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X-linked lymphoproliferative disease (XLP), also known as Duncan’s disease, is a

primary immunodeficiency disorder linked to the X chromosome. In 1998,

SH2D1A, which encodes the signaling lymphocyte activation molecule (SLAM)-

associated protein (SAP), was identified as the first pathogenic gene associated

with XLP. To date, more than 100 mutation sites in this gene have been

documented. The disease is associated with infection with Epstein-Barr virus

(EBV) and characterized by hemophagocytic lymphohistiocytosis (HLH),

hypogammaglobulinemia, and lymphomas. Pathogenesis is intricately

associated with cell type-specific SAP-SLAM signaling pathways. Particularly,

the immune cell defects involve impaired T cell-B cell interactions, reduced

cytotoxicity of Natural Killer (NK) cells, and abnormal development of Natural

Killer T (NKT) cells. These factors collectively increase susceptibility to EBV and

drive clinical manifestations in XLP type 1 (XLP1) patients. Although establishing a

definitive correlation between specific genotypes and clinical phenotypes

remains challenging, emerging evidence suggests a potential association. This

underscores the critical need for further large-scale studies to elucidate this

relationship. Given the current understanding of the pathophysiological

mechanisms associated with XLP1, specific treatments to normalize SAP

expression and restore immune tolerance in XLP1 patients play an important

role. In addition to the necessity for long-term studies to verify the efficacy and

safety of hematopoietic stem cell transplantation (HSCT), gene therapies

currently under development, along with other emerging treatments, exhibit

substantial promise for future clinical applications.
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Introduction

X-linked lymphoproliferative disease (XLP) was first described

in the 1970s by Purtilo et al, who identified a familial predisposition

to fatal outcomes following Epstein-Barr virus (EBV) infection,

characterized by fulminant hepatitis, lymphoproliferation, and

immunodeficiency (1). In the 1980s, the establishment of the XLP

Registry revealed a mortality rate of ~75%, primarily due to hepatic

necrosis and multi-organ failure post-EBV exposure (2).

Subsequent genetic studies delineated two distinct subtypes: XLP

type 1 (XLP1), caused by mutations in SH2D1A (encoding signaling

lymphocytic activation molecule [SLAM]-associated protein

[SAP]), and XLP type 2 (XLP2), linked to BIRC4 (encoding X-

linked inhibitor of apoptosis [XIAP]) defects. While XLP2 is more

closely associated with EBV-driven clinical features such as

hemophagocytic lymphohistiocytosis (HLH), splenomegaly and

colitis (3, 4). This review focuses on XLP1, where SH2D1A

mutations impair immune cell signaling, predisposing patients to

EBV-driven pathologies even before classical symptom onset.

XLP1 is characterized by defective EBV clearance. EBV, a

lymphocryptovirus of the g-herpesvirus family, transforms B cells

through latent growth programs. EBV infects over 95% of the world’s

population (5). In immunocompetent individuals primary EBV

infection is usually asymptomatic, but in immunocompromised

patients, it can result in severe disease such as infectious

mononucleosis (IM) associated with polyclonal B cells expansions,

abnormal proliferation of B cells may even lead to lymphomas.

Due to the rarity and complexity of genetic and clinical

phenotypes of XLP1, as well as the incomplete understanding of

its pathogenic mechanisms, patients with XLP1 often fail to receive

timely and effective treatment. However, advancements in gene

editing, targeted therapies, and immune reconstruction

technologies have brought new hope for the treatment of XLP1.

This review aims to provide the comprehensive insights into XLP1,

focusing on its clinical and genetic characteristics, molecular

mechanisms, diagnosis methods and the latest treatment strategies.
Genetic landscape of XLP1

SH2D1A gene is located in the q25 region of the X

chromosome, spanning 40kb of genomic sequence and containing

four exons. It encodes SAP, a protein that functions as a molecular

switch, enabling SLAM family members to act as either activating or

inhibitory receptors (6, 7). This protein is almost entirely composed

of a single Src Homology 2 (SH2) domain (8, 9). XLP1 has been

reported globally (10, 11), and is shown to be associated with a

deficiency of SH2D1A gene. The mutations in SH2D1A gene

associated with XLP1 manifest in various forms, including

deletions, nonsense mutations, missense mutations, and splicing

abnormalities. In recent years, with the increasing number of XLP1

cases, more rare and complex mutation forms have been identified

(12–15). We performed a comprehensive analysis of known genetic

mutations in SH2D1A based on the ClinVar database of the

National Center for Biotechnology Information (https://
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www.ncbi.nlm.nih.gov/clinvar/?term=%22SH2D1A%22%5BGENE

%5D&redir=gene) (Figure 1). Among nearly 150 variants cataloged

in ClinVar to date, approximately one-third are classified as

pathogenic or likely pathogenic.

Among the mutations identified, truncating mutations account

for approximately 40% of reported cases and generally lead to a

complete loss of SAP expression. For example, the recurrent

nonsense mutation c.163C>T (p.Arg55*) introduces a premature

stop codon, thereby eliminating the SH2 domain that is critical for

SAP’s interaction with SLAM receptor. Similarly, large deletions

spanning exons 2–4 (e.g., 124,506_127,891del) remove the entire

coding sequence, leaving patients without functional SAP (14).

Missense mutations are also particularly significant as they

frequently occur in highly conserved regions of exons and

constitute about one-third (33.00%, 34/103) of variants. These

mutations predominantly cluster within the SH2 domain

(residues 7-102), which mediates phosphotyrosine binding. The

p.Gly49Val substitution, located in a highly conserved b-sheet
region, disrupts SAP’s ability to recruit Fyn kinase to SLAM

receptors. Surface plasmon resonance (SPR) assays reveal a 100-

fold reduction in binding affinity (Kd = 1.5 mM compared to 15 nM

for wild-type SAP), impairing downstream phosphorylation of

Vav1 and cytoskeletal reorganization in T cells (16). Other

notable missense variants, such as p.Arg32Trp and p.Thr68Ile,

destabilize the tertiary structure of the SH2 domain, as confirmed

by nuclear magnetic resonance (NMR) spectroscopy (9).
Clinical manifestations

The main clinical features of XLP1 include HLH,

hypogammaglobulinemia, and lymphoma. Among these, HLH is

the most frequent and life-threatening presentation, occurring in

35.2% of XLP1 patients and typically triggered by primary EBV

infection (4). Most cases are reported in individuals of East Asian

descent, suggesting a potential geographic distribution pattern in

the pathogenesis of EBV-associated HLH (17). Recent studies have

identified impaired responsive proliferation of CD8 + T cells and

upregulation of type I interferon (IFN) signaling as key

characteristics commonly observed in EBV-HLH cases (18). HLH

presents with fever, hepatosplenomegaly, cytopenia, rash,

lymphadenopathy, jaundice, and edema, affecting 60-75% of

XLP1 patients and leading to significant nervous system damage

and high mortality (19). Patients may exhibit any combination of

these clinical criteria; atypical presentations are not uncommon,

and conditions mimicking HLH can complicate clinical

management (20). Notably, recent research indicates that despite

a reduced mortality rate to about 65.6%, with rapid progression to

death within two months in some EBV-induced HLH cases (21). It

is important to highlight that approximately 21% of HLH cases

occur independently of EBV infection, with the underlying trigger

remaining unknown (22).

It should be noted that EBV infection in individuals without

XLP can present as the well-recognized condition IM, which is a

severe clinical manifestation associated with mortality rates
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exceeding 90% in such cases (23). IM most commonly results from

a primary EBV infection. While most symptoms of EBV-associated

IM resolve within a month, however, 10-13% of young adults

experience prolonged recovery periods lasting up to 6 months

after the initial onset of IM symptoms, characterized by persistent

pharyngitis and fever (24). However, previous studies have failed to

identify specific clinical features or laboratory parameters that

reliably predict protracted recovery in IM. Recently, a study

found that the percentage of CD8+ atypical mononuclear cells

could potentially serve as a promising biomarker for predicting

the anti-EBV immune response in IM patients (25).

Up to 50.5% of XLP1 patients exhibit a spectrum of humoral

immune abnormalities, frequently characterized by reduced levels

of one or more immunoglobulin subclasses, most notably decreased

IgG serum concentrations, alterations in IgM and/or IgA serum

concentrations, and occasionally abnormally elevated values. Such

immunological changes may predispose individuals to recurrent

infections, particularly respiratory tract infections (26, 27).

Nearly 30% of patients develop lymphoproliferative disease

(lymphoma), specifically high-grade B-cell non-Hodgkin type

lymphomas. These lymphomas in XLP1 are predominantly

extranodal, with approximately 75% of lymphomas occurring in

the ileocecal region. Notably, lymphomas can develop during

childhood and may even arise before EBV exposure. While

remission can be achieved through chemotherapy, relapse, the

development of a second lymphoma, or other manifestations of

XLP1 are frequently observed (26, 28).
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Atypical presentations

In addition to common symptoms, recent reports have

highlighted rare clinical manifestations in XLP1 cases, such as

aplastic anemia, lymphocytic vasculitis, chronic gastritis, skin

lesions, hemorrhagic enteritis, and EBV-related lymphohistiocytic

infiltration of the eye orbits and sinuses, which showed

responsiveness to rituximab treatment (29–32). While most XLP1

patients experience onset before age 10, adult-onset cases are also

clinically significant. Cases include but not limited to a 31-year-old

with EBV-HLH and T-cells lymphoma, a 20-year-old with

recurrent fever and bilateral pneumonia, and a 49-year-old

developing multi-infarct dementia (33–35). Besides, female XLP1

patients are often overlooked; Liang et al. reported a 44-year-old

female who developed acute-onset EBV-HLH followed by rapidly

progressing natural killer (NK) cell leukemia (36), highlighting the

complexity of the clinical phenotype. Collectively, these cases

demonstrate that XLP1 can lead to acute or chronic damage

affecting multiple organs and systems in an unpredictable and

irregular manner.
Genotype-phenotype discordance

Despite significant advances in genetic profiling, predicting

clinical outcomes based on SH2D1A mutations remains a

formidable challenge. Strikingly, identical germline mutations can
FIGURE 1

The mutation sites in the SH2D1A gene. Dup (1) means g. (? 123480147)_(123505241_)? dup. Del(9) means g.(?_123480147)_(123480649_)?del,
g.(? 123494030)_(123499653_)?del, g.(?_123497345)_(123505232_)?del, g.(?_123499591)_(123499694_)?del, g.(?_123499591)_(123505241_)?del,
g.(? 123499639)_(123506985_)?del, g.(?_123504006)_(123505241_)?del, g.(?_124346297)_(124371411_)?del, g.(?_124346562)_
(124346780_124365760)del.
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manifest as divergent phenotypes within the same family (21, 37).

This variability highlights the potential roles of epigenetic modifiers

and environmental factors in shaping disease manifestation. It has

been hypothesized that missense and nonsense mutations at specific

loci may restore partial of CD8+ T cell function, resulting in milder

clinical phenotypes in affected individuals (38). Early studies

indicated that patients with missense mutations in SH2D1A tends

to exhibit milder clinical presentations compared to those with

truncating mutations that produce nonfunctional SAP proteins

(39). Additionally, while not all nontruncating missense

mutations in the SH2 domain have been clinically correlated, one

previously reported case demonstrated that substitution of an

adjacent AA (49 Gly→Val) was associated with the development

of EBV-associated Burkitt lymphoma (11). Therefore, the observed

clinical heterogeneity between genotype-phenotype of XLP1 should

be interpreted with caution. As research continues, further insights

into the molecular mechanisms underlying the progression of

specific certain mutation forms to distinct clinical manifestations

may emerge.

In addition, although XLP1 patients are highly susceptible to

EBV, approximately 35% of them have no documented history of

prior EBV infection (40). Among EBV-positive patients, the

incidence of HLH is significantly higher (51% in EBV-positive

patients compared to 21.4% in EBV-negative patients), while the

rates of dysgammaglobulinemia (37.2% in EBV-positive patients

versus 52% in EBV-negative patients) and lymphoma (19.6% in

EBV-positive patients versus 25% in EBV-negative patients) are

relatively lower. Furthermore, there is no significant difference in

mortality when compared to EBV-negative patients (approximately

30%) (21, 27). Therefore, XLP1 should be considered an immune
Frontiers in Immunology 04
dysregulation disorder that is not exclusively triggered by EBV

infection. The association between EBV infection and specific

genotypic mutations remains unclear, necessitating future

research to clarify clinical distinctions between EBV-associated

and non-EBV-associated XLP1 and their genotypic correlations.
Immunological features and
pathogenesis

The pathogenesis of XLP1 is intricately associated with the cell

type-specific expression of SLAM-SAP. SAP is predominantly

expressed in T cells, NK cells, and Natural Killer T (NKT) cells,

where it modulates SLAM family receptor (SFR)-mediated signaling

pathways, but is minimally expressed in B cells (41). In XLP1, loss-of-

function mutations in SH2D1A disrupt critical immunoregulatory

circuits within these lymphocyte populations. For instance, SAP

deficiency in CD8+ T cells and NK cells impairs cytotoxicity

against EBV-infected B cells, while defective SAP-dependent T

follicular helper (TFH) cell function compromises germinal centers

(GCs) formation and humoral immunity. Conversely, despite low

SAP expression in B cells, their dysregulation in XLP1 may arise

secondarily from aberrant T cell-B cell interactions or unchecked

EBV-driven proliferation. Collectively, these cell-specific functional

deficits manifest as the clinical hallmarks of XLP1, including HLH,

hypogammaglobulinemia, and lymphoma (Figure 2). The critical

role of SAP in coordinating immune cell crosstalk and effector

functions underscores its centrality in maintaining immune

homeostasis and elucidates the multisystemic pathology observed

in XLP1.
FIGURE 2

The diagnostic flow chart for XLP1.
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T/B cells

SAP plays an important role in the normal immune function of T

cells, including the CD4+ T cells, CD8+ T cells, and T helper (Th) cells.

In the absence of SAP expression, tyrosine residues on SLAM family

members recruit several potent inhibitory molecules, such as SH2

containing protein tyrosine phosphatase (SHP)-1, SHP-2 and the SH2

containing inositol 5’-phosphatase proteins (SHIP) (42). These

inhibitory molecules induce T cells inhibitory signals, thereby

blocking the activation, development, and immune function, leading

to abnormal T cell immune responses and reduced cytotoxicity (43).

Unlike the unstable interactions between B cells interaction, SAP-

deficient T cells, SAP-deficient T cells can still form stable conjugates

with dendritic cells, suggesting that impaired SLAM-SAP signaling

primarily affects T-B cell interactions. Indeed, SAP-deficient T cells are

initially activated normally by antigen-presenting dendritic cells in

response to immunization and infection. However, they fail to

differentiate into mature CD4+ follicular helper T cells (CD4 Tfh), a

process that requires cooperation with normal B cells. Specifically, SAP

deficiency severely impairs the adhesion of CD4 Tfh cells to B cells in

GCs, resulting in compromised humoral immunity and

hypogammaglobulinemia. It appears that the gain of SAP-

independent SFRs inhibitory signaling suppresses the entry of Tfh

cells into GCs (44–46).

Furthermore, impaired T cell development exacerbates B cell-

mediated humoral immune deficiency and diminishes sensitivity to

restimulation-induced cell death (RICD), thereby resulting in an

ineffective immune response against pathogen infection (21). RICD

is an apoptotic program that regulates effector T cell expansion,

triggered by repeated stimulation through the T cell receptor (TCR)

in the presence of interleukin-2 (IL-2) (47). CD4+ regulatory T cells

(Tregs) consume IL-2 and undergo frequent TCR stimulation;

consequently, they exhibit high resistance to RICD. T cells from

XLP1 patients lack the adaptor molecule SAP, also display resistance

to RICD (48, 49). A recent study revealed that normal Tregs express

very low levels of SAP compared to conventional T cells. Forkhead box

P3 (FOXP3) reduces SAP expression by directly binding to and

repressing the SAP promoter. These findings elucidate the

mechanism behind FOXP3-mediated RICD resistance in Tregs (49).

Furthermore, T cells from patients with XLP1, who lack functional

SAP, exhibit hyper-responsive to PD-1 signaling. Conversely,

overexpression of SAP abrogated the inhibitory effect of PD-1. Thus,

while RICD is impaired in SAP deficiency, PD-1 signaling is enhanced,

potentially as a compensatory mechanism to maintain T cell signal

regulation and balance. In summary, SAP governs several critical

signaling pathways in both T cells and B cells. Impaired SLAM-SAP

signaling affects T cell-B cell interactions, the development of TH2 and

Tfh cell subsets, as well as GCs formation (50, 51).

Since a hallmark feature of XLP1 is its high sensitivity to EBV

infection, Palendria et al. developed an innovative XLP1 vector model

to elucidate the underlying immune deficiency characteristics behind

this specific vulnerability. Their findings revealed that SAP deficiency

in T cells impairs interactions with B cells while leaving interactions

with other antigen-presenting cells unaffected. This specific defect not

only clarifies the molecular pathogenesis of the increased susceptibility
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to EBV infection in XLP1 patients but also sheds light on their elevated

risk of developing B-cell lymphomas (52). Interestingly, EBV is the only

known human pathogen that selectively infects B cells, and two

different hypotheses have been proposed to describe this process.

The first suggests that EBV directly infects memory B cells. The

second posits that EBV initially infects resting naïve B cells, which

subsequently enter GCs, where viral genes are moderately expressed.

GCs serve as the site of antibody class switching of B cells in response to

pathogens (46, 53). As noted earlier, SAP deficiency severely

compromises the adhesion of CD4+ Tfh cells to B cells in GCs,

leading to the upregulation of SLAM family ligands necessary for

effective T-B cell cross-talk and immune function.

After EBV infection, the body’s antiviral immune response is

primarily mediated by the production of IgM antibodies against EBV

viral capsid antigen and a substantia expansion of CD8+ T lymphocytes

targeting EBV-infected B cells (54). In the context of SAP deficiency, T

cells can downregulate Th2 response; however, EBV infections can

upregulate Th1 response, leading to an imbalance.between Th1/Th2.

This Th1/Th2 imbalance is a well-documented mechanism of immune

escape. Consequently, the defect may contribute to the high recurrence

rate of EBV infection in XLP1 patients (55–58).
NK/NKT cells

In addition to T cells and B cells, initial functional defects observed

in lymphocytes from XLP1 patients included impaired NK cells activity

(59). Subsequent studies demonstrated that SAP couples the SFRs to

Fyn (a Src family protein tyrosine kinase) via arginine 78 (R78) in the

SH2 domain, triggers Vav-1(an exchange factor promoting

cytoskeleton reorganization and lytic synapses formation)

phosphorylation thereby enhancing NK cell conjugate formation (60,

61). Chen et al. revealed that SFRs are entirely inhibitory in SAP-

deficient NK cells, thus, removing SFRs from SAP-deficient NK cells

completely abolishes the impaired NK cells cytotoxicity (62). SFRs can

transmit two distinct signaling pathways: SAP-dependent and SAP-

independent. These two pathways play opposing roles at least in NK

cell activation. SAP-independent SFR signaling appears to promote NK

cell functional competence, whereas SFRs as self-specific activation

receptors can desensitize NK cell responsiveness (63). In the absence of

SAP, inhibitory molecules, such as SHIP-1, associate with SFRs to

suppress NK cell activation, a phenomenon observed in NK cells from

XLP1 patients (64, 65).

Members of the SLAM family, including 2B4/CD244, CD352, and

CD319, have been identified as cytotoxic receptors expressed on NK

cells (16). Among these, 2B4 plays a critical role in immune regulation

by coactivating NK cell cytotoxicity and cytokine secretion. The

immune-modulatory function of 2B4 is dependent on the small

intracellular signaling molecule SAP (66). Studies have demonstrated

that the ability of 2B4 to enhance NK cells cytotoxicity is abolished in

SAP-deficient NK cells (67).

The functional impairment of NK cells is further exacerbated by

the educational process during NK-cell maturation, which is intricately

linked to the inhibitory 2B4/CD48 pathway. SAP-deficient NK cells,

which lack self-HLA class I specific inhibitory NK receptors (self-
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iNKRs), display autoreactivity toward CD48-negative targets, including

mature dendritic cells (DCs). This aberrant cytotoxicity impairs antigen

presentation and disrupts adaptive immunity, thereby perpetuating a

vicious cycle of immune dysregulation (62, 68, 69). Although EAT-2, a

SAP-related adaptor protein, can partially compensate for the loss of

SAP by inducing calcium flux and Erk activation and preventing SFR

binding with SH2 domain-containing inhibitory molecules through

Y127-dependent recruitment of PLCg, it is insufficient to fully restore

normal NK cell function in the absence of SAP (64).

In particular, NK cells constitute the primary lymphocyte subset

of the innate immune system responsible for mediating antiviral

responses. It has been demonstrated that specific subsets of NK cells

play a critical role in the early control of EBV infection (70, 71).

Earlier research revealed that the impaired function of NK-T-B-

antigen (NTB-A, CD352) is pivotal in the failure of XLP-NK cells to

eliminate EBV-infected target cells (72). Subsequent studies further

elucidated that engagement of the 2B4 receptor selectively inhibits

immunoreceptor tyrosine-based activation motif (ITAM)-

dependent activating receptors,including natural cytotoxicity

receptor (NCR) and CD16, while sparing NK group 2 member D

(NKG2D) and DNAX accessory molecule-1 (DNAM-1) (73). This

selective inhibition specifically impairs the clearance of EBV-

infected B cells, thereby contributing to the increased

susceptibility to EBV infection the increased in XLP1 patients (74).

NKT cell development is critically dependent on SAP-SFR

signaling, as evidenced by the specificity of SAP with SFRs (75).

In both SAP-deficient mice and humans, a severe depletion of NKT

cell occurs due to a developmental block at early stages, which

compromises immune surveillance against EBV and/or B cells

lymphoma in XLP1 patients (7, 62, 76, 77). While SAP-

dependent SFR signaling is essential for NKT cell development,

SAP-independent SFR signaling plays only a minor role in this

process. However, SAP-independent SFR signaling can completely

impair NK cell function and TFH cell-mediated humoral immunity

(62, 78). The combined loss of NKT cells and dysfunctional NK cells

establishes a “two-hit” model of immune failure in XLP1: impaired

innate cytotoxicity leads to unchecked EBV, while compromised

tumor surveillance synergizes to drive HLH and lymphoma.
Signal transduction pathway

Emerging evidence highlights aberrant activation of the

phosphatidylinositol-3-kinase (PI3K)-AKT-mTOR signaling pathway

as a critical pathogenic mechanism in XLP1. Wang et al. demonstrated

constitutive hyperactivation of this pathway in XLP1 patients, which

contrasting sharply with its partial or absent activation in healthy

individuals or those with HLH of other etiologies (79). Given the well-

established role of PI3K signaling in lymphocyte development,

differentiation, and GCs formation, dysregulation of this pathway

may underlie the humoral immune defects observed in XLP1. For

example, PI3K-deficient murine models exhibit impaired GC reactions,

reduced proliferation of mature B cells, and severe humoral

dysfunction (80, 81). Although these findings suggest a connection

between PI3K hyperactivity and clinical manifestations of XLP1, the
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precise regulatory interplay between SAP and the PI3K pathway

remains unclear. Key unresolved questions include whether SAP

directly modulates PI3K activity, whether its loss triggers

compensatory signaling cascades, and what molecular mechanisms

drive of pathway hyperactivation in the absence of SAP.

Beyond humoral defects, SAP deficiency renders XLP1 patients

susceptible to rare autoimmune complications. In XLP1-associated

limbic encephalitis, anti-a-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid receptor (AMPAR) autoantibodies

generated by dysregulated B cells have been implicated in central

nervous system (CNS) pathology (82). Nevertheless, the

mechanisms driving other neurological manifestations, such as

cerebral vasculitis, or hematological abnormalities like aplastic

anemia, remain incompletely understood. These knowledge gaps

underscore the necessity of investigating how SAP deficiency

broadly disrupts immune tolerance across multiple systems.

The pathogenesis of EBV-driven complications in XLP1,

particularly HLH, involves intricate interactions between viral

tropism and dysregulated immune responses. EBV preferentially

infects CD5dim HLA-DR+ CD8+ T cells, leading to oligoclonal or

monoclonal expansion of infected lymphocytes, with NK cell

infection documented in approximately 20% of cases (83). Recent

studies have highlighted impaired CD8+ T-cell proliferative

responses and enhanced type I IFN signaling as key features of

EBV-HLH (18). Interestingly, the mechanisms underlying HLH

development in EBV-negative XLP1 patients remain largely elusive,

suggesting SAP-independent pathways of immune hyperactivation.

Furthermore, while EBV infection is known to promote B-cell

transformation and increase lymphoma risk, paradoxically lower

lymphoma incidence has been reported in EBV-positive XLP1

patients compared to their EBV-negative counterparts. This

observation points to undefined immune surveillance mechanisms

that differentially regulate EBV-associated versus spontaneous

lymphomagenesis in the context of SAP deficiency.

Critical unanswered questions remain regarding the clinical

heterogeneity of XLP1. First, the relationship between residual SAP

expression levels and susceptibility to EBV infection or disease

severity has yet to be fully characterized. Second, it remains unclear

whether SAP deficiency directly enhances EBV tropism for specific

lymphocyte subsets or simply allows uncontrolled viral

proliferation due to cytotoxic defects. Addressing these issues will

necessitate longitudinal studies that correlate SAP expression levels,

immune cell functionality, and clinical outcomes in both EBV-

positive and EBV-negative cohorts.
Examination and diagnosis methods

The diagnosis of XLP1 necessitates a comprehensive and

systematic approach that integrates clinical suspicion, laboratory

testing, and genetic validation. HLH is diagnosed according to the

HLH-2004 criteria (≥5/8 clinical/laboratory features) (84). However,

distinguishing between primary/genetic HLH and secondary HLH is

critical, especially in patients with acute or fulminant EBV infection,

EBV-associated HLH, or HLH triggered by other viruses such as
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cytomegalovirus or adenovirus in pediatric and adolescent populations

(85). EBV detection remains pivotal in evaluation; first-line tests

include PCR for EBV-DNA load, IgM antibodies, and heterophile

antibodies. Advanced techniques, such as PrimeFlow™ RNA assay

(with a sensitivity of detecting 0.01% EBV-infected cells) and EBER

flow fluorescence in situ hybridization (FISH), further enhance

diagnostic sensitivity and provide deeper mechanistic insights into

EBV-associated pathologies (86, 87). Importantly XLP1 should also be

considered in cases of EBV-negative HLH.

Immunological profiling plays a critical role in diagnosis,

particularly for conditions such as hypogammaglobulinemia (see

Clinical Features) and reduced peripheral NKT cell counts (though

normal counts do not rule out XLP1) (77, 88). A higher level of

suspicion is warranted in patients with B-cell lymphoproliferative

disorders, especially those who develop secondary distinct

lymphomas following initial remission from non-Hodgkin lymphoma

treatment (28). Functional assessment of SAP protein expression using

flow cytometry (FCM) serves as an effective rapid screening tool;

however, in cases with a clinically compatible presentation, secondary

validation of the inhibitory effect of the 2B4 receptor is necessary to

confirm the findings. Combining SAP expression analysis in peripheral

blood NK cells with a functional assay of the 2B4 receptor enables

accurate identification of XLP1 (31, 89).

Genetic testing serves as the diagnostic gold standard. For patients

with a high clinical suspicion or family history, sanger sequencing of

SH2D1A is recommended as the initial approach. If results are

inconclusive, advanced techniques such as amplicon sequencing,

next-generation sequencing (NGS), whole-exome sequencing (WES),

or whole-genome sequencing, should be pursued (90, 91). Emerging

techniques, like droplet digital PCR (ddPCR), provide cost-effective and

sensitive mutation detection for small genes or familial studies, though

further optimization is required for broader application (92).

Diagnostic challenges remain significant due to overlapping

features with XLP2, asymptomatic cases without a family history,

and clinically overlooked EBV-negative presentations. We outline a

diagnostic approach based on the current XLP1 diagnostic criteria

established by the European Society for Immunodeficiencies (ESID)

2019 guidelines (https://esid.org/Working-Parties/Registry-

Working-Party/Diagnosis-criteria/) (summarized in Figure 3).

This approach highlights the importance of recognizing early

clinical warning signs, such as abnormal EBV response, HLH,

hypogammaglobulinemia, and lymphoma, which are ultimately

through genetic testing. The future development of cost-effective

genetic screening methods or biomarkers with high sensitivity and

specificity may enhance early diagnosis and reduce mortality

associated with delayed interventions.
Current treatment and potential
therapies for XLP1

Symptomatic supportive treatment

The management of XLP1 focuses on symptom control and

complication prevention. Continuous monitoring of EBV viral load
Frontiers in Immunology 07
is essential to reduce the risk of recurrent infections and life-

threatening complications, such as HLH. Rituximab, an anti-

CD20 monoclonal antibody, effectively decreases EBV viremia by

depleting infected B cells. However, it also poses the risk of B-cell

depletion and prolonged hypogammaglobulinemia (93).

Additionally, in some cases of XLP1, T cells may also be infected.

If high EBV-DNA copy numbers persist after rituximab

administration, it is important to consider the possibility of

infection in cell types other than B cells (87). Immunoglobulin

replacement therapy is used to manage hypogammaglobulinemia-

related infections, while B-cell lymphomas are treated with standard

chemotherapy followed by expedited HSCT.
HLH-specific therapies

HLH treatment adheres to the HLH-1994 protocol (comprising

etoposide, dexamethasone, and delayed cyclosporine ± intrathecal (IT)

methotrexate), achieving a 5-year survival rate of 54% despite risks

associated with early mortality, transplant-related complications and

neurologic late effects (94). the HLH-2004 protocol introduced upfront

cyclosporine and included IT corticosteroids. While HLH-2004

achieved an estimated 5-year survival rate of 62% and reduced pre-

HSCT mortality from 27% to 19% compared with HLH-1994, these

modifications did not result in a significant improvement in the overall

outcome. Therefore, the HLH-1994 regimen remains the current

standard of care in most centers (84, 94, 95). The guidance for use of

the HLH-1994 protocol issued by HLH Steering Committee of the

Histiocyte Society provide us a framework for guiding treatment

decisions in this severe disease (96).

Some alternative therapeutic approaches for HLH have been

initiated to enhance pre-HSCT survival. Emapalumab is the first

cytokine-targeting therapy approved specifically for treating HLH,

marking a shift away from cytotoxic chemotherapy, toward more

targeted immune modulation (97). Other potential approaches include

Antithymocyte globulin (ATG) in combination with etoposide

(NCT01104025), alemtuzumab (NCT02472054), tocilizumab

(NCT02007239), ruxolitinib (NCT02400463), and a targeted anti-

IFN gamma monoclonal antibody (NCT01818492) (84). Notably,

ruxolitinib was first reported as a treatment for pediatric HLH in

2017 (98). Two recent studies demonstrated that ruxolitinib could be

effective for the initial treatment of secondary HLH both in adults and

pediatric patients, showing favorable responses associated with reduced

levels of serum cytokines in most cases (99, 100). Several additional

studies further described favorable outcomes when ruxolitinib was used

as a part of salvage therapy or a bridge to HSCT (101–105). These

alternative therapeutic approaches may improve patient survival

during the transition to HSCT; however their efficacy and safety

profiles should be validated in larger, more diverse patient populations.
Hematopoietic stem cell transplantation

HSCT remains the only curative option for XLP1, with an

81.4% survival rate in transplanted patients compared to 62.5% in
frontiersin.org

https://esid.org/Working-Parties/Registry-Working-Party/Diagnosis-criteria/
https://esid.org/Working-Parties/Registry-Working-Party/Diagnosis-criteria/
https://doi.org/10.3389/fimmu.2025.1620327
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2025.1620327
non-transplanted cohorts. Among those non-transplant patients

who developed HLH, the survival rate was only 18.8% (21). Another

cohort study conducted in Japan involving 33 patients with XLP1

found that 21 of the patients (65%) who did not undergo a

transplant died of the disease and complications, 12 patients

underwent HSCT, and 11 of these (92%) survived, indicating that

HSCT can significantly affect the prognosis and outcomes of XLP1
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patients (31). Notably, HLA haploidentical HSCT (haplo-HSCT)

from family members using Beijing Protocol is a promising

approach due to its cost effectiveness and favorable outcomes

(106). Optimal outcomes require HLA-matched donors to

minimize graft-versus-host disease (GvHD). A reduced toxicity

busulfan-fludarabine conditioning regimen provides low toxicity,

a low incidence of GvHD, durable myeloid engraftment, and
FIGURE 3

The pathogenesis and clinical features of XLP1.XLP1 is tightly linked to the cell type-specific SAP-SLAM signaling (may also include PI3K-AKT-mTOR
signal pathway). Particularly the immune cell defects including impaired T cell-B cell interactions, NK cells cytotoxicity and NKT cell development.
These combined factors contribute to an increased susceptibility to EBV and other clinical manifestations seen in XLP1 patients, including HLH,
hypogammaglobulinemia, lymphoproliferation and lymphoma.
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excellent survival rates, making it potentially suitable for various

primary immune deficiencies (107).

However, even with a suitable donor, XLP1 patients require

comprehensive pre-transplant evaluation. The decision to perform

HSCT on an asymptomatic patients remains controversial due to

the unclear natural history of XLP1 in untransplanted individuals.

A literature review identified rare cases of untransplanted XLP1

patients who survived into mid-adulthood. Despite surviving

typically fatal childhood presentations, these patients remained at

risk for late-onset manifestations of XLP1 (108). In another cohort

study, the 5-year overall survival (OS) probability from the time of

diagnosis was significantly higher in asymptomatic XLP1 patients

(100%) compared to symptomatic patients (66.7%) (109). These

findings suggest that early HSCT upon diagnosis may offer

improved outcomes for asymptomatic XLP1 patients.
Other potential treatments

SLAM Family Inhibitors and insights of controlling
EBV infection

Targeted Molecular Interventions: Preclinical studies underscore

SLAM family inhibitors as promising therapeutics. Ruffo et al. found

that inhibiting DGKa activity in SAP-deficient T cells restores

diacylglycerol signaling and alleviates RICD through induction of

NR4A1 and NR4A3, thereby identifying DGKa as a potential

therapeutic target for reversing the life-threatening EBV-associated

immunopathology observed in XLP1 patients (110). Based on this

research, Velnati et al. further validated that ritanserin and

AMB639752 inhibit DGKa to achieve comparable effects (111). Peled

et al. revealed that T cells from XLP1 patients exhibit hyperresponsive

to PD-1 signaling, elucidating the critical role of SAP in this process

and its underlying mechanism, which suggests that binding partners of

the PD-1 cytoplasmic tail may serve as valuable therapeutic targets

(51). Neelam et al. showed that RMC-4550 restores T-cells function in

XLP1 patient cells and SAP-/- mouse model by enhancing TFH cells

function and rescuing cytotoxicity (43).

Hislop et al. demonstrated that inhibiting CD244 facilitates the

restoration of CD8+ T-cell recognition of EBV-infected target cells,

thereby aiding XLP1 patients in controlling EBV infection (112).

Additionally, maintaining, restoring, or enhancing CD1d

expression on the surface of target cells may improve immune

control over EBV-infected cells. This approach could be combined

with boosting NKT cell responses via a-galactosylceramide or other

agonists (113). More recently, Müller-Durovic et al. found that the

Virus-orchestrated nicotinamide adenine dinucleotide (NAD)

biosynthesis represents a druggable metabolic vulnerability in

EBV-driven B cell transformation, offering potential therapeutic

avenues for EBV-related diseases including XLP1 (114). While these

approaches can serve as adjuvant treatment, their safe dose, toxicity

profiles, and efficacy in humans require further investigation.

Gene therapy
Lentiviral vector-mediated SH2D1A gene correction restores SAP

expression, thereby rescuing T/NK cell cytotoxicity and humoral
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immunity in murine and patient-derived cell models, providing

novel therapeutic strategies for XLP1 patients (115). Genome editing

tools such as CRISPR-Cas9 and CRISPR-Cas12a, combined with

AAV6 homology donors, have shown promise in restoring T cells

function in XLP1 patients. However, these approaches face challenges,

including chromothripsis (extensive chromosome rearrangement

restricted to one or a few chromosomes) and dorsal root ganglia

toxicity, as well as severe hepatotoxicity associated with high vector

doses (116–118). To address these limitations, the use of more efficient

AAV vectors that allow for dose sparing or repeated administration of

smaller doses, potentially in combination with antibody or B-cell

depletion strategies, should be explored.

Organoid-derived T cells with engineered SAP expression

demonstrate preclinical efficacy. Recently, a regulated lentiviral

vector named XLP-SMART LV, designed to express SAP at

therapeutic levels specifically in T, NK, and NKT cells.

Transduction of XLP1 patient CD8+ T cells or BM CD34+ cells

with XLP-SMART LVs restored RICD and NK cytotoxicity to wild-

type levels, respectively (119, 120). A key advantage of XLP-SMART

LVs is their ability to mimic the physiological expression pattern of

SAP, ensuring a closer match to the natural context. Nevertheless,

the long-term clinical effects of repaired cells on immune function

in XLP1 patients remain to be evaluated in clinical trials.
Research limitations and challenges

Although mutations in the SH2D1A gene have been identified as

the cause of XLP1, delineating a definitive relationship between specific

genotypes and clinical phenotypes remains challenging. This ambiguity

complicates accurate prediction of a patient’s clinical presentation and

disease severity through genetic testing. Specifically, different mutations

can result in highly variable symptoms among individuals, with some

patients experiencing only mild manifestations while others may

develop severe complications such as HLH or lymphomas. Therefore,

the genotype-phenotype correlation is not a straightforward linear

relationship but is influenced by multiple factors, including potential

modifier genes and environmental influences.

Current research on XLP1 predominantly relies on small sample

sizes, which significantly restricts our understanding of the disease.

Specifically, case reports constitute the majority of the literature related

to XLP1.These isolated could potentially be aggregated for integrated

analysis, such as retrospective cohort studies, to provide a more

comprehensive overview of the clinical features, prognosis, and

outcomes of XLP1 patients. However, the number of such integrative

studies remains extremely limited, thereby hindering the full

exploration of the value embedded in reported XLP1 cases. Moreover,

special cases involving novel mutations or rare clinical manifestations

often lack in-depth mechanistic investigations. A more thorough

examination of these cases by relevant researchers is warranted to

gather sufficient data for drawing broadly applicable conclusions.

Our understanding of the geographical distribution characteristics

of XLP1 patients is insufficient, which may lead to a lack of attention to

the disease by medical workers in some high-incidence areas. Future

research should focus on larger, multi-center studies to provide more
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reliable data for the registration and management of XLP1 patients. By

the way, these multi-center studies can also explore whether genetic

mutations in SH2D1A are related to region and race.

While HSCT is considered an effective treatment for XLP1, its

success rate is not fully guaranteed and is influenced by several factors.

Despite its potential to cure, the success of HSCT in XLP1 patients is

not absolute and can be influenced by various factors, including the

timing of the transplant, the presence of active infections, and the

patient’s overall health status at the time of the procedure. The decision

to proceed with HSCT, especially in asymptomatic patients, remains a

complex and debated issue due to the lack of clear natural history data

for XLP1 patients who do not undergo transplantation (108). The

effectiveness of HSCT can also be impacted by post-transplant

complications, such as immune-mediated cytopenias (IMCs), which

are a significant cause of morbidity and mortality in pediatric patients

undergoing HSCT for both malignant and non-malignant disorders.

IMCs are challenging to manage, with many patients showing

resistance to first-line treatments like high-dose intravenous steroids,

immunoglobulin, and rituximab. The complexity of these

complications underscores the need for a deeper understanding of

their pathogenesis and the development of tailored therapeutic

strategies to improve patient outcomes (121). Furthermore, the

success of HSCT in XLP1 patients may be influenced by the

underlying genetic mutations affecting immune cell function. For

instance, mutations in the SH2D1A gene, resulting in defective NK

cell responses against EBV-infected cells. This defect is partly due to the

inhibitory function of the 2B4 receptor, which plays a crucial role in

NK cell education and immune regulation in XLP1 patients.

Understanding these genetic and immunological factors is essential

for optimizing HSCT outcomes and developing adjunctive therapies to

support immune function in these patients (69). Last but not the least,

the establishment of HSCT outcome registries on institutional and

national levels may help us obtain a more comprehensive insight into

the clinical outcomes of XLP1 patients who undergo HSCT, and

provide important data support for the development of clinical trials

and cohort studies related to HSCT.

In addition to the traditional treatment methods, the research of

targeted therapy has gradually become the focus of attention. However,

research in this area is still in its infancy and has not been widely used

in clinical practice. Targeted therapy aims to regulate the abnormal

response of the immune system by intervening in specific molecular

targets, so as to achieve therapeutic purposes. Although preliminary

studies suggest this approach has potential applications, more clinical

trials are needed to verify its safety and effectiveness. Future research

must prioritize multi-center studies to establish genotype-phenotype

correlations, validate novel therapies (e.g., gene editing and SLAM

inhibitors) in clinical trials, and integrate international registries (e.g.,

ESID) to enhance global data harmonization.
Concluding remarks and pepspectives

Current diagnosis and treatment strategies for XLP1 patients focus

on eliminating EBV infection, controlling HLH, and awaiting a suitable

donor for HSCT. However, the diversity of clinical phenotypes and
Frontiers in Immunology 10
pathogenesis of XLP1 remains incomplete understood, leading to

potential misdiagnosis and missed diagnosis. While existing literature

on XLP1 primarily consists of case reports that provide valuable clinical

insights, obtaining a comprehensive and integrated understanding of

the disease remains challenging. Moreover, XLP1 is associated with

SH2D1A gene variants, and our review has identified over 100

mutations, most of which have been confirmed as causative factors

for the disease. However, the clinical significance of some mutations

remains unclear, and others may yet be undiscovered. Further research

into the genetic etiology of XLP1 is likely to uncover new mutation

types, potentially enabling better understanding of the disease. Despite

the challenges in establishing a definitive correlation between specific

genotypes and clinical phenotypes, emerging evidence indicates a

potential association, underscoring the need for further multi-center

studies. Last but not the least, developing new therapeutic strategies,

such as gene-based therapy, is essential for XLP1 patients. Longer-term

studies are needed to continued focus on pathogenic mechanisms,

genetic associations and clinical features that will advance more precise

diagnosis and treatment.
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60. Dong Z, Davidson D, Pérez-Quintero LA, Kurosaki T, Swat W, Veillette A. The
adaptor SAP controls NK cell activation by regulating the enzymes Vav-1 and SHIP-1
and by enhancing conjugates with target cells. Immunity.. (2012) 36:974–85.
doi: 10.1016/j.immuni.2012.03.023

61. Claus M, Urlaub D, Fasbender F, Watzl C. SLAM family receptors in natural
killer cells - Mediators of adhesion, activation and inhibition via cis and trans
interactions. Clin Immunol. (2019) 204:37–42. doi: 10.1016/j.clim.2018.10.011

62. Chen S, Yang M, Du J, Li D, Li Z, Cai C, et al. The Self-Specific Activation
Receptor SLAM Family Is Critical for NK Cell Education. Immunity.. (2016) 45:292–
304. doi: 10.1016/j.immuni.2016.07.013

63. Chen S, Li D, Wang Y, Li Q, Dong Z. Regulation of MHC class I-independent
NK cell education by SLAM family receptors. Adv Immunol. (2020) 145:159–85.
doi: 10.1016/bs.ai.2019.11.006
Frontiers in Immunology 12
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