting (XGBoost), Random Forest (RF), and Support

Vector Machine (SVM) − were implemented to construct predictive

models. Parallelly, univariate and multivariate logistic regression

analyses were employed to uncover independent predictors,

followed by the development of an alternative logistic regression

model. Model validity was rigorously evaluated using evaluation

criteria comprising area under the receiver operating characteristic

curve (AUC), Brier score, accuracy, sensitivity, specificity, and F1

score. All reported metrics were derived from a 10-fold cross-

validation procedure to enhance generalizability and avoid

overfitting bias. The best-performing model was selected based on

comparative performance across test cohorts, ensuring robustness

and generalizability.
2.2 Collection of biospecimens and RNA
sequencing

We collected tumor and corresponding adjacent thyroid tissue

samples from six patients diagnosed with N1b-stage PTMC who

underwent surgery in the Otolaryngology-Head and Neck Surgery

department of our medical center from 2021 to 2022. All patients

underwent thorough quality assessment and pathological diagnosis

of PTMC by skilled pathologists. TNM classification and

corresponding clinical staging were evaluated following the 8th

edition AJCC/UICC staging system (24). We collected specimens

from fresh ex vivo tissue with the premise of not compromising the

pathological diagnosis. Consent was secured from all participants

and/or their authorized representatives. All histological samples

were flash-frozen in liquid nitrogen upon collection and preserved

in the laboratory. Simultaneously, 30 N0-stage and 30 N1b-stage

PTMC tissue section slides were retrospectively collected for

subsequent immunohistochemical (IHC) analysis. Total RNA

from the tumor specimens and their adjacent counterparts were

separately isolated and purified using TRIzol (Invitrogen, Carlsbad,

CA, USA). Count and Fragments Per Kilobase Million (FPKM)

values for the N1b stage papillary thyroid microcarcinoma

transcriptome atlas (PTMTA) were generated using StringTie

(v.2.0.4) (25).
2.3 DEGs and construction of gene
coexpression networks

Transcriptome microarray and clinical data for GSE129562 (26)

and GSE153659 (27) were derived from the Gene Expression
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Omnibus (GEO) platform. RNA-seq and corresponding

clinicopathological data for 25 PTMC-TCGA samples containing

only N0 and N1b stages were acquired from the Xena platform

following rigorous screening (28). All the selected samples were re-

staged in accordance with the staging system of the AJCC (8th

edition) and needed to fulfill the following exclusion criteria: (1) no

history of prior thyroid surgery, (2) absence of any other malignant

tumors, and (3) no comorbidities with other thyroid diseases. DEGs

of the N1b-stage PTMC and adjacent tissues in the GSE129562

microarray dataset underwent screening via the “limma” (v.3.54.2)

package (29) in R (v.4.2.0). Similarly, the DEGs of the PTMTA

dataset were acquired by “DESeq2” (v.1.38.3) (30). The final DEGs

were obtained by intersecting the aforementioned founded on the

selection criteria FDR < 0.05 and log2 |FoldChange| > 1. The

“clusterProfiler” (v.4.6.2) package facilitated the execution of

GSEA (31), with sorted gene list files serving as input data.

Microarray datasets of N1b and N0 stage PTMC samples were

utilized for the development of coexpression networks via the

weighted gene co-expression network analysis (WGCNA)

algorithm and its corresponding R package (32). The clustering

tree diagram was generated and the cut-off of tree height was set to

0.25 for merging similar modules.
2.4 Functional modules and candidate
genes associated with metastasis

Next, we comprehensively analyzed the functional modules

associated with LLNM. We calculated MEs as the principal

components corresponding to each module. The relationship

between MEs and N staging was analyzed with Pearson’s

correlation coefficient. A module that exhibited a significant

correlation between gene significance (GS) and module

membership (MM) was considered to be highly associated with

metastasis. We separately submitted the designated modules to the

DAVID platform (https://david.ncifcrf.gov/) (33) for enrichment

terms of GO functional classification and Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathways, including BP, MF, and CC.

The leading 10 terms meeting criteria of count ≥ 4 and p < 0.05 were

discussed and visualized. Candidate genes, determined based on

their intramodular connectivity and correlation with tumor

metastasis, play pivotal roles within the modules and exhibit

substantial interconnectivity within the coexpression network,

satisfying the specified criterion of |MM| > 0.8 and |GS| > 0.2.

Subsequently, genes within the selected modules were submitted to

the STRING online platform and developed protein-protein

interaction (PPI) networks. The molecular complex detection

(MCODE) of Cytoscape (v.3.7.2) was then utilized to identify the

core subnetworks. The intersection between the core genes of

specific modules and genes within the PPIs network was

identified as the set of candidate genes, which were further

analyzed and validated. Thereafter, we obtained differentially

expressed candidate genes by taking the intersection with the

DEGs previously obtained.
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2.5 Consensus clustering of candidate
markers

Based on the transcriptomic matrix of the merged PTMC

training set, molecular subtypes were established through

unsupervised consensus clustering of 10 differential candidate

genes with the “ConsensusClusterPlus” package (v.1.62.0). The

cluster count (k) was capped at six, and 1000 subsampling

iterations were performed to ensure the robustness. Consequently,

the optimal k value was finally identified by the CDF plot, the

consensus matrix heatmap, and the beneath under the CDF curve.

Additionally, a heatmap was generated to illustrate the differences

in the transcriptome for candidate biomarkers across different

subtypes. Furthermore, unsupervised clustering of 458 large-

volume PTC transcriptomic matrices from the TCGA database

was performed using the above candidate genes to further explore

their respective correlations with various clinical characteristics.

Samples with T1-T2 stages combined with N1b were categorized as

high lymph node metastatic risk (LNM-high), while those with T3-

T4 stages combined with N0 were designated as low lymph node

metastatic risk (LNM-low).
2.6 Machine learning-based molecular
metastasis model

The PTMTA, GSE129562, and PTMC-TCGA datasets were

integrated, and 25 N0 and 14 N1b-stage PTMCs were selected as the

training set. RF and support vector machine recursive feature

elimination (SVM-RFE) algorithms were utilized to further filter

biomarkers closely associated with metastasis. The candidate genes

were prioritized based on their ranking of relative importance using

the “RandomForest” package (v.4.7-1.1) (34), and gene importance

greater than 0.5 and ranked within the top 5 were designated as

significant biomarkers. The “e1071” and “caret” (v.4.7-1.1) packages

were utilized for training the feature subset of the expression matrix

via the SVM-RFE algorithm. Utilizing 5-fold cross-validation, the

points with the lowest error rate and the highest accuracy rate were

determined, and the top 5 biomarkers were selected as feature

genes. Ultimately, the overlapping of the feature genes screened

through the above algorithms yielded biomarkers highly associated

with LLNM. The “neuralnet” (v.1.44.2) package was utilized to

construct an MLP identifier for prediction and diagnosis in the

artificial neural network (ANN) framework. The area under the

curve (AUC) serving as a metric for assessing the discriminative

power of the MLP classifier. Additionally, we obtained the AUC on

a separate test cohort (GSE153659) to further evaluate the

generalizability of the model.
2.7 Functional analysis of GSEA and
genomic characteristics

The required gene sets for this study were sourced from the

GSEA platform (https://www.gsea-msigdb.org/gsea/msigdb/
Frontiers in Immunology 04
index.jsp). The GSEA function was used to enrich biological

functions associated with a single gene. Functional scores for each

sample within the training cohort were computed using the

“GSVA” (v1.46.0) package (35), enabling the assessment of the

absolute enrichment of corresponding gene sets. Furthermore,

differences in enrichment across different functional pathways

between the N0 and N1b groups were compared. Mutation, copy

number alterations, and methylation (HM450) matrices for each

signature gene were obtained from TCGA-THCA via the cBioPortal

(https://www.cbioportal.org/datasets). Following the filtration of

PTC tumor tissue samples to focus on genomic alterations within

the signature genes, we conducted a comprehensive investigation of

the correlation between gene methylation and transcription levels.

This allowed us to gain deeper insights into the genomic

mechanisms driving transcriptional regulation and better

understand the factors influencing gene expression in PTC.
2.8 Clinical variations of signature genes
and IHC

To investigate the clinical relevance of metastasis-associated

signature genes, we analyzed PTC tumor sample matrices for N0

and N1 stages obtained from the TCGA database. Expression

profiles of these signature genes were assessed across various

clinical factors such as age groups and TNM staging, with

significant variations identified. Furthermore, stratified analysis by

age was conducted to further investigate the transcriptional

differences of signature genes within various clinical stages,

offering insights into their role across different disease

progressions. Moreover, IHC validation was conducted on 30 N0-

stage and 30 N1b-stage PTMC tissue section slides. All pathological

slides underwent independent evaluation by three skilled

pathologists and complied with the following (a) the positive

intensity score (no staining, 0; light yellow, 1; tan-yellow, 2;

brown, 3) and (b) the positive area score (0, <5%; 1, 5%-25%; 2,

26%-50%; 3, 51%-75%; 4, >75%). Ultimately, the immunoreactivity

score (IRS) was calculated by multiplying the two indicators above.

The consistency of IRS evaluations by three independent

pathologists was quantified using intraclass correlation coefficients

(ICCs). ICCs were computed based on a two-way mixed-effects

model with average rating measurements, implemented in SPSS

version 22.
2.9 Drug response profiling and target
docking

Tumor sensitivity to anticancer drugs in papillary thyroid

microcarcinoma (PTMC) was predicted using Ridge regression

models implemented via the R package “oncoPredict”, with drug

response information derived from the Genomics of Drug Sensitivity

in Cancer (GDSC) database. Predicted IC50 values were compared

across clinical subgroups to identify differential drug sensitivities.

Molecular docking procedures employed AutoDock Vina, and the
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optimal post-docking conformation was selected through a

comprehensive evaluation of binding free energy (docking score),

conformational rationality, and interaction forces. The protein crystal

structures were retrieved from the RCSB Protein Data Bank (PDB;

https://www.rcsb.org), while the three-dimensional structures of

small-molecule compounds were acquired from the PubChem

database (https://pubchem.ncbi.nlm.nih.gov/).
2.10 Immune infiltration profile

We quantitatively evaluated the abundance of infiltrating

immune cell subsets in the PTMC tissue specimens of the N0 and

N1b groups through the “CIBERSORT” algorithm(v.0.1.0) (36),

with the LM22 reference matrix, which is specifically designed to

distinguish 22 human immune cell phenotypes based on gene

expression profiles. The results are visually presented in stacked

bar plots, and the variance in immune cell infiltration across the two

groups was assessed through t-tests. The “corplot” (v.0.92) package

was employed to analyze the correlations among the immune cell

subtypes and generate a heatmap. To evaluate immune functional

differences between the metastatic and non-metastatic PTMCs,

single-sample Gene Set Enrichment Analysis (ssGSEA) was

performed using a curated panel of 13 immune-related gene sets.

These gene sets were compiled from published studies (37) and the

MSigDB database. Normalized enrichment scores (NES) were

calculated for each sample based on the PTMCs matrix.

Intergroup variation in immune function was analyzed using the

non-parametric Wilcoxon rank-sum test to determine statistical

significance. Immunohistochemical analysis was conducted on

primary tumor specimens from 20 N1b-stage and 20 N0-stage

PTMC patients to delineate the differential infiltration patterns of

key immune cell populations. Moreover, an assessment was carried

out to explore the connection between signature biomarkers and the

13 predefined immune-related functions.
2.11 Statistical analysis

Clinical modeling and bioinformatics analysis workflows in

this research were implemented via R software (v.4.2.0) and

corresponding packages. The cohort underwent random

allocation into training (70%) and test (30%) sets via stratified

sampling, ensuring comparability in key clinical variables. Eight

models−AdaBoost, logistic regression, random forest, decision tree,

XGBoost, SVM, KNN, and MLP−were trained using 10-fold cross-

validation to optimize hyperparameters and ensure generalizability.

Clinical utility was evaluated via decision curve analysis (DCA),

while calibration curves with bootstrapping quantified prediction-

reality alignment. Concurrently, variables without multicollinearity

(VIF<5) underwent univariate (p<0.10) and multivariable (p<0.05)

regression to develop a secondary clinical nomogram, with

comparisons between the two models conducted based on net

reclassification improvement (NRI) and integrated discrimination

improvement (IDI). The Wilcoxon rank-sum test was employed to
Frontiers in Immunology 05
evaluate differences in proportions of infiltrating immune cells and

immune functionality. Comparative analysis of IRSs was completed

using GraphPad Prism (v.8.0.2, San Diego, California, USA).
3 Results

3.1 Clinical feature selection via regularized
regression

The layout of the study design is outlined in Figure 1. The study

cohort comprised 638 patients, with approximately 23.2% of cases

exhibiting lateral neck lymph node metastasis, as shown in

(Supplementary Table 1). The demographic characteristics of the

randomly allocated training (n = 447) and testing (n = 191) cohorts

demonstrate no statistically significant intergroup differences in

baseline features. LASSO regression with 10-fold cross-validation

identified five predictive predictors with non-zero coefficients at

l.1se: age, gender, NLR, ETE, and multifocality (Figures 2A, B).

Subsequent comparative analysis of eight machine learning models

revealed the logistic regression model as the optimal classifier,

exhibiting superior discriminative performance (AUC: 0.806),

enhanced calibration accuracy (Brier score: 0.125), and greater

clinical utility across threshold probabilities in decision curve

analysis compared to alternative approaches (Figures 2C–F)

(Supplementary Table 2). Comparative validation between the

LASSO-derived Model A (incorporating age, gender, NLR, ETE,

and multifocality) and multifactorial Model B (age, gender,

lymphocyte counts, neutrophil counts, ETE, and multifocality)

demonstrated Model A’s consistent superiority. In 10-fold cross-

validated training evaluations, Model A achieved an AUC of 0.806

(95% CI: 0.69 - 0. 868) versus Model B’s 0.802 (95% CI: 0.684 -

0.867) in training cohort (Supplementary Table 3), with this

performance advantage maintained in independent testing (AUC:

0.852 vs. 0.844) (Figures 2G–I). Model B exhibited significantly

poorer reclassification performance (NRI = -0.338, IDI = -0.0081;

both p ≤ 0.05), underscoring Model A’s threshold-agnostic

superiority in risk stratification accuracy.
3.2 Detection of DEGs and GSEA

Six pairs of solitary N1b-stage PTMC tissues and their

corresponding adjacent thyroid tissues were selected for RNA

sequencing, resulting in a resource known as the Papillary

Thyroid Microcarcinoma Transcriptome Atlas (PTMTA)

(Supplementary Table 4). RIN scores (8.2-9.4) confirmed that all

RNA samples met quality standards required for transcriptomic

applications. The raw data were subjected to background correction

and normalization (Supplementary Figures 1A, B). To screen for

differentially expressed genes (DEGs) between N1b stage PTMC

tissues and adjacent nontumor tissues, we separately acquired them

from PTMTA and the GSE129562 microarray data (containing five

pairs of N1b samples) and subsequently cross-merged to obtain the

intersection (Figures 3A, B). 296 genes exhibited significant
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differential expression, with 202 genes being downregulated and 94

genes being upregulated (Figure 3C). Representative heatmaps of

the overlapping genes in the GSE129562 and PTMTA datasets were

generated (Supplementary Figures 1C, D). The DEGs between N1b-

and N0-stage PTMC within the GSE129562 dataset are shown in

Supplementary Figure 1E. Gene set enrichment analysis (GSEA)

terms revealed common significant enrichment of cellular adhesion

molecules, extracellular matrix (ECM) receptor interactions, and

focal adhesion activation in both datasets (Figures 3D, E).
Frontiers in Immunology 06
3.3 Weighted coexpression network and
module screening

After clustering the samples to detect any outliers (Figure 4A),

we selected values from 1 to 20 for network topology analysis of the

samples. Upon setting the optimal soft threshold to 9, we obtained a

scale-free topology fit index (R2) of 0.8, indicating a relatively even

distribution of scale independence and a higher level of average

connectivity (Figures 4B, C). Then, we constructed scale-free
FIGURE 1

Schematic overview of the analytical workflow.
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networks and topology matrices, plotted hierarchical clustering

trees, and merged module maps, resulting in 13 modules for

further analysis (Figure 4D). By assessing the correlation between

module eigengenes (MEs) and LLNM, we observed that pink
Frontiers in Immunology 07
module demonstrated a notable positive correlation with LLNM

(r = 0.89, p = 4 × 10−0.6). In contrast, the green-yellow module

(r = −0.59, p = 0.02) and the purple module (r = −0.56, p = 0.02)

exhibited a negative correlation with metastasis (Figure 4E).
FIGURE 2

Feature screening and machine learning modeling. (A, B) LASSO regression for feature selection. (C) AUC and Brier scores of eight machine learning
models. (D) Mean ROC curves from 10-fold cross-validation on the training cohort. (E, F) Clinical decision curves and ROC curves of eight models
on the independent test cohort. (G) Nomograms of Model A (LASSO-derived) vs. Model B (multivariate regression-based). ROC curves validated via
10-fold cross-validation across training (H) and independent test cohorts (I).
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Additionally, upon further examination, it was found that the pink

and green-yellow modules had greater absolute GS values

(Figure 4F), and their MM vs. GS scatter plots indicated a strong

correlation with metastasis (p ≤ 0.05) (Figures 4G–I).
3.4 Functional enrichment and biomarker
screening

Enrichment analyses were carried out on the pink and green-

yellow modules. Gene ontology (GO) terms for the pink module

indicated significant involvement of candidate genes in the negative

regulation of cell proliferation and cycle, while protein products were

prominently involved in forming cytoplasm, plasma membrane and

extracellular exosome, and protein binding being the most highly

enriched molecular function (MF) (Supplementary Figures 2A–C).

Notably, the KEGG-enriched terms of the pink module were

metabolic pathways (Supplementary Figure 2D). For the green-
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yellow module, candidate genes exhibited primary enrichment in

biological processes including cell adhesion, O-glycan processing, and

small GTPase-mediated signal transduction regulation, and their

products are primarily associated with integral components of the

membrane (Supplementary Figures 2E, F). The predominant MFs of

this module were protein homodimerization and microtubule

binding, while the associated genes were linked to ECM-receptor

interaction and mucin-type O-glycan biosynthesis pathways

(Supplementary Figures 2G, H).

In PPI networks, 169 biomarkers of the pink section and 94

biomarkers of the green-yellow section were subsequently analyzed as

the core genes using MCODE (Figures 5A, B). Based on the cut-off

value in WGCNA, 110 biomarkers in the pink section and 79

markers in the green-yellow section were recognized as highly

related to metastasis. Moreover, the intersection of the above

results showed that 103 genes of the pink section and 68 genes of

the green-yellow section were filtered as candidate biomarkers

associated with LLNM (Figures 5C, D). Subsequently, 11
FIGURE 3

The transcriptome landscape of N1b stage PTMC and paired adjacent thyroid tissue. (A, B) Volcano diagrams illustrating DEGs within the GSE129562
and PTMTA cohorts. (C) The Venn diagrams depicted an overlap of 94 upregulated DEGs and 202 downregulated DEGs in both cohorts. GSEA terms
for N1b stage samples in the (D) GSE129562 and (E) PTMTA cohorts.
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biomarkers in the pink section and 6 biomarkers in the greenyellow

section were filtered by transcriptional profiling comparison of the

candidate genes in N1b stage PTMCs. The expression of the above

markers was further validated in the PTMC-TCGA and GSE153659

cohorts (Supplementary Figure 3, Supplementary Table 5).

Ultimately, six genes (ALDH1A3, CDH6, CTXN1, HBA1, MGAT3,

and TMEM163) from the pinkmodule and four genes (LRP4, LRRK2,

MAPK, and SNX25) from the yellow-green module exhibited major

differential expression and were found to be associated with LLNM.
Frontiers in Immunology 09
3.5 Cluster validation of molecular
subtypes

To further validate the discriminative ability of 10 differential

candidate biomarkers concerning lateral cervical lymph node

involvement in PTMC patients, unsupervised clustering of

specific gene expression profiles was analyzed in the training set,

comprising the merged PTMC cohorts (14 N1b vs. 15 N0). The

optimal number of clusters (k) was 2 (clusters 1 and 2) based on the
FIGURE 4

Development of a weighted coexpression network and module screening. (A) Sample clustering tree diagram to identify outlier cases. (B) The scale-free
fit measure (R2) with the corresponding soft threshold value (b). (C) Mean connectivity corresponds to each soft threshold power. (D) Hierarchical
clustering tree: the modules with a dissimilarity lower than 0.25 were merged. (E) Heatmap illustrating the correlation between the modules and the
pathological stage. (F) Mean gene significance and error plots of different modules. (G) Scatter plots of genes characterizing the purple module, (H) pink
module, and (I) green-yellow module based on the selection criteria of |MM| > 0.8 and |GS| > 0.2 denoted by red lines.
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alterations in the area beneath the cumulative distribution function

(CDF) curve, consensus CDF trajectory curve, and the consensus

clustering heatmap (Figures 6A, B, Supplementary Figures 4A, B).

Moreover, the heatmap for clusters revealed distinct characteristics

between the two subgroups (Supplementary Figure 4C). Notably,

patients with a low risk of lymph node metastasis were primarily

concentrated in cluster 1 (72%, p ≤ 0.05), whereas the C2 cluster

group exhibited a higher rate of lymph node metastasis (63%, p ≤

0.05, Figures 6C, D). The same methodology was applied to the

large-volume PTC from the TCGA-THCA cohort, yielding

similarly well-differentiated clusters (Supplementary Figures 4D–J).
3.6 Metastasis-related signature genes

The RF algorithm integrated the number of classifications with

the error rate in the decision tree for modeling (Figure 6E). The top

five genes were determined based on the MeanDecreaseGini metric,

where a higher value indicates greater importance (Figure 6F).

Moreover, the SVM-RFE method selected the top 5 genes that

exhibited the optimal accuracy rate (Figure 6G) and the minimum
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error rate (Figure 6H). By taking the intersection of the results

mentioned above, the top 4 biomarkers, ALDH1A3, CTXN1,

TMEM163, and MGAT3, were determined to be signature genes

associated with metastasis. Additionally, the positive correlation

between signature genes indicated a similar biological functional

trend (Figure 6I). The MLP identifier was established utilizing the

expression landscape consisting of signature genes from the training

set. Through rigorous 5-fold cross-validation training, a robust

MLP identifier was successfully developed (Figure 6J) and

demonstrated notable performance in the training set, achieving

an AUC of 0.96 (Figure 6K). Furthermore, subsequent evaluations

illustrated its good generalization ability, as evidenced by an AUC of

0.857 for N0 and N1 stage PTMC patients in the independent test

cohort GSE153659 (Figure 6L).
3.7 GSEA profiling

To elucidate the molecular changes underlying the progression

of PTMC and to comprehensively investigate the biological

functions in connection with signature genes, the gene expression
FIGURE 5

Generating PPI networks and filtering of critical biomarkers. The PPI networks of (A) the pink module and (B) the green-yellow module were filtered
by the MCODE algorithm. (C) Screening of overlapping genes of the coexpression and PPI networks in the pink module and (D) green-yellow
module.
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patterns of the four genes were further analyzed across various

biological processes using single-gene gene set enrichment analysis

(sgGSEA) (Figures 7A–D). MGAT3 and CTXN1 were significantly

enriched in adhesion junctions. ALDH1A3, TMEM163, and

MGAT3 exhibited significant association with cytokine-cytokine

receptor interactions and the function of cell adhesion molecules.

Notably, high expression of ALDH1A3 and TMEM163 was also

observed to promote ECM receptor interaction and focal adhesion.

ALDH1A3 and CTXN1 seem to be involved in regulating the actin

cytoskeleton. Additionally, CTXN1 was enriched in the tight

junction pathway, suggesting its potential involvement in pivotal

biological processes, including establishing intercellular tight

junctions and preserving cellular polarity. Notably, the four

signature genes displayed negative associations with diverse

metabolic pathways.

By performing ssGSEA on hallmark gene sets, we achieved

enhanced insights into the functional disparities among distinct

stages of PTMC. Remarkably, the cohort with lymph node

metastasis exhibited a significant increase in the function of

KRAS signaling, cholesterol homeostasis, and MYC target v2.

Conversely, the functions of the Wnt/b-catenin pathway,
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PI3K/AKT/mTOR pathway, and Hedgehog pathway markedly

decreased in the N1b group (Figure 7E). Furthermore, a

comprehensive analysis revealed significant relationships between

the signature genes and the biological functions represented by the

hallmark gene sets (Figure 7F). These findings reveal that signature

genes may affect the abovementioned potentially dysregulated

molecular pathways and metabolic processes during the

dissemination of tumor cells to regional lymph nodes.
3.8 Mutations, CNAs, and methylation of
signature genes

Comparison of mutation spectra between 22 PTMC and 412

non-micro PTC tumors revealed BRAF and NRAS mutations as

predominant driver alterations in both groups (Figure 8A). HRAS

mutations were notably more prevalent in the non-micro PTC

cohort. Although mutations in TG and TTN genes occurred at

relatively higher frequencies, the low proportion of functionally

relevant missense variants suggests these are unlikely to play major

oncogenic roles. A single N0-stage non-micro PTC case harbored
FIGURE 6

Consensus-based molecular subtyping and evaluation of gene signature performance. (A) CDF trajectory plot for consensus clustering (k = 2 - 6).
(B) Consensus matrix plot (k = 2). (C) Distribution of N0 and N1b stage patients across the C1 and C2 clusters in the PTMC cohort. (D) Proportion of
patients with varying N stages within the C1 and C2 clusters. (E) Diagram of the classification decision tree constructed by the RF algorithm.
(F) Relative importance ranking. (G, H) The SVM-RFE algorithm screened the top 5 genes with accuracy and error rate. (I) Heatmap of correlations
between signature genes. (J) MLP identifier of signature genes. (K, L) ROC curve of the MLP classifier in the training cohort and the separate cohort.
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the MGAT3 G16D mutation, while no mutations were observed in

the remaining signature genes. Additionally, no significant

differences in CNA profiles were identified between the 10 PTMC

and 414 non-micro PTC cases, with deletions most frequently

observed on chromosomes 22q and 9q, and amplifications
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primarily occurring on 5q and 7q (Figure 8B). Further

exploration into the genomic alterations of the four signature

markers in 458 TCGA-PTC tissue revealed copy number

amplification of CTXN1 and MGAT3 based on DNA-seq data

(Figure 8C). In contrast, genomic landscape analysis revealed no
FIGURE 7

Single-gene GSEA and ssGSEA enrichment terms of signature biomarkers. (A–D) SgGSEA terms revealed the top 5 upregulated and downregulated
functional pathways of the signature genes. (E) Boxplot illustrated the differential functional ssGSEA scores of signature genes. (F) Heatmap depicted
the relationship between signature genes and primary hallmark functions (∗p < 0.05, ∗∗p < 0.01, ns means non-significant).
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group-specific patterns in CNAs of the four signature genes, as

assessed by Fisher’s exact test. Moreover, while shallow deletions

were sporadically detected in the four signature genes, their overall

influence on genetic transcription appeared to be minimal. We

assessed the methylation patterns of four genes across various
Frontiers in Immunology 13
clinical subgroups and observed that patients in stage IV

exhibited significantly reduced methylation of genes ALDH1A3

and TMEM163 compared to those in stages I−II, while patients

with lymph node metastasis showed a decrease in methylation of

CTXN1, MGAT3, and TMEM163 (Figures 8D–G), suggesting that
FIGURE 8

Integrated genomic and epigenetic landscape of PTMC and non-micro PTC. (A) Somatic mutation profiles. (B) Heatmap of CNAs. (C) Comparison of
CNA profiles for signature genes across subgroups. (D–G) Methylation-mediated regulation and N stage-specific methylation differences of
signature genes.
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the hypomethylation-induced transcriptional activation of these

genes may contribute to tumor metastasis and the progression to

advanced stages. Additionally, the methylation status of CTXN1

and TMEM163 varied significantly across different T stages and age

groups, suggesting stage- and age-dependent epigenetic regulation

(Supplementary Figure 5).
3.9 Clinical stratification and IHC

Additionally, mRNA profiles of signature genes exhibited

significant variation across different clinical subgroups. All four

mRNA profiles demonstrated enhanced expression in patients with

lymph node metastasis (Figures 9A–D), but no similar trend was

observed in those with the M1 stage, possibly due to the limited

sample size (Supplementary Figures 6A–D). Additionally, CTXN1 and

TMEM163 showed marked upregulation in patients with advanced T

stages (Figures 9E–H). Elderly PTC patients exhibited significantly

elevated mRNA levels of CTXN1, MGAT3, and TMEM163.

Stratification by age revealed that these elevated expression patterns

in older patients were associated with more advanced clinical stages.

Immunohistochemical staining was performed to assess the

alterations in corresponding protein expression (Figure 9I–L, N),

and the results revealed that the changes of ALDH1A3, CTXN1,

MGAT3, and TMEM163 protein abundance were consistent with

their transcriptional levels. The transcriptome profiling of four

metastasis-related biomarkers was reassessed in merged PTMC

cohorts (Figure 9M). The Comprehensive information regarding the

antibodies and experimental conditions used for IHC staining is

provided in Supplementary Table 6. The inter-rater reliability

analysis demonstrated substantial agreement across all signeature

markers, with ICC values ranging between 0.857 and 0.908

(Supplementary Table 7).
3.10 Molecular docking insights into drug
sensitivity

Comparative analysis revealed patients with lateral cervical

metastases exhibited lower IC50 compared to non-metastatic

controls (Figure 10), indicating heightened drug sensitivity for a

range of agents (afatinib, birinapant, AC-55649, AT-406,

cyclophosphamide, simvastatin, erlotinib (+vemurafenib),

canertinib, BRD-K33514849). Molecular docking simulations

demonstrated that BRD-K98645985 formed stable hydrogen bonds

with both MGAT3 and CTXN1 proteins, with binding free energies

(DG) of -9.5 kcal/mol and -7.2 kcal/mol, respectively. Notably, the

ALDH1A3 protein exhibited consistently strong binding affinities

(DG < -7.0 kcal/mol) with a panel of antitumor agents, including

AC55649, afatinib, AT-406, birinapant, canertinib, simvastatin, and

erlotinib (Supplementary Table 8). The resulting three-dimensional

and planar docking conformations revealed favorable molecular

complementarity, supporting the presence of a pharmacologically

accessible and structurally accommodating binding pocket on

ALDH1A3 (Supplementary Figure 7). Findings reveal that
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ALDH1A3 may serve as a promising therapeutic target, and its

broad compatibility with structurally diverse compounds implies a

potentially central role in oncogenic signaling pathways.

Furthermore, TMEM163 also demonstrated appreciable binding

affinity with canertinib (DG = -7.6 kcal/mol), indicating additional

potential for targeted therapeutic intervention.
3.11 Immune functional and infiltrative
alterations with histological confirmation

Grouped immune infiltration analysis of PTMCs utilizing the

CIBERSORT approach showed the proportion of 22 types of immune

cells (Supplementary Figure 8A). Correlation analysis revealed an

inverse connection between gd T cells and activated NK cells (r =

−0.51). In contrast, a significant positive direct correlation was noted

between memory B cells and CD4 memory-activated T cells (r = 0.9),

along with a notable positive relationship with naive CD4 T cells (r =

0.88) (Supplementary Figure 8B). Comparative analysis of immune

cell infiltration revealed distinct patterns. There was a reduced

infiltration of follicular helper T cells (Tfh) and CD8+ T cells in the

N1b samples. Conversely, CD4 memory-activated T cells, activated

dendritic cells, and gd T cells exhibited greater infiltration in the N1b

group (Figure 11A). Immunohistochemical analysis revealed that,

compared to non-metastatic patients, those with lateral cervical

lymph node metastasis exhibited reduced T lymphocyte infiltration

in the tumor microenvironment, characterized by a marked

reduction in CD8+ cytotoxic T cells and an elevation in CD4+

helper T cells (Figures 11C, D). Four signature genes exhibited

positive correlations with highly infiltrated gd T cells, CD4

memory-activated T cells, and activated dendritic cells in the

N1b group and were inversely related to Tfh and CD8+ T cells,

which were highly infiltrated in the N0 group (Figure 11B).

A comparative analysis of immune functions revealed its

predominant improvement in the N1b group (Figure 11E).

Consistently, four signature genes displayed positive correlations

with multiple enhanced immune functions in the N1b stage, while

exhibiting negative correlations with immune functions upregulated

in the N0 stage (Supplementary Figure 8C).
4 Discussion

Former studies indicated that elevated NLR is a prognostic risk

factor in DTC. As the disease progresses, T cell activation and signaling

decrease, while circulating neutrophils exhibit marked heterogeneity,

with a reduction in mature subsets and an accumulation in immature

forms, reflecting tumor-associated inflammation (18). This study

comprehensively explored risk factors correlated with lateral neck

lymph node metastasis in PTMC by integrating clinical variables and

multiple immune-inflammatory indicators. Using both traditional

multivariate regression and LASSO regression, we identified potential

high-risk factors associated with metastasis, and subsequently

established and evaluated them through multiple supervised machine

learning approaches combined with cross-validation. Model A, which
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highlighted NLR as a key risk factor, demonstrated superior

performance in terms of stability, predictive accuracy, and

discriminative ability. Meanwhile, Model B, characterized by

decreased circulating T lymphocytes and increased neutrophils,

effectively captured subtle differences in systemic immune responses
Frontiers in Immunology 15
between PTMC patients with and without advanced lymph node

metastasis. Together, both models suggest a decline in antitumor

immunity and an increase in tumor-associated pro-inflammatory

and pro-metastatic activity in patients with lateral neck lymph

node metastases.
FIGURE 9

Clinical subgroup differences and IHC validation. (A–D) RNA discrepancy across various N stages and (E–H) T stages. (I–L) Representative
immunohistochemical images of PTMCs in the N1b and N0 groups (20×). Scale bar, 500 µm. (M) Expression intensity analysis of signature genes in
the merged PTMC cohort. (N) IHC staining results. (∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001).
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1620085
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Dai et al. 10.3389/fimmu.2025.1620085
To elucidate the transcriptomic landscape of N1b-stage PTC, we

applied WGCNA combined with supervised machine learning

techniques, developing an MLP model that demonstrated robust

performance upon evaluation on an independent test set.

Overexpression of signeture genes was intricately linked to the

enhancement of cell adhesion molecules and intercellular signaling,

potentially driving aberrant KRAS activation, disrupting cholesterol

metabolism, and dysregulating MYC target gene expression, thereby

facilitating PTMC metastasis. Genomic analysis revealed

hypomethylation of CTXN1, MGAT3, and TMEM163 genes as a key

mechanism promoting metastatic progression. Previous studies have

identified inactivating mutations in MGAT3 (E320A, R382A, H418A)

that impair protein function (38). However, only one N1-stage patient

in our study harbored the G16D missense mutation. The MGAT3

p.G16D variant is not currently annotated as a known driver or

pathogenic mutation, and its functional implications—particularly in

relation to PTMC metastasis—warrant further investigation.

Furthermore, the partial deletions of signature genes exhibited no

variation across different N stages, and no amplifications were observed

in the metastatic group, indicating that their CNAs exert minimal

influence on metastasis in this context.

ALDH1A3, encoding dehydrogenase family one member A3, is

crucial in the oxidation of aldehydes and has been investigated as a

potential prognostic biomarker in multiple carcinomas (39–42).

Tumor cells with high ALDH expression in PTC tissue exhibit
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distinct stem-like characteristics and the ability to reinitiate serially

transplantable tumors (recapitulate the metastatic behavior of parental

tumors) (43). MGAT3 encodes b1,4-N-acetylglucosaminyltransferase

III to transfer N-acetylglucosamine (GlcNAc) from UDP-GlcNAc to a

double-stranded sugar chain, generating b1,4-GlcNAc with a bisecting

structure. Its effects on growth, adhesion, invasion, and metastasis can

potentially vary due to modifying distinct cell surface proteins.

MALDI-TOF-MS evidence has demonstrated increased bisected

glycans in PTC tissue compared to normal thyroid (44). However,

the specific bisected GlcNAc-modified proteins affecting migration of

PTMC require further analysis through mass spectrometry-based

investigations and fundamental experiments. Notably, thyroglobulin

antibodies (TgAbs) undergo bisected glycosylation, and the removal of

glycans abolishes the antibody-dependent cellular cytotoxicity (ADCC)

process (45, 46), suggesting abnormal expression of MGAT3 may

influence PTC progression by modulating immune responses. CTXN1

encodes Cortexin-1, a neuropeptide involved in the development and

functional regulation of cortical neurons, including synapse formation,

neuronal migration, as well as signal transduction. Knocking out

CTXN1 in GL261 glioma cells in mice reduced tumor burden,

improved survival rates, and enhanced infiltration of CD8+ T cells

(47). It is highly expressed in breast cancer, and further investigations

are necessary to elucidate its potential role in PTMC metastasis (48).

TMEM163 encodes transmembrane protein 163, which is

predominantly expressed in myelinating oligodendrocytes of the
FIGURE 10

Profiling anticancer drug sensitivity and molecular interactions in PTMC patients stratified by nodal status. (A) Top 10 antineoplastic agents with
significantly different predicted sensitivities. (B–E) Three-dimensional and planar docking conformation results of four proteins with antitumor
compounds, with key binding sites and hydrogen bonds (light green) highlighted (PLX4032: Vemurafenib; AT-406: Xevinapant).
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central nervous system. It has been characterized as a zinc-binding

protein involved in intracellular zinc transport (49), which is

instrumental in the clearance of reactive oxygen species (ROS) and is

essential for the immune system (50, 51). The overexpression of

TMEM163, induced by the oncogene Src, has been demonstrated to

facilitate the migration of transformed tumor cells (52).
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Accumulating evidence indicates that the immune landscape of

PTC evolves with tumor progression. In N1-stage tumors, a notable

decline in intratumoral CD8+ T cell infiltration is observed,

together with heightened levels of resting and activated DCs, gd T

cells, and resting memory CD4+ T cells (53). Importantly,

decreased infiltration of CD8+ T cells in the tumor milieu has
FIGURE 11

Stage-dependent heterogeneity in tumor-associated immune infiltration. (A) Immune infiltration heterogeneity. (B) The relationship between
signature genes and immune cell populations. (C, D) Immunohistochemical validation of distinct lymphocyte subpopulations. (E) Immune functional
heterogeneity (∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001).
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been consistently associated with adverse survival outcomes in PTC

(54). In contrast to previously reported findings in large-volume

PTC, our study revealed distinct immune infiltration patterns in

PTMC associated with LLNM (N1b stage). Specifically, compared

to N0 tumors, N1b tumors exhibited reduced infiltration of

cytotoxic CD8+ T lymphocytes and Tfh cells, alongside increased

infiltration of gd T cells, activated CD4+ memory T cells, and

activated dendritic cells. These findings suggest that the attenuation

of cytotoxic CD8+ T cells and humoral-supportive Tfh cells in N1b-

stage PTC may impair tumor-specific immune clearance, thereby

promoting immune evasion and metastatic progression. DCs, as

antigen-presenting cells, are key players in both immune defense

and immune evasion mechanisms in thyroid cancer; the increased

proportion of activated DCs in N1b tumors may enhance the

priming of naive T cells and their progression toward effector

phenotypes, thereby enhancing tumor recognition. Concurrently,

the increased presence of activated CD4+ memory T cells in the

TME reflects strengthened T cell memory function, facilitating the

generation of antigen-specific CD4+ effector T cells and amplifying

helper immune responses to recruit additional effector cells. gd T

cells cells function in both innate and adaptive immunity, directly

targeting tumor cells independent of MHC presentation and

mediating antitumor activity through NK cell receptors, ADCC,

and cytokine secretion (e.g., IFN-g, TNF-a), although their efficacy

is often limited by complex tumor immune evasion mechanisms

(55). The increased infiltration of gd T cells in metastatic PTMC

likely represents an augmented immune surveillance response, but

under the immunosuppressive tumor microenvironment, these

cells may polarize toward pro-tumorigenic subsets, such as IL-17-

producing gd T cells, thereby promoting metastasis. Given the

immunologically “cold” nature of early metastatic PTMC,

emerging CAR-gd T cell therapies hold promising potential as

innovative treatment strategies.

This study reveals alterations in circulating immune indicators—

particularly NLR, lymphocytes, and neutrophils-reflect a systemic

antitumor immune response in highly metastatic PTMC. Multi-

omics integration identified key molecular markers (ALDH1A3,

CTXN1, MGAT3, and TMEM163) linked to cell adhesion,

migration, metabolism, and immune modulation. Notably,

advanced-stage PTMC is characterized by reduced infiltration of

CD8+ T and Tfh cells, alongside increased gd T cells, activated DCs,

and activated memory CD4+ T cells within the TME. Although our

multilevel integrated analysis offers new insights into the clinical

and molecular landscape, systemic immunity, and immune

microenvironment of advanced PTC, further validation through

large-scale clinical multi-omics datasets and mechanistic

investigations is warranted to substantiate and extend these findings.
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